
Matthew MacDonald
is a science and
technology writer with
well over a dozen books
to his name, including
HTML5: The Missing
Manual, WordPress: The
Missing Manual, and all
four editions of Creating
a Website: The Missing
Manual. A three-time
Microsoft MVP, he also
teaches programming
at Ryerson University
in Toronto.

Answers found here!
You can easily create a professional-looking website with
nothing more than an ordinary computer and some raw
ambition. Want to build a blog, sell products, create forums,
or promote an event? No problem! This friendly, jargon-free
book gives you the techniques, tools, and advice you need to
build a site and get it up on the Web.

The important stuff you need to know
n Master the basics. Learn HTML5, the language of the Web.

n	 	Design attractive pages. Find a reliable web host and pick a
good web address.

n	 	Use time-saving tools. Learn about free tools for creating
web pages and tracking your visitors.

n	 	Attract visitors. Make sure people can find your site through
popular search engines like Google.

n	 Build a community. Encourage repeat visits with social media.

n	 Bring in the cash. Host Google ads, sell Amazon’s wares, or
push your own products that people can buy via PayPal.

n	 Add pizzazz. Include audio, video, interactive menus, and a
pinch of JavaScript.

missingmanuals.com
twitter: @missingmanuals
facebook.com/MissingManuals

MacDonald
Creating a W

ebsite

4th Edition

Web Design

ISBN: 978-1-491-91807-4

US $29.99 CAN $34.99

“The Missing Manual series is simply the most intelligent and usable series of guidebooks…”
—KEVIN KELLY, CO-FOUNDER OF WIRED

Matthew MacDonald

Creating a
Website

4th
Edition

Covers
HTML5

MacDonald

Creating a W
ebsite

4th Edition

Matthew MacDonald
is a science and
technology writer with
well over a dozen books
to his name, including
HTML5: The Missing
Manual, WordPress: The
Missing Manual, and all
four editions of Creating
a Website: The Missing
Manual. A three-time
Microsoft MVP, he also
teaches programming
at Ryerson University
in Toronto.

Answers found here!
You can easily create a professional-looking website with
nothing more than an ordinary computer and some raw
ambition. Want to build a blog, sell products, create forums,
or promote an event? No problem! This friendly, jargon-free
book gives you the techniques, tools, and advice you need to
build a site and get it up on the Web.

The important stuff you need to know
n Master the basics. Learn HTML5, the language of the Web.

n	 	Design attractive pages. Find a reliable web host and pick a
good web address.

n	 	Use time-saving tools. Learn about free tools for creating
web pages and tracking your visitors.

n	 	Attract visitors. Make sure people can find your site through
popular search engines like Google.

n	 Build a community. Encourage repeat visits with social media.

n	 Bring in the cash. Host Google ads, sell Amazon’s wares, or
push your own products that people can buy via PayPal.

n	 Add pizzazz. Include audio, video, interactive menus, and a
pinch of JavaScript.

missingmanuals.com
twitter: @missingmanuals
facebook.com/MissingManuals

Web Design

ISBN: 978-1-491-91807-4

US $29.99 CAN $34.99

“The Missing Manual series is simply the most intelligent and usable series of guidebooks…”
—KEVIN KELLY, CO-FOUNDER OF WIRED

Matthew MacDonald

Creating a
Website

4th
Edition

Covers
HTML5

Creating a
Website

Fourth Edition

Matthew MacDonald

 Beijing | Boston | Farnham | Sebastopol | Tokyo

The book that should have been in the box®

Creating a Website: The Missing Manual, Fourth Edition
by Matthew MacDonald

Copyright © 2015 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc.,
1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (https://www.safaribooksonline.com).
For more information, contact our corporate/institutional sales department:
(800) 998-9938 or corporate@oreilly.com.

June 2015: First Edition.

Revision History for the First Edition:

2015-06-08 First release

See http://www.oreilly.com/catalog/errata.csp?isbn=0636920036364 for release details.

The Missing Manual is a registered trademark of O’Reilly Media, Inc. The Missing
Manual logo, and “The book that should have been in the box” are trademarks of
O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those designations
appear in this book, and O’Reilly Media is aware of a trademark claim, the
designations are capitalized.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained in it.

ISBN-13: 978-1-4919-1807-4

[M]

https://www.safaribooksonline.com/
mailto:corporate@oreilly.com
http://www.oreilly.com/catalog/errata.csp%3Fisbn%3D0636920036364

iii

Contents

The Missing Credits . vii

Introduction . xi
The Glory of Building a Website from Scratch . xii
About This Book . xiv
About the Online Resources . xvi
Safari® Books Online . xviii

 Part One: Building Basic Web Pages

 CHAPTER 1: Creating Your First Page . 3
HTML: The Language of the Web . 3
Tutorial: Creating an HTML File . 9
Seeing the HTML of a Live Web Page . 13
A Closer Look at HTML Tags . 14
Understanding HTML Documents . 18
Tutorial: Building a Complete HTML Document . 21
Checking Your Pages for Errors . 32

 CHAPTER 2: Becoming Fluent in HTML . 37
Types of Elements . 37
HTML Elements for Basic Text .39
Tutorial: Converting Raw Text to HTML .48
HTML Elements for Lists . 51
HTML Elements for Tables . 57
Inline Formatting . 61

 CHAPTER 3: Building a Style Sheet . 69
Graphic Design on the Web .70
Style Sheet Basics . 71
Tutorial: Attaching a Style Sheet to a Page . 76
When Styles Overlap . 81
Class Selectors .84
Colors . 87
Text Alignment and Spacing . 91

COntentsiv

Basic Fonts .96
Web Fonts with Google . 103
Borders . 107

 CHAPTER 4: Adding Graphics . 115
Introducing the Element .115
Tutorial: Storing Images in a Subfolder . 120
File Formats for Web Graphics . 122
Tutorial: Wrapping Text Around an Image . 127
Background Images . 138
Finding Free Art . 144

 CHAPTER 5: Working with a Web Editor . 147
The Benefits of a Web Editor . 148
Choosing Your Web Editor . 149
Getting Started with Dreamweaver . 153
Setting Up Shop with Expression Web . 162
Trying Out Brackets . 169

 Part two: From Web Page to Website

 CHAPTER 6: Linking Pages . 177
Understanding the Anchor . 177
Tutorial: Linking the Pages in a Site . 181
More Tricks with Links . 190
Links that Lead to Bookmarks . 196
When Good Links Go Bad . 198

 CHAPTER 7: Designing Better Style Sheets . 205
Planning a Style Sheet .205
Building a Complete Style Sheet . 208
Improving Your Style Sheet . 215
Tutorial: Becoming a Style Detective .226

 CHAPTER 8: Page Layout . 231
Understanding Style-Based Layout .232
Choosing Your Layout .236
Tutorial: Creating a Layout with Multiple Columns .239
A Few More Layout Techniques . 250
Putting the Same Content on Multiple Pages .262

COntents v

 CHAPTER 9: Getting Your Site Online . 277
How Web Hosting Works .277
Domain Names .282
Getting Web Space .288
Transferring Files to Your Site .298

 Part three: Connecting with Your Audience

 CHAPTER 10: Introducing Your Site to the World . 313
Your Website Promotion Plan . 314
Making Your Site Search-Engine Friendly . 315
Registering with Search Engines .320
Tracking Visitors . 330

 CHAPTER 11: Website Promotion . 345
Spreading the Word . 346
Transforming a Site into a Community .353
Email Newsletters .356
Twitter .358
Facebook .363
Groups . 371

 CHAPTER 12: Adding a Blog . 381
Understanding Blogs .382
Getting Started with Blogger .389
Blog Management .397
Reviewing Comments . 407

 CHAPTER 13: Making Money with Your Site . 413
Money-Making the Web Way . 414
Google AdSense . 415
Amazon Associates .433
PayPal Merchant Tools . 442

 Part Four: interactivity and Multimedia

 CHAPTER 14: JavaScript: Adding Interactivity . 457
Understanding JavaScript .457
JavaScript 101 . 460
Dynamic HTML .473
Scripts on the Web .493

COntentsvi

 CHAPTER 15: Dynamic Buttons and Menus . 499
Fancy Buttons . 499
Choosing Your Approach . 501
Tutorial: Creating a Rollover Button .503
Fancy Menus .511

 CHAPTER 16: Audio and Video . 523
Understanding Multimedia .523
Playing Audio Files .526
Showing Video Clips .529
Fallbacks for Old Browsers .535
Uploading Videos to YouTube . 541

 Part Five: Appendixes

 APPENDIX A: Where to Go from Here . 553

 APPENDIX B: HTML Quick Reference . 555
HTML Elements .555
HTML5 Semantic Elements .577
HTML Character Entities .582

Index. 585

tHe MIssInG CReDIts vii

The Missing Credits
ABOUT THE AUTHOR

Matthew MacDonald is a science and technology writer with well over
a dozen books to his name. He’s taken countless readers onto the Web
with books like WordPress: The Missing Manual and HTML5: The Miss-
ing Manual. He’s also shown people just how strange they really are
with the mind-bending weird science of Your Brain: The Missing

Manual and Your Body: The Missing Manual.

ABOUT THE CREATivE TEAM
Peter McKie (editor) had the pleasure of working on previous editions of this book.
He lives in New York, where he researches the history of abandoned buildings and,
every once in a while, sneaks into them. Email: pmckie@oreilly.com.

Kara Ebrahim (production editor) lives, works, and plays in Cambridge, MA. She
loves graphic design and all things outdoors. Email: kebrahim@oreilly.com.

Shelley Powers (technical reviewer) is a web developer and tech writer currently
living in St. Louis, Missouri. Her areas of interest are HTML5, JavaScript, and other
web technologies.

Julie Van Keuren (proofreader) quit her newspaper job in 2006 to move to Montana
and live the freelancing dream. She and her husband, M.H. (who is living the novel-
writing dream), have two sons, Dexter and Michael. Email: little_media@yahoo.com.

Ron Strauss (indexer) specializes in the indexing of information technology publica-
tions of all kinds. Ron is also an accomplished classical violist and lives in Northern
California with his wife and fellow indexer, Annie, and his miniature pinscher, Kanga.
Email: rstrauss@mchsi.com.

ACKNOWLEDGEMENTS
No author could complete a book without a small army of helpful individuals. I’m
deeply indebted to the whole Missing Manual team, especially my editor, Peter McKie,
who kept me on track with relatively gentle prodding, and HTML-whiz tech reviewer
Shelley Powers, who lent her keen insight about all things Web-related. I also owe
a hearty thanks to those who left their mark on the previous editions of this book,
including Sarah Milstein, Peter Meyers, and tech reviewers Jim Goodenough, Rhea
Howard, Mark Levitt, Tony Ruscoe, and Megan Sorensen. As always, I’m also deeply
indebted to numerous others who toiled behind the scenes indexing pages, drawing
figures, and proofreading the final copy.

mailto:pmckie%40oreilly.com?subject=
mailto:kebrahim%40oreilly.com?subject=
mailto:rstrauss%40mchsi.com?subject=

tHe MIssInG CReDItsviii

Finally, I’d never write any book without the support of my parents, Nora and Paul,
my extended parents, Razia and Hamid, and my wife, Faria. (I’d probably write
many more without the challenges of my three lovable daughters, Maya, Brenna,
and Aisha.) Thanks, everyone!

THE MiSSiNG MANUAL SERiES
Missing Manuals are witty, superbly written guides to computer products that don’t
come with printed manuals (which is just about all of them). Each book features a
handcrafted index and cross-references to specific pages (not just chapters). Recent
and upcoming titles include:

Access 2013: The Missing Manual by Matthew MacDonald

Adobe Edge Animate: The Missing Manual by Chris Grover

Buying a Home: The Missing Manual by Nancy Conner

Creating a Website: The Missing Manual, Third Edition by Matthew MacDonald

CSS3: The Missing Manual, Third Edition by David Sawyer McFarland

Dreamweaver CS6: The Missing Manual by David Sawyer McFarland

Dreamweaver CC: The Missing Manual by David Sawyer McFarland and Chris Grover

Excel 2013: The Missing Manual by Matthew MacDonald

FileMaker Pro 13: The Missing Manual by Susan Prosser and Stuart Gripman

Flash CS6: The Missing Manual by Chris Grover

Galaxy Tab: The Missing Manual by Preston Gralla

Galaxy S5: The Missing Manual by Preston Gralla

Google+: The Missing Manual by Kevin Purdy

HTML5: The Missing Manual, Second Edition by Matthew MacDonald

iMovie: The Missing Manual by David Pogue and Aaron Miller

iPad: The Missing Manual, Sixth Edition by J.D. Biersdorfer

iPhone: The Missing Manual, Seventh Edition by David Pogue

iPhone App Development: The Missing Manual by Craig Hockenberry

iPhoto: The Missing Manual by David Pogue and Lesa Snider

iPod: The Missing Manual, Eleventh Edition by J.D. Biersdorfer and David Pogue

iWork: The Missing Manual by Jessica Thornsby and Josh Clark

JavaScript & jQuery: The Missing Manual, Second Edition by David Sawyer McFarland

Kindle Fire HD: The Missing Manual by Peter Meyers

tHe MIssInG CReDIts ix

Microsoft Project 2013: The Missing Manual by Bonnie Biafore

Motorola Xoom: The Missing Manual by Preston Gralla

NOOK HD: The Missing Manual by Preston Gralla

Office 2011 for Macintosh: The Missing Manual by Chris Grover

Office 2013: The Missing Manual by Nancy Conner and Matthew MacDonald

OS X Mavericks: The Missing Manual by David Pogue

Personal Investing: The Missing Manual by Bonnie Biafore

Photoshop CS6: The Missing Manual by Lesa Snider

Photoshop CC: The Missing Manual, Second Edition by Lesa Snider

Photoshop Elements 13: The Missing Manual by Barbara Brundage

PHP & MySQL: The Missing Manual, Second Edition by Brett McLaughlin

Switching to the Mac: The Missing Manual, Mavericks Edition by David Pogue

Windows 7: The Missing Manual by David Pogue

Windows 8: The Missing Manual by David Pogue

WordPress: The Missing Manual, Second Edition by Matthew MacDonald

Your Body: The Missing Manual by Matthew MacDonald

Your Brain: The Missing Manual by Matthew MacDonald

Your Money: The Missing Manual by J.D. Roth

For a full list of all Missing Manuals in print, go to www.missingmanuals.com/library.
html.

www.missingmanuals.com/library.html
www.missingmanuals.com/library.html

xi

Congratulations! You’re living in the golden age of website-building. The world
has never had better, more powerful, or easier-to-use tools for making top-
notch websites.

However, there’s a catch—all these great tools make for some seriously confusing
choices. If you’re new to web design, you’ll need to sort through a dizzying assort-
ment of technologies before you can actually start building web pages. Depending
on your ambitions and skills, some of these tools will be downright essential to your
site, while others will be nearly irrelevant.

That’s where this book, the fourth edition of Creating a Website: The Missing Manual,
comes into the picture. Think of it as your personal trainer for site-building. You’ll
start by learning how to create basic web pages, using the standards that underpin
every page on the Web (that’s HTML and CSS). You’ll then branch out to explore the
services provided by companies like Google that can help you popularize your site,
count your visitors, and even make you some money. You’ll even take a condensed
tour of JavaScript, the programming language that powers almost every interactive
page you meet online.

In short, this book is the perfect guide for people who want to build a site on their
own, starting from scratch, but with all the goodies the modern-day Web has to offer.
It’s also a gentle starting point for anyone who wants to get deeper into the field of
website design (and Appendix A has plenty of suggestions for ambitious readers who
want to learn more). If either of these descriptions describes you, welcome aboard!

Introduction

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOnxii

THE GLORY OF
BUILDING A

WEBSITE FROM
SCRATCH

WORD TO THE WISE

Who Shouldn’t Read This Book
It’s worth pointing out that this book isn’t for everyone. If
you’re familiar with web technologies like HTML and CSS, and
you just want to learn what’s new in their most recent incarna-
tions (HTML5 and CSS3), you’ll probably prefer the fast route
offered in HTML5: The Missing Manual (O’Reilly).

If you’re planning to build your website with the fantastically
popular WordPress blogging-and-so-much-more framework,
you should detour to WordPress: The Missing Manual (O’Reilly).
(That said, if you want to build a traditional website and then
supplement it with a blog, this book has you covered.)

If you’re a programmer who’s planning to create a highly inter-
active website or web application, you’re cooking a different

kettle of fish. First, you need to learn how to write code that
works on a web server, the high-powered but mostly unseen
computers that run the Internet. Starting down this path can be
tricky, because there are more web programming languages in
the world than there are contestants on The Bachelor. However,
you’ll find a good, gentle introduction in the book Learning PHP,
MySQL, JavaScript, CSS & HTML5 (O’Reilly). (Fair warning: If you
really want to program everything yourself without shooting
yourself in the foot or opening gaping security holes, you
may actually need a whole team of web developers working
with you.)

The Glory of Building a Website from
Scratch

There are many ways to establish your web presence. You can chat with friends
through a Facebook page, share your snaps on Instagram or Flickr, put your home
videos on YouTube, or write short diary-style blurbs on a blog hosted by a service
like Blogger. But if you’re ambitious enough to have picked up this book, you’re
after the gold standard of the Web: a completely personalized, built-from-scratch
site to call your own.

So what can you accomplish with a website that you can’t do with email, social
networking, and other web-based services? In a word: anything.

Depending on your goals, your website can be anything from a handy place to stash
your resumé to the hub of an ecommerce warehouse that sells personalized under-
pants (hey, it’s made more than one Internet millionaire). The point is that creating
your own website gives you the power to decide exactly what that site is—and the
control to change everything on a whim. And if you already use other web-based
services, like YouTube and Facebook, you can make them a part of your website, too,
as you’ll learn in this book. For example, you can put the YouTube videos of your cat
playing pool right next to your personalized cat merchandise.

Of course, with great power comes great responsibility—meaning that if you de-
cide to build your own site, it’s up to you to make sure it doesn’t look as hokey as
a 1960s yearbook portrait, or run as clunkily as a 1970s Chevy. To help you dodge

IntRODUCtIOn xiii

THE GLORY OF
BUILDING A

WEBSITE FROM
SCRATCH

these dangers, this book starts out by giving you a solid grounding in the nerdy-
seeming HTML and CSS languages. Don’t panic—these standards are surprisingly
easy to learn for both computer whizzes and normal people. You’ll even get some
exercises to help you practice.

That’s not to say that you have to do everything the hard way. This book spends plenty
of time covering free website services that can do the difficult jobs you definitely
don’t want to tackle on your own, like tracking visitors or building a shopping cart.
And the do-it-yourself web smarts you pick up will serve you well, even if you step
up to handy website-building tools like Adobe’s popular Dreamweaver software.
(In fact, you’ll learn how to choose from a few completely free web design tools in
Chapter 5, including a professional site-designing tool from Microsoft that once cost
hundreds of dollars, and a new upstart from Adobe.)

Types of Sites
You don’t have much chance of creating a successful site if you haven’t decided what
it’s for. Some people have a very specific goal in mind (like getting hired for a job or
promoting a concert), while others are just planning to unleash their self-expression.
Either way, take a look at the following list to get a handle on the different types of
sites you might want to create:

• Personal sites are all about you. Whether you want to share pictures of Junior
with the relatives, chronicle a trip to Kuala Lumpur, or just post your latest
thoughts and obsessions, a personal website is the place to do it. These days,
you can use social networking sites like Facebook and Instagram to share your
life with friends, but a personal site is a good choice if you’re more ambitious
(say you want to chart five generations of family history) or you want complete
design control (forget Facebook blue).

• Resumé sites are a specialized type of personal site and a powerful career-
building tool. Rather than photocopy a suitcase full of paper resumés, why not
send emails and distribute business cards that point to your online resumé? Best
of all, with a little planning, your online vita can include more details than its
tree-based counterpart, like links to former companies, an online portfolio, and
even background music playing “YMCA” (which is definitely not recommended).

• Topical sites focus on a particular subject that interests you. If you’re more
interested in talking about your favorite music, art, books, food, or political
movement than you are in talking about your own life, a topical website is for you.

 TIP  Before you set out to create a site, consider whether other people with a similar interest will want to
visit it, and take a look at existing sites on the topic. The best topical websites attract people who share the
same interest. The worst sites present the same dozen links you can find anywhere else. Remember, the Web is
drowning in information. The last thing it needs is another Justin Bieber Fan Emporium.

• Event sites aren’t designed to weather the years—instead, they revolve around a
specific event. A common example is a wedding website. The event hosts create

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOnxiv

ABOUT THIS
BOOK

it to provide directions, background information, links to gift registries, and a
few romantic photos. When the wedding is over, the site disappears—or morphs
into something different (like a personal site chronicling the honeymoon). Other
events you might treat in a similar way include family reunions, costume parties,
or do-it-yourself protest marches.

• Promotion sites are ideal when you want to show off your personally produced
CD or hot-off-the-presses book. They’re geared to get the word out about a
specific item, whether it’s handmade pottery or your own software. Sometimes,
these websites evolve into small-business sites, where you actually sell your
wares (see the “Small business” bullet point below).

• Small business (or ecommerce) sites show off the most successful use of the
Web—selling everything from portable music players to prescription drugs.
Ecommerce sites are so widespread now that it’s hard to believe that making a
buck was far from anyone’s mind when the Web first debuted.

 NOTE  Creating a full-blown ecommerce site like Amazon.com or eBay is far beyond the abilities of a single
person. These sites need a team of programmers working with complex programming languages and sophisti-
cated programming techniques. But if you’ve come to the Web to make money, don’t give up hope! Innovative
companies like PayPal and Yahoo provide services that can help you build shopping cart–style sites and accept
credit card payments. You can also host Google ads or hawk products from Amazon’s website to rake in some
cash. You’ll learn more in Chapter 13.

Once you pinpoint your website’s raison d’être, you should have a better idea about
who your visitors will be. Knowing and understanding your audience is crucial to
creating an effective site. (And don’t even try to suggest that you’re creating a site
just for yourself—if you are, there’s no reason to put it on the Internet at all!)

About This Book
No one owns the Web. As a result, no one is responsible for teaching you how to
use it or how to build an online home for yourself. That’s where Creating a Website:
The Missing Manual comes in. If the Web did have an instruction manual—one that
detailed the basic ingredients and time-saving tricks every site needs—this book
would be it.

What You Need to Get Started
This book assumes that you don’t have anything more than a reasonably up-to-date
computer and raw ambition. Although there are dozens of high-powered web page
editing programs that can help you build a site, you don’t need one to use this book.
In fact, if you use a web editor before you understand how websites work, you’re
liable to create more problems than you solve. That’s because, as helpful as those
programs are, they shield you from learning the principles of good site design—prin-
ciples that can mean the difference between an attractive, easy-to-maintain web
creation and a disorganized design nightmare.

IntRODUCtIOn xv

ABOUT THIS
BOOK

Once you master the basics, you’re welcome to use a fancy web page editor like
Adobe Dreamweaver. In this book, you’ll get an overview of how Dreamweaver
works, and you’ll discover a few great free alternatives (in Chapter 5).

 NOTE  Under no circumstances do you need to know anything about complex web programming technologies
like Java or ASP.NET. You also don’t need to know anything about databases or XML. These topics are fascinating
but insanely difficult to implement without some solid programming experience. In this book, you’ll learn how
to create the best possible website without becoming a programmer. (You will, however, learn just enough about
JavaScript to use many of the free script libraries you can find online.)

About the Outline
This book is divided into five parts, each with several chapters:

• Part One: Building Basic Web Pages. In this part, you’ll learn the basics be-
hind HTML, the language of the Web (Chapters 1 and 2). Next, you’ll learn your
way around the CSS standard, which lets you apply fancy colors, fonts, and
borders to your pages (Chapter 3) and you’ll add pictures, too (Chapter 4).
Finally, you’ll look at how you can simplify your life using web page editing
programs (Chapter 5).

• Part Two: From Web Page to Website. This section shows you how to scale
up to a complete website made up of multiple pages. You’ll learn how to link
your pages together (Chapter 6), style your entire site in one blow (Chapter 7),
and master some slick layouts (Chapter 8). Finally, you’ll put your pages online
with a reputable hosting company (Chapter 9).

• Part Three: Connecting with Your Audience. The third part of the book explains
how to get your site noticed by search engines like Google (Chapter 10), and
how to reel in web traffic (Chapter 11). You’ll also take a look at blogs (short for
web logs) and the free programs that help you create them (Chapter 12). Finally,
you’ll learn how to get on the path to web riches by displaying ads or selling
your own products (Chapter 13).

• Part Four: Interactivity and Multimedia. Now that you can create a profes-
sional, working website, why not deck it out with fancy features like glowing
buttons and pop-out menus? You won’t learn the brain-bending details of
how to become a hardcore JavaScript programmer, but you’ll learn enough to
use free JavaScript mini-programs in your own pages to perform basic tasks
(Chapters 14 and 15). You’ll also dabble with movie clips and add an MP3 music
player right inside an ordinary web page (Chapter 16).

• Part Five: Appendixes. At the end of this book, you’ll find two appendixes. The
first appendix points to additional site-building resources for ambitious web
designers who want to keep improving their skills. The second one gives you a
quick reference for HTML. It lists and defines the essential HTML elements and
points you to the appropriate chapter of this book for more detailed discussions.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOnxvi

ABOUT THE
ONLINE

RESOURCES
Of Windows and Macintosh PCs
One of the best things about the World Wide Web is that it truly is worldwide:
Wherever you live, from Aruba to Zambia, the Web eagerly awaits your company.
The same goes for the computer you use to develop your site. From an early-model
Windows PC to the latest and greatest MacBook Pro, you can implement the tactics,
tools, and tricks described in this book with pretty much whatever kind of computer
you have. (Of course, a few programs favor one operating system over another, but
you’ll hear about those differences whenever they come up.) The good news is that
this book is usable and suitable for owners of computers of all stripes.

About→These→Arrows
Throughout this book, you’ll find sentences like this one: “To save your document in
Notepad, choose File→Save.” That’s shorthand for a somewhat longer set of instruc-
tions that goes like this: “Open the File menu by clicking File in the menu bar. Then,
in the File menu, click Save.” Figure I-1 gives you a closer look.

FiGURE i-1
In this book, arrow notations simplify folder
and menu instructions. For example, “Choose
File→Save” is a more compact way of
saying, “From the File menu, choose Save,”
as shown here.

About the Online Resources
As the owner of a Missing Manual, you’ve got more than just a book to read. Online,
you’ll find example files that will give you hands-on experience, as well as links to
all the websites mentioned in this book. Head over to www.missingmanuals.com,
or go directly to one of the following sections.

The Missing CD
This book doesn’t have a CD pasted inside the back cover, but you’re not missing
out on anything. You can download all the companion content for this book from its

www.missingmanuals.com

INTRODUCTION xvii

ABOUT THE
ONLINE

RESOURCES
Missing CD page at www.missingmanuals.com/cds/caw4 or the book’s companion
site at http://prosetech.com/web.

The companion site includes three useful things:

• Sample web pages. You can never have too many examples. The Missing CD
has you covered, with a collection that includes all the sample web pages fea-
tured in this book. You download them as a single ZIP file, and then unzip them
on your computer. The sample files are organized in folders by chapter (so the
files from Chapter 1 are in a folder named Chapter 1), making it easy to find the
examples that interest you.

 TIP  If you want to work on a specific example file, here’s a quick way to find it: Look at the corresponding
figure in this book. The filename is usually visible at the end of the web browser’s address box. For example, if
you see the URL c:\Creating a Website\Chapter 1\popsicles.htm (Figure 1-6, page 11), you’ll know that the cor-
responding example file is popsicles.htm.

• Tutorials. The Missing CD download also includes super-useful tutorial files,
which you use with the practice exercises in this book. Here’s how it works:
When you start one of the book’s tutorials, we’ll refer you to a numbered tutorial
folder. For example, if you’re working on the first exercise in Chapter 2, you’ll be
sent to a folder named Tutorial-2-1. In that folder, you’ll find any starter files you
need to get going and the tutorial’s solution files—the final, finished product.
So if you try a tutorial and it doesn’t quite work out, you can check your work
and track down the problem.

 NOTE  This book features two types of tutorials. The most important, thorough exercises appear in their
own sections of the book, with titles that begin with the word “Tutorial,” as in “Tutorial: Creating an HTML File.”
These lessons teach key skills, so you should definitely give them a try. You’ll also come across shorter, optional
tutorials for extra practice. These tutorials appear in the “Sharpen Up” sidebars.

• Links. This book mentions plenty of useful websites and online services. For-
tunately, you don’t need to wear down your fingers typing long web addresses
into your browser. Instead, the companion site offers a list of clickable links for
all the websites mentioned, organized by chapter, and listed in the order that
they appear in the book.

Registration
If you register this book at www.oreilly.com, you’ll be eligible for special offers—like
discounts on future editions of Creating a Website: The Missing Manual. Registering
is free and takes only a few clicks. Type http://tinyurl.com/registerbook into your
browser to hop directly to the registration page.

Contact Us
Got questions? Need more information? Drop us a line at bookquestions@oreilly.com.

www.missingmanuals.com/cds/caw4
http://prosetech.com/web
www.oreilly.com
http://tinyurl.com/registerbook
mailto:bookquestions%oreilly.com?subject=

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOnxviii

SAFARI® BOOKS
ONLINE

Errata
To keep this book as up to date and accurate as possible, each time we print more
copies, we’ll make any confirmed corrections you suggest. We also note such changes
on the book’s errata page, so you can mark important corrections in your own copy
of the book, if you like. Go to http://tinyurl.com/cws-errata to report an error and
view existing corrections.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers expert content
in both book and video form from the world’s leading authors in technology and
business.

Technology professionals, software developers, web designers, and business and
creative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Rid-
ers, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us at www.safaribooksonlilne.com.

http://tinyurl.com/cws-errata
www.safaribooksonlilne.com

Building Basic
Web Pages

PART

1

CHAPTER 1:

 Creating Your First Page

CHAPTER 2:

 Becoming Fluent in HTML

CHAPTER 3:

 Building a Style Sheet

CHAPTER 4:

 Adding Graphics

CHAPTER 5:

 Working with a Web Editor

3

CHAPTER

1

Every website is a collection of web pages, so it should come as no surprise that
your journey to build a complete site starts here, with the writing of a single
web page.

Technically, a web page is a special type of document written in a computer language
called HTML (that’s short for HyperText Markup Language). Web pages are written
for web browsers—programs like Internet Explorer, Google Chrome, and Safari.
These browsers have a simple but crucially important job: they read the HTML in
a web page document and display the perfectly formatted result for you to read.

This chapter will introduce you to HTML. You’ll see how a basic web page works and
learn how to create one of your own. For now, you’ll be working with web pages you
store on your computer, visible only to you. Later on, in Chapter 9, you’ll learn to put
web pages online so anyone with a web connection can see them.

HTML: The Language of the Web
HTML is the single most important standard in web design—and the only one that’s
absolutely required if you plan to create a web page. Every web page is written in
HTML. It doesn’t matter whether your page contains a series of blog entries, a dozen
pictures of your pet lemur, or a heavily formatted screenplay—odds are that, if you’re
looking at it in a browser, it’s an HTML page.

HTML plays a key role in web pages: It tells browsers how to display the contents
of a page, using special instructions called tags that tell a browser when to start a
paragraph, italicize a word, or display a picture. To create your own web pages, you
need to learn to use this family of tags.

 Creating Your First Page

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn4

HTML: THE
LANGUAGE OF

THE WEB
HTML is such an important standard that you’ll spend a good portion of this book
digging through its features, frills, and occasional shortcomings. Every web page
you build along the way will be a bona fide HTML document.

 NOTE  The HTML standard doesn’t have anything to do with the way a web browser retrieves a page on the
Web. That task is left to another standard, called HTTP (HyperText Transport Protocol), which is a communication
technology that lets two computers exchange data over the Internet. To use the analogy of a phone conversation,
the telephone wires represent HTTP, and the juicy tidbits of gossip you exchange with Aunt Martha are the HTML
documents.

FREQUENTLY ASKED QUESTION

The Web vs. the Internet
Is there a difference between the Web and the Internet?

Newscasters, politicians, and regular people often use these
terms interchangeably. Technically, however, the concepts are
different—and confusing them is likely to put computer techies
and other self-respecting nerds on edge.

The Internet is a network of connected computers that spans
the globe. These computers are connected together to share
information, but there are a number of ways to do that, includ-

ing by email, instant messaging, file sharing, transferring files
through FTP (short for File Transfer Protocol), and through HTTP
(with the help of a web browser).

The World Wide Web is a term that describes the billions of
public web pages that you can visit on the Internet. In other
words, the Web is just one way to use the Internet, although
it’s undeniably the most popular—and the one that interests
us in this book.

Cracking Open an HTML File
On the inside, an HTML page is actually nothing more than a plain-vanilla text file.
That means that the raw code behind every web page you create will consist entirely
of letters, numbers, and a few special characters (like spaces, punctuation marks,
and everything else you can spot on your keyboard). Figure 1-1 dissects an ordinary
(and very simple) HTML document.

Here’s one of the secrets of web page writing: You don’t need a live website to start
creating your own web pages. That’s because you can easily build and test pages
using only your own computer. In fact, you don’t even need an Internet connection.
The only tools you need are a basic text editor and a standard web browser.

Your Text Editor
A text editor lets you create or edit an HTML file (in a window like the one you can
see in Figure 1-1, bottom). Even many professional web designers stick with simple
text-editing tools. There are plenty of fancier editing tools that are designed specifi-
cally for editing websites, but you don’t actually need any of them. And if you start
using them too soon, you’re likely to end up drowning in a sea of extra frills and
features before you really understand how HTML works.

CHAPteR 1: CREATING YOUR FIRST PAGE 5

HTML: THE
LANGUAGE OF

THE WEB

FiGURE 1-1
Every HTML document is actually an ordinary
text file.

Top: A web browser displays a simple HTML
document, showing all its glorious formatting.

Bottom: But when you open the same docu-
ment in a text editor, you see all the text from
the original document, along with a few extra
pieces of information inside angle brackets < >.
These HTML tags convey information about the
document’s structure and formatting.

The type of text editor you use depends on your computer’s operating system:

• If you have a Windows computer, you use the bare-bones Notepad editor. Sail
on to the next section.

• If you have a Mac computer, you use the built-in TextEdit editor. But first, you
need to make the adjustments described below.

Mac fans need to tweak the way TextEdit works because the program has an “HTML
view” that hides the tags in an HTML file and shows you the formatted page instead.
This behavior is aimed at making life simpler for newbies, but it presents a serious
danger for anyone who wants to write a real web page. To avoid confusion and to
make sure you write real, raw HTML, you need to turn HTML view off. Here’s how:

1. Choose TextEdit→Preferences.

This opens a tabbed window of TextEdit options (Figure 1-2).

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn6

HTML: THE
LANGUAGE OF

THE WEB

FiGURE 1-2
TextEdit’s Preferences
window has two tabs of
settings: “New Document”
(left) and “Open and Save”
(right).

2. Click “New Document” and then, in the Format section, choose “Plain text.”

This tells TextEdit to start you out with ordinary, unformatted text and to
dispense with the formatting toolbar and ruler that would otherwise appear
onscreen, which aren’t relevant to creating HTML files.

3. Click “Open and Save” and switch on the first option, “Display HTML files
as HTML code instead of formatted text.”

This tells TextEdit to let you see (and edit) the real HTML markup, tags and all,
not the formatted version of the page as it would appear in a web browser.

4. Close the Preferences window, and then close TextEdit.

Now, the next time you start TextEdit, you’ll begin in the plain-text mode that
every self-respecting web developer uses.

Your Web Browser
As you no doubt know, a web browser is a program that lets you navigate to and
display web pages. Without browsers, the Web would still exist, but you wouldn’t
be able to look at it.

A browser’s job is surprisingly simple—in fact, the bulk of its work consists of two
tasks. First, it requests web pages, which happens when you type in a website
address (like www.google.com) or click a link in a web page. The browser sends
that request to a far-off computer called a web server. A server is typically much

www.google.com

CHAPteR 1: CREATING YOUR FIRST PAGE 7

HTML: THE
LANGUAGE OF

THE WEB
more powerful than a home computer because it needs to handle multiple browser
requests at once. The server heeds these requests and sends back the content of
the desired web pages.

When the browser gets that content, it puts its second skill into action and renders,
or draws, the web page. Technically, this means the browser converts the plain text
it receives from the server into a display document based on formatting instruc-
tions embedded in the page. The end result is a graphically rich page with different
typefaces, colors, and links. Figure 1-3 illustrates the process.

FiGURE 1-3
A web browser is designed
to do two things really well:
contact remote computers
to ask for web pages, and
then display those pages on
your computer.

Although you usually ask your browser to retrieve pages from the Web, you can also
use it to view a web page that’s stored on your computer, which is particularly handy
when you’re practicing your HTML skills. In fact, your computer already knows that
files that end in .htm or .html have web page content. So if you double-click one of
these files, your computer launches your web browser automatically. (You can get
the same result by dragging a web page file and dropping it on an already-open
browser window.)

Although ordinary people need only a single web browser, it’s a good idea for web
developers-in-training (like yourself) to become familiar with the most common
browsers out there (see Figure 1-4). That’s because, when you design your website,
you need to prepare for a wide audience of people with different browsers. To make
sure your nifty pages don’t turn funky when other people look at them, you should
test your site using a variety of browsers, screen sizes, and operating systems.

The following list describes the most popular browsers of today:

• Google Chrome is the current king of web browsers, despite the fact that it’s
the newest kid on the block. Tech-savvy web fans love its features, like book-
marks you can synchronize across different computers, and its blistering speed.

Get with Google Chrome at www.google.com/chrome.

• Internet Explorer is the longest-lived browser and the official standard in many
corporate and government environments. It’s also the browser that comes pre-
installed on Windows, so it’s the one non-techie people use if they don’t want
(or don’t know how) to install something new. Even hotshot web designers
need to check that Internet Explorer understands their pages, because even
old versions of IE, like IE 8, remain popular.

www.google.com/chrome

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn8

HTML: THE
LANGUAGE OF

THE WEB
To download the most recent version of Internet Explorer, visit www.microsoft.
com/ie.

FiGURE 1-4
Browser usage statistics,
which estimate the per-
centage of people using
each major browser, vary
depending on what sites
you examine and how you
count visitors, but at the
time of this writing, this is
one reasonable estimate.
(For current browser
usage statistics, check out
http://tinyurl.com/stats-
browsers.)

• Firefox started life as the modern response to Internet Explorer. It’s still ahead
of the game with its incredibly flexible add-ons, tiny programs that other people
develop to enhance Firefox with extra features, like a web mail notifier and
thumbnails of the sites that show up in a page of search results. Best of all, an
army of volunteer programmers keep Firefox rigorously up to date.

Give Firefox a go at www.mozilla.org/firefox.

• Safari is an Apple-designed browser that comes with current versions of the
Mac OS operating system. Apple products like the iPhone, the iPad, and the iPod
Touch also use the Safari browser (albeit a mobile version that behaves a bit
differently). The fine folks at Apple created an incarnation of Safari for Windows
computers but have since abandoned it, making Safari an Apple-only option.

Go on Safari at www.apple.com/safari.

• Opera is a slimmed-down, easy-to-install browser that’s been around for well
over a decade, serving as an antidote to the bloated size and pointless frills of
Internet Explorer. For years, Opera was held back by an unfortunate detail—if
you wanted an ad-free version, you needed to pay. Today, Opera is free and
ad-free, too, just like the other browsers on this list. It has a small but loyal fol-
lowing but runs a distant fifth in web browser standings.

Check out Opera at www.opera.com.

www.microsoft.com/ie
www.microsoft.com/ie
http://tinyurl.com/stats-browsers
http://tinyurl.com/stats-browsers
www.mozilla.org/firefox
www.apple.com/safari
www.opera.com

CHAPteR 1: CREATING YOUR FIRST PAGE 9

TUTORIAL:
CREATING AN

HTML FILE

UP TO SPEED

Reaching as Many People as Possible
As you create your website, you need to consider not just
what your audience wants to see, but what it can see as well.
Good web designers avoid using frills on their pages unless
everyone can experience them. Nothing is more disappointing
than visiting a site that’s supposed to have a nice animation
and seeing a blank box, simply because your computer doesn’t
have the right browser plug-in (an add-on program that gives
your browser more capabilities). Nor is it any fun finding a
website that’s all decked out for wide-screen monitors, but
unbearably cramped (or, even worse, partly amputated) on
the smaller screen of an iPad.

The creators of the most popular websites carefully consider
these sorts of issues. For example, think about the number of

people whose computers won’t let them buy a book on Ama-
zon.com, make a bid on eBay, or conduct a search on Google.
(Are you thinking of a number that’s close to zero?) To make
your website as accessible as these top sites, you need to stick
to widely accepted web standards, follow the advice in this
book, and try your site on different computers.

It’s been widely remarked that the average web designer goes
through three stages of maturity: 1) “I’m just learning, so I’ll
keep it simple”; 2) “I’m a web guru, and I’ll prove it by piling
on the features”; and 3) “I’ve been burned by browser compat-
ibility problems, so I’ll keep it simple and classy.”

Tutorial: Creating an HTML File
Now that you’ve prepped your web kitchen, you’re ready to create your very own
web page. In this tutorial, you’ll build the basic page that you saw in Figure 1-1.

 TIP  Like all the tutorials in this book, you’ll find the solution for this exercise on the companion site at http://
prosetech.com/web. Just look in the folder named Tutorial-1-1 (which stands for “Chapter 1, first tutorial,” if you’re
curious).

Ready to begin? Here’s what to do:

1. Fire up your text editor.

On a Windows computer, that’s Notepad. To open Notepad, click the Start but-
ton, type “notepad,” and then click the Notepad icon that appears.

On a Mac, that’s TextEdit. To launch it, go to the Applications folder and then
double-click TextEdit.

When you load up your text editor, it starts you out with a new, blank document,
which is exactly what you want.

2. Start writing your HTML code.

This task is a little tricky because you haven’t explored the HTML standard yet.
Hang on—help is on the way in the rest of this chapter. For now, you can use

http://prosetech.com/web
http://prosetech.com/web

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn10

TUTORIAL:
CREATING AN

HTML FILE
the following very simple HTML snippet. Just type it in exactly as it appears,
text, slashes, pointy brackets, and all:

<h1>United Popsicle Workers Union</h1>
<p>We fight for your rights.</p>

Technically, this two-line document is missing a few structural details that self-
respecting web pages should have. However, every browser can read this HTML
fragment and correctly interpret what you want: the two lines of formatted text
shown in Figure 1-1, top.

3. When you finish your web page, choose File→Save.

That brings up the Save or Save As window, where you fill in the details for your
new file (Figure 1-5).

FiGURE 1-5
Whether you use Notepad
(shown here) or TextEdit,
there’s nothing tricky
about saving your file.
Just make sure to include
“.htm” or “.html” at the
end of the filename to
identify it as an HTML
document.

4. Pick a save location for your file, and give it the name popsicles.htm.

If you’re not sure where to stash your file, you can save it right on your desktop
for now.

When you name your file, make sure you include the extension .htm or .html
at the end of the filename. For example, by using the name popsicles.htm or
popsicles.html, you ensure that your computer will recognize your document
as an HTML file.

Note for the paranoid: There’s no difference between .htm and .html files. Both
are 100% the same—text files that contain HTML content.

CHAPteR 1: CREATING YOUR FIRST PAGE 11

TUTORIAL:
CREATING AN

HTML FILE NOTE  Technically speaking, you can use any file extension you want. However, using .htm or .html saves
confusion (you immediately know the file is a web page) and helps avoid common problems. For example, using
an .htm or .html file extension ensures that when you double-click the filename, your computer will know to
open it in a web browser and not some other program. It’s also important to use the .htm or .html extension if
you plan to upload your files to a web server; prickly servers may refuse to hand out pages that have nonstandard
file extensions.

5. If necessary, change the way your text editor encodes your file to UTF-8.

This is the TextEdit standard, so Mac users can skip this step. But in Notepad, you
need to choose UTF-8 in the Encoding list at the bottom of the Save As window.

Your web page will work even if you don’t take this step, but doing so ensures
that you won’t run into problems if you use special characters or a different
language in your page.

6. Click Save to make it official.

If you use TextEdit, the program may ask if you really want to use the .htm or
.html extension instead of .txt, the text file standard; click “Use .htm.” No such
step is required in Notepad. However, you won’t actually see your HTML files
in the list unless you choose “All Files (*.*)” in the “Save as type” box (which
initially has “Text Documents (*.txt)” selected).

7. To view your work, open the file in a browser (Figure 1-6).

If you use the extension .htm or .html, opening a page is usually as easy as
double-clicking the filename. Or you can drag your web page file and drop it
onto an open browser window.

FiGURE 1-6
A browser’s address bar reveals
where the current web page is
really located. If you see “http://”
in the address, it comes from a web
server on the Internet (top). If you
look at a web page that resides on
your own computer, you see just an
ordinary local file address (middle,
showing a Windows file location in
Internet Explorer), or you see a URL
that starts with the prefix “file:///”
(bottom, showing a file location in
Chrome).

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn12

TUTORIAL:
CREATING AN

HTML FILE

TROUBLESHOOTING MOMENT

If Your First Web Page Doesn’t Look Right…
… the trouble is probably in the3 way you saved the file.

For example, one common problem is having your document
appear in the web browser without formatting and with all the
HTML tags showing. In other words, your document looks the
same in your browser as it does in your text editor. Any one
of several oversights can cause this problem:

• You used the wrong file extension. When you open files
directly from your computer (rather than from a remote
website), your browser may attempt to identify the file
type by its extension. If you give your web page the
extension .txt, the browser may assume that it’s a text
file and simply show the file’s raw text content. To avoid
this headache, use the .htm or .html extension.

• You saved the document in a word processor. Word
processors automatically convert special HTML characters,
like angle brackets, into HTML codes called character

entities (see page 63). For example, a word processor
converts a tag like <h1> into the HTML text <h1>
by replacing the angle brackets with their character
entit ies . The result is that the browser no longer
recognizes your tag as a formatting instruction. Instead,
it shows the text “<h1>” right on your web page. To avoid
this tag tampering, write your HTML in a text editor.

• You didn’t save the document as a text file. Some
text editors let you save your documents in different
formats. Notepad doesn’t, but TextEdit does, and if
you inadvertently save your web page as a rich text
file, a browser won’t treat it as a web page. To avoid
this problem in TextEdit, make sure you configure it as
described on page 5 (or just choose Format→Make Plain
Text from TextEdit’s menu bar). In other programs, check
for options in the File→Save As window to make sure
you’re saving plain text.

8. When you finish editing, close your text editor.

The next time you want to change your document, just fire up your text editor,
choose File→Open, and then pick the file you want, or drag the file and drop it
on an already-open text editor window.

 TIP  Here’s a trick that can help you open HTML files in a hurry. Find your file, and then right-click it (Control-
click on a Mac) and choose “Open with.” This pops open a list of programs you can use to open the file. Click
Notepad (or TextEdit) in the list to launch a new text editor window and open your HTML file in one fell swoop.

If you leave your web browser window open while you edit your HTML file in a
text editor, the browser will hold on to the old version of your file. To see your
recent changes, save your text file again (choose File→Save) and then refresh
the page in your browser (usually, that’s as easy as right-clicking the page and
choosing Refresh or Reload).

CHAPteR 1: CREATING YOUR FIRST PAGE 13

SEEING THE
HTML OF A

LIVE WEB PAGE

SHARPEN UP

Extra Practice: Opening HTML Files
As you learn the HTML language, you’ll do lots of experimenting
in your text editor, so you need to be completely comfortable
opening and editing HTML files on your computer. Only later
(in Chapter 5) will you try out heftier web editors, which do
the same job but with more features.

If you want some extra practice, you can use the sample files
for this chapter. You’ll find them all on the companion site at
http://prosetech.com/web. Once you download them to your

computer, you can peek inside each one, just as you did with
the HTML file you created yourself:

• Double-click a file to see its public face in a web browser.

• Load your text editor and choose File→Open to see its
private HTML side.

Simple, right? If you have any doubts, take a minute to practice
opening a few more HTML files before you forge on. We’ll wait.

Seeing the HTML of a Live Web Page
Most text editors don’t let you open a web page that’s on the Internet. However,
web browsers do give you the chance to sneak a peek at the raw HTML that sits
behind any web page.

If you’re using Internet Explorer, Chrome, Firefox, or just about any browser other
than Safari, you can use a shortcut. Once you navigate to the web page you want
to examine, right-click anywhere on the page and choose View Source or View
Page Source (the exact wording depends on the browser). A new window appears,
showing you the raw HTML that underlies the page.

If you’re using Safari on a Mac, you have to jump through an extra hoop to see
a web page’s HTML. First, switch on the Develop menu by choosing Safari→
Preferences→Advanced and then turning on the “Show Develop menu in menu bar”
checkbox. Once you do, visit the page you want to dissect and choose Develop→Show
Page Source.

 TIP  Firefox has a handy feature that lets you home in on just part of the HTML in a complex web page. Just
select the text you’re interested in on the page itself, right-click the text, and then choose View Selection Source.

Most web pages are considerably more complex than the popsicles.htm example
shown in Figure 1-1, so you need to wade through many more HTML tags when you
look at the web page markup. You’re also likely to find a dense thicket of JavaScript
code stuffed at the top of the page, stripped of all its spacing and almost impos-
sible to read. But even if the markup looks like gibberish, don’t panic. By the time
you finish this book, you’ll be able to scan through a jumble of HTML to find the bits
that interest you. In fact, professional web developers often use the View Source
technique to check their competitors’ work.

http://prosetech.com/web

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn14

A CLOSER
LOOK AT HTML

TAGS A Closer Look at HTML Tags
Now that you know how to peer into existing HTML files and how to create your
own, the next step is to understand what goes inside the average HTML file. It all
revolves around a single concept—tags.

HTML tags are formatting instructions that tell a browser how to transform ordi-
nary text into something visually appealing. If you were to take all the tags out of
an HTML document, the resulting page would consist of nothing more than plain,
unformatted text.

What’s in a Tag
You can recognize a tag by looking for angle brackets, two special characters that
look like this: < >. When creating a tag, you type HTML code between the brackets.
This code is for the browser’s eyes only; web visitors never see it (unless they use the
View Source command to peek at the HTML). Essentially, the code is an instruction
that conveys information to the browser about how to format the text that follows.

For example, one simple tag is the tag, which stands for “bold” (by convention,
tag names are usually written in lowercase). When a browser encounters this tag,
it switches on boldface formatting, which affects all the text that follows the tag.
Here’s an example:

This text isn't bold. This text is bold.

On its own, the tag isn’t quite good enough; it’s known as a start tag, which
means it switches on some effect (in this case, bold lettering). You pair most start
tags with a matching end tag that switches off the effect.

You can easily recognize an end tag. They look the same as start tags, except that
they begin with a forward slash. That means they start like this </ instead of like
this <. So the end tag for bold formatting is . Here’s an example:

This isn't bold. Pay attention! Now we're back to normal.

Which a browser displays as:

This isn’t bold. Pay attention! Now we’re back to normal.

This example reflects another important principle of browsers: They always process
tags in the order in which you place them in your HTML. To get the bold format-
ting in the right place, you need to make sure you position the and tags
appropriately.

As you can see, the browser has a fairly simple job. It scans an HTML document, look-
ing for tags and switching on and off various formatting settings. It takes everything
else (everything that isn’t a tag) and displays it in the browser window.

 NOTE  Adding tags to plain-vanilla text is known as marking up a document, and the tags themselves are
known as HTML markup. When you look at raw HTML, you may be interested in looking at the content (the text
nestled between the tags) or the markup (the tags themselves).

CHAPteR 1: CREATING YOUR FIRST PAGE 15

A CLOSER
LOOK AT HTML

TAGS
Understanding Elements
Most tags come in pairs. When you use a start tag (like), you have to include
the matching end tag (). This combination of start and end tags, along with the
text in between, makes up an HTML element.

Here’s the basic idea: A pair of tags creates a container (see Figure 1-7). You place
content (like text) inside that container. For example, when you use the and
 tags, you create a container that applies bold formatting to the text inside
the container. As you create web pages, you’ll use different containers to wrap
different pieces of text. If you think about elements this way, you’ll never forget
to include an end tag.

FiGURE 1-7
To get bold text, you need to start with the correct container.
It’s the element.

 NOTE  When someone refers to the element, she means the whole shebang—start tag, end tag, and
the content in between. When someone refers to a tag, she usually means the start tag that triggers the
effect.

Of course, life wouldn’t be much fun (and computer books wouldn’t be nearly as
thick) without exceptions. When you get right down to it, there are really two types
of elements:

• Container elements are, by far, the most common type of element. They apply
formatting to the content nestled between the start and end tags.

• Standalone elements don’t turn formatting on or off. Instead, they insert
something, like an image, into a page. One example is the
 element, which
inserts a line break in a web page. Standalone elements don’t come in pairs, as
container elements do, and you may hear them referred to as empty elements
because you can’t put any text inside them.

In this book, all standalone elements include a slash character before the closing >,
sort of like an opening and closing tag all rolled into one. So you’ll see a line break
written as
 instead of
. This form, called the empty element syntax, is
handy because it clearly distinguishes container elements from standalone elements.
That way, you’ll never get confused.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn16

A CLOSER
LOOK AT HTML

TAGS
 NOTE  In the not-so-distant past, web developers were forced to use the empty element syntax—that is,
tags that end with a forward slash—because it was an official part of the (now superseded) XHTML language.
Today, the trailing slash is optional, so standalone elements can use the same syntax as start tags (which means
you can use either
 or
 to insert a line break, for instance).

Figure 1-8 puts the two types of elements in perspective.

FiGURE 1-8
Top: This snippet of HTML shows both a container ele-
ment and a standalone element.

Bottom: The browser shows the resulting web page.

Nesting Elements
In the previous example, you applied a simple element to get bold formatting.
You put the text between the and tags. However, text isn’t the only thing
you can put between a start and an end tag. You can also nest one element inside
another. In fact, nesting elements is common practice in building web pages. It lets
you apply more detailed style instructions to text by combining all the formatting
elements in the same set of instructions. You can also nest elements to create more
complicated page components, like bulleted lists (see page 24).

To see nesting in action, you need another element to work with. For this example,
consider what happens if you want to make a piece of text bold and italicized. HTML
doesn’t include a single element for this purpose, so you need to combine the fa-
miliar element (to put your text in boldface) with the <i> element (to italicize
it). Here’s an example:

This <i>word</i> has bold and italic formatting.

When a browser chews through this scrap of HTML, it produces text that looks like
this:

This word has bold and italic formatting.

CHAPteR 1: CREATING YOUR FIRST PAGE 17

A CLOSER
LOOK AT HTML

TAGS
Incidentally, it doesn’t matter if you reverse the order of the <i> and tags. The
following HTML produces exactly the same result.

This <i>word</i> has italic and bold formatting.

However, you should always make sure that you close tags in the reverse order from
which you opened them. In other words, if you apply italic formatting and then bold
formatting, you should switch off bold formatting first, and then italic formatting.
Here’s an example that breaks this rule:

This <i>word</i> has italic and bold formatting.

Browsers can usually sort this out and make a good guess about what you really
want, but it’s a dangerous habit to get into as you write more complex HTML.

As you’ll see in later chapters, HTML gives you many more ways to nest elements.
For example, you can nest one element inside another, and then nest another ele-
ment inside that one, and so on, indefinitely.

 NOTE  If you’re a graphic-design type, you’re probably itching to get your hands on more powerful HTML tags
to change alignment, spacing, and fonts. Unfortunately, in the web world, you can’t always control everything
you want. Chapter 2 has the lowdown, and Chapter 3 introduces the best solution, called style sheets.

FREQUENTLY ASKED QUESTION

Telling a Browser to Ignore an Angle Bracket
What if I really do want the text “” to appear on my web
page?

The tag system works great until you actually want to use an
angle bracket (< or >) in your text. Then you’re in a difficult
position.

Imagine you want to write the following bit of text as proof of
your remarkable insight:

The expression 5 < 2 is clearly false,
because 5 is bigger than 2.

When a browser reaches the less-than symbol (<), it becomes
utterly bewildered. Its first instinct is to assume you’re starting
a tag, and the text “2 is clearly false…” is part of a long tag
name. Obviously, this isn’t what you intended, and it’s certain
to confuse the browser.

To solve this problem, you need to replace angle brackets
with the corresponding HTML character entity. Character
entities stand in for letters and symbols that browsers would
otherwise interpret as HTML. They always begin with an

ampersand (&) and end with a semicolon (;). The character
entity for the less-than symbol is < because the lt stands
for “less than.” Similarly, > is the character entity for the
greater-than symbol.

Here’s the corrected example:

The expression 5 < 2 is clearly false,
because 5 is bigger than 2.

In your text editor, this doesn’t look like what you want. But
when a browser displays this document, it automatically
changes the < into a < character, without confusing it with
a tag. You’ll learn more about character entities on page 63.

Incidentally, character replacement is one of the reasons
you can get into trouble if you attempt to write your HTML
documents in a word processor. When you save your word
processor document as a text file, the program converts all the
special characters (like angle brackets) into the corresponding
character entities. When you open the page in a browser, you
see ordinary text, not the formatting you expect.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn18

UNDERSTANDING
HTML

DOCUMENTS Understanding HTML Documents
So far, you’ve considered snippets of HTML—portions of a complete HTML document.
This gave you a taste of how HTML works, but you’ll need to step up your game
before you can conquer the Web. In this section, you’ll learn about the structure
that makes the difference between a scrap of HTML and an official HTML document.

The Document Type Definition
In the early days of the Internet, web browsers were riddled with quirks. When
people designed web pages, they had to take these quirks into account. For example,
browsers might calculate the margins around floating boxes of text in subtly dif-
ferent ways, causing pages to look right in one browser but appear odd in another.

Years later, the rules of HTML (and CSS, the style sheet standard you’ll learn about
in Chapter 3) were formalized. Using these new rules, every browser could display
the same page in exactly the same way. But this change caused a serious headache
for longstanding browsers, like Internet Explorer, that had lived through the dark
ages of HTML. It had to somehow support the new standards while still being able
to properly display existing web pages—including those that relied on old quirks.

The web community settled on a simple solution. When designing a new, modern web
page, you indicate this fact by adding a code called a document type definition (DTD)
or doctype, which goes at the very beginning of your HTML document (Figure 1-9).

FiGURE 1-9
The document type definition (DTD) is the first piece of informa-
tion in an HTML file. It tells the browser what markup standard
you used to write the page.

When a browser encounters a doctype, it switches into standards mode and renders
the page in the most consistent, standardized way possible. The end result is that
the page looks virtually identical in every modern browser.

But when a browser encounters an HTML document that doesn’t have a doctype, all
bets are off. Internet Explorer, for example, switches into the dreaded quirks mode,
where it attempts to behave the same way it did 10 years ago, quirks and all. This
ensures that really old web pages retain the look they had when they were first

CHAPteR 1: CREATING YOUR FIRST PAGE 19

UNDERSTANDING
HTML

DOCUMENTS
created, even if they rely on ancient browser bugs that have long since been fixed.
Unfortunately, different browsers behave differently when you view a page without
a doctype. You’re likely to get varying text sizes, inconsistent margins and borders,
and improperly positioned content. For that reason, web pages without doctypes
are bad news, and you should avoid creating them.

In the past, web designers used different doctypes to indicate different versions of
HTML markup (for example, XHTML, HTML5, or truly old HTML 4.01). But today, web
developers almost always use the simple, universal HTML5 doctype:

<!DOCTYPE html>

Even though this doctype was formalized as part of HTML5, every browser sup-
ports it—even old versions of IE that have never heard of HTML5. That’s because
the universal doctype doesn’t indicate anything about the HTML version you prefer.
Instead, it just indicates that the language is HTML. This one-line doctype simply
reflects the true philosophy of HTML—to support documents old and new.

For comparison, here’s the much wordier doctype for XHTML 1.0, which you may
still stumble across in older web pages:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

Even seasoned web developers had to copy the XHTML 1.0 doctype from an existing
web page to avoid typing it in wrong.

In this book, all the examples use the HTML5 doctype not only because it’s the
current standard, but because it prepares your pages for the future, too. But just
because you use this doctype doesn’t mean you can use all of HTML5’s features. In
fact, you should avoid most of them for the time being, unless you’re sure they’re
well supported by all the browsers that people use today.

 NOTE  In this book, you’ll use only HTML5 features that work in all of today’s browsers. But if you’re interested
in learning about the more experimental parts of the language that still have sketchy browser support, check out
HTML5: The Missing Manual (O’Reilly).

The Basic Skeleton
Now you’re ready to fill in the rest of your web page.

To create a true HTML document, you start with three container elements: <html>,
<head>, and <body>. These three elements work together to describe the basic
structure of your page:

<html>

This element wraps everything (other than the doctype) in your web page.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn20

UNDERSTANDING
HTML

DOCUMENTS
<head>

This element designates the header portion of your document, which includes
some information about your web page. The first detail is the title—open your
page in a browser, and this title shows up as the caption on the tab. Optionally,
the <head> section can also include links to style sheets (which you’ll learn
about in Chapter 3) and JavaScript files (Chapter 14).

<body>

This element holds the meat of your web page, including the actual content
you want displayed to the world.

There’s only one right way to use these three elements in a page. Here’s their correct
arrangement, with the HTML5 doctype at the beginning of the page:

<!DOCTYPE html>
<html>
<head>
...
</head>
<body>
...
</body>
</html>

Every web page uses this basic framework. The ellipses (…) show where you insert
additional information. The spaces between the lines aren’t required—they’re just
there to help you see the element structure more easily.

Once you have the HTML skeleton in place, you need to add two more container
elements to the mix. Every web page requires a <title> element, which goes in
the header section of the page, and you need to create a container for text in the
<body> section of the page. One all-purpose text container is the <p> element, which
represents a paragraph.

Here’s a closer look at the elements you need to add:

<title>

This element sets the title for your web page. The title plays several roles. First,
web browsers display it in the browser tab or at the top of the browser window.
Second, when a visitor bookmarks your page, the browser uses the title as the
bookmark’s label. Third, when your page turns up in a web search, the search
engine usually displays this title as the first line in the results, followed by a
snippet of content from the page.

<p>

This indicates a paragraph. Web browsers don’t indent paragraphs, but they
do add a little space between consecutive paragraphs to keep them separated.

CHAPteR 1: CREATING YOUR FIRST PAGE 21

TUTORIAL:
BUILDING A
COMPLETE

HTML
DOCUMENT

Here’s the web page with these two new ingredients (in bold):

<!DOCTYPE html>
<html>
<head>
<title>Everything I Know About Web Design</title>
</head>
<body>

<p></p>
</body>
</html>

If you open this document in a web browser, you’ll find that the page is blank, but
the title appears (as shown in Figure 1-10).

FiGURE 1-10
When a browser displays a web page, it shows the page’s
title on the browser’s tab or at the top of the window. But
be warned: the title won’t always fit.

As it stands right now, this HTML document is a good template for future pages.
The basic structure is in place; you simply need to change the title and add some
text. That’s the task you’ll undertake next.

Tutorial: Building a Complete HTML
Document

In this tutorial, you’ll learn to assemble your first genuine web page. You’ll be creat-
ing an online resumé (skip ahead to page 31 to see the final result), but the details
apply to any page you create.

 TIP  Like all the tutorials in this book, you can find the solution for this exercise on the companion site at
http://prosetech.com/web. Just look in the folder named Tutorial-1-2 (short for “Chapter 1, second tutorial”). As
you craft this page, adding a list, picture, and headings, it goes through several iterations. The tutorial files include
a separate file for each stage of improvement.

http://prosetech.com/web

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn22

TUTORIAL:
BUILDING A
COMPLETE

HTML
DOCUMENT

Adding Your Content
No matter what sort of page you want to create, you always start out the same way:

1. Launch your text editor.

That’s Notepad or TextEdit.

2. Type the HTML skeleton into a new file.

That’s the doctype, the root <html> element, and the two major sections of
every web page: <head> and <body>. It looks like this:

<!DOCTYPE html>
<html>
<head>
</head>
<body>
</body>
</html>

To save yourself some time in the future, save this page and then copy and paste
this HTML skeleton each time you create a new file. The tutorial folder includes
a file named skeleton.htm that helps you do just that—it contains the doctype
and the three standard elements of an HTML page, but no content.

3. Add a title to the <head> section.

Add the <title> element on a new line, between the opening <head> tag and
the closing </head> tag:

<title>Hire Me!</title>

4. Add your content to the <body> section.

For example, suppose you want to write a simple resumé page. Here’s a very
basic first go at it:

<!DOCTYPE html>
<html>
<head>
<title>Hire Me!</title>
</head>
<body>
<p>I am Lee Park. Hire me for your company, because my work is
off the hizzle.</p>
</body>
</html>

This example highlights (in bold) the modifications made to the basic HTML
skeleton—a changed title and a single line of text. This example uses a single
 element inside the paragraph, just to dress up the page a little.

CHAPteR 1: CREATING YOUR FIRST PAGE 23

TUTORIAL:
BUILDING A
COMPLETE

HTML
DOCUMENT

5. Save your HTML file as resume.htm, and open it in a web browser.

If your page displays properly (see Figure 1-11), you can be reasonably certain
you’re off to a good start.

FiGURE 1-11
Welcome to the Web. This page doesn’t have much in
the way of HTML goodies (and it probably won’t get
Lee hired), but it does represent one of the simplest
possible HTML pages you can create.

Using the HTML techniques described in the following sections, you can build on
this example and give Lee a better resumé. Each time you make changes to your
document in the text editor, refresh the page in your web browser to see if you’re
still on track.

Structuring Your Text
As you start to create more detailed web pages, you’ll quickly discover that build-
ing a page isn’t as straightforward as, say, creating a page in Microsoft Word. For
example, you may decide to enhance the resumé page by creating a list of skills.
Here’s a reasonable first try:

<!DOCTYPE html>
<html>
<head>
<title>Hire Me!</title>
</head>
<body>
<p>I am Lee Park. Hire me for your company, because my work is off the
hizzle.
My skills include:
*Fast typing (nearly 12 words/minute).
*Extraordinary pencil sharpening.
*Inventive excuse making.
*Negotiating with officers of the peace.</p>
</body>
</html>

The trouble appears when you open this seemingly innocent document in your web
browser (Figure 1-12).

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn24

TUTORIAL:
BUILDING A
COMPLETE

HTML
DOCUMENT

FiGURE 1-12
HTML disregards line breaks and consecutive spaces,
so what appears as neatly organized text in your HTML
file can turn into a jumble of text when you display it
in a browser.

The problem is that HTML ignores extra white space. That includes tabs, line breaks,
and extra spaces (anything more than one consecutive space). The first time this
happens, you’ll probably stare at your screen dumbfounded and wonder why web
browsers are designed this way. But it actually makes sense when you consider that
HTML needs to work as a universal standard.

Say you customize your hypothetical web page with the perfect spacing, indenting,
and line width for your computer monitor. The hitch is, this page may not look as
good on someone else’s monitor. For example, some of the text may scroll off the
right side of the page, making it difficult to read. And different monitors are only part
of the problem. Today’s web pages need to work on different types of devices. Lee
Park’s future boss might view Lee’s resumé on anything from the latest widescreen
laptop to a tablet computer or smartphone.

To deal with this range of display options, HTML uses elements to define the structure
of your document. Instead of telling the browser, “Here’s where you go to the next
line and here’s where you add four extra spaces,” HTML tells the browser, “Here are
two paragraphs and a bulleted list.” It’s up to the browser to display the page, using
the instructions you include in your HTML.

To correct the resumé example, you need to use more paragraph elements and two
new container elements:

Indicates the start of a bulleted list, called an unordered list in HTML lingo. A
list is the perfect way to detail Lee’s skills.

Indicates an individual item in a bulleted list. Your browser indents each list item
and, for sentences that go beyond a single line, properly indents subsequent
lines so they align under the first one. In addition, it precedes each item with

CHAPteR 1: CREATING YOUR FIRST PAGE 25

TUTORIAL:
BUILDING A
COMPLETE

HTML
DOCUMENT

a bullet (•). You can use a list item only inside a list element like . In other
words, every list item () needs to sit within a list element ().

Here’s the corrected web page (shown in Figure 1-13), with the structural elements
highlighted in bold:

<!DOCTYPE html>
<html>
<head>

<title>Hire Me!</title>
</head>
<body>
<p>I am Lee Park. Hire me for your company, because my work is off the
hizzle.</p>
<p>My skills include:</p>

 Fast typing (nearly 12 words/minute).
 Extraordinary pencil sharpening.
 Inventive excuse making.
 Negotiating with officers of the peace.

</body>
</html>

FiGURE 1-13
With the right elements (as shown in the code on this
page), a browser understands the structure of your
HTML document and knows how to display it.

You can turn a browser’s habit of ignoring line breaks to your advantage. To help
make your HTML documents more readable, add line breaks and spaces wherever
you want. Web experts often use indentation to make the structure of nested ele-
ments easier to understand. In the resumé example, you can see this style in practice.
Notice how the list items (the lines starting with the element) are indented.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn26

TUTORIAL:
BUILDING A
COMPLETE

HTML
DOCUMENT

This has no effect on the browser, but it makes it easier for you to see the structure
of the HTML document and to gauge how a browser will render it.

Figure 1-14 analyzes the HTML document using a tree model. The tree model is a
handy way to get familiar with the anatomy of a web page, because it shows the
page’s overall structure at a glance. However, as your web pages get more compli-
cated, they’ll probably become too complex for a tree model to be useful.

FiGURE 1-14
Here’s another way to look at the
HTML you created. The tree model
shows you how you nested HTML
elements. By following the arrows,
you can see that the top-level
<html> element contains <head>
and <body> elements. Inside the
<head> element is the <title>
element, and inside the <body>
element are two paragraphs and a
bulleted list with four items in it.
If you stare at the tree model long
enough, you’ll understand why HTML
calls all these elements “container
elements.”

If you’re a masochist, you don’t need to use any spaces. The previous example is
exactly equivalent to the following much-less-readable HTML document:

<!DOCTYPE html><html><head><title>Hire Me!</title></head><body><p>I am
Lee Park. Hire me for your company, because my work is off the hizzle

.</p><p>My skills include:</p>Fast typing (nearly 12
words/minute). Extraordinary pencil sharpening.Inventive
excuse making. Negotiating with officers of the peace.
</body></html>

Of course, it’s nearly impossible for a human to write HTML like this without making
a mistake.

Where Are All the Pictures?
Whether it’s a stock chart, a logo for your underground garage band, or a doctored
photo of your favorite celebrity, the Web would be pretty drab without pictures. So
far, you’ve seen how to put text into an HTML document, but what happens when
you need an image?

CHAPteR 1: CREATING YOUR FIRST PAGE 27

TUTORIAL:
BUILDING A
COMPLETE

HTML
DOCUMENT

GEM IN THE ROUGH

Have Something to Hide?
When you’re working with a complex web page, you may want
to temporarily remove an element or a section of content. This
is a handy trick when you have a page that doesn’t quite work
right and you want to find out which element is causing the
problem. You do so using the good ol’ fashioned cut-and-paste
feature in your text editor. Cut the section you think may be
troublesome, save the file, and then load it up in your browser.
If the section is innocent, paste it back in place, and then re-
save the file. Repeat this process until you find the culprit.

But HTML gives you a simpler solution—comments. With
comments, you can leave the entire page intact. When you
“comment out” a section of the page, HTML ignores it.

You create an HTML comment using the character sequence
<!-- to mark the start of the comment, and the character
sequence --> to mark its end. Browsers ignore everything
in between, whether it’s content or tags. You can comment
out just a single line of HTML or an entire section of code.

However, don’t try to nest one comment inside another, as
that won’t work.

Here’s an example that hides two list items. When you open
this document in your web browser, the list will show only the
last two items (“Inventive excuse making” and “Negotiating
with officers of the peace”).

<!--
Fast typing (nearly 12 words/minute).

Extraordinary pencil sharpening.
-->
Inventive excuse making.
Negotiating with officers of the
peace.

When you want to return the list to its original glory, just
remove the comment markers.

Although it may seem surprising, you can’t store a picture inside an HTML file. There
are plenty of good reasons why you wouldn’t want to anyway—your web page files
would become really large, it would be hard to modify your pictures or do other
things with them, and you’d have a fiendish time editing your pages in a text editor
because the image data would make a mess. The solution is to store your pictures as
separate files, and then link your HTML document to them. This way, your browser
pulls up the pictures and positions them exactly where you want them on your page.

The linking tool that inserts pictures is the element (short for “image”). It points
to an image file, which the browser retrieves and inserts into the page. You can put
the image file in the same folder as your web page (which is the easiest option), or
you can put it on a completely different website.

Although you’ll learn everything you ever wanted to know about web graphics in
Chapter 4, it’s worth considering a simple example now. To try this out, you need a
web-ready image handy. (The most commonly supported image file types are JPEG,
GIF, and PNG.) If you don’t have an image handy, you can download the sample
picture leepark.jpg from the Tutorial-1-2 folder. Here’s an example of an ele-
ment that uses the leepark.jpg file:

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn28

TUTORIAL:
BUILDING A
COMPLETE

HTML
DOCUMENT

Like the
 element discussed earlier, is a standalone element with no
content. For that reason, it makes sense to use the empty element syntax and add
a forward slash before the closing angle bracket.

However, there’s an obvious difference between the
 element and the
element. Although is a standalone element, it isn’t self-sufficient. In order for
the element to mean anything, you need to supply two more pieces of information:
the name of the image file and some alternate text, which is used in cases where a
browser can’t download or display the picture (see page 116). To incorporate this
extra information into the image element, HTML uses attributes, extra pieces of
information that appear after an element name, but before the closing > character.

The example includes two attributes, separated by a space. Each attribute has
two parts—a name (which tells the browser what the attribute does) and a value (a
piece of information you supply). The name of the first attribute is src, which
is shorthand for “source”; it tells the browser where to get the image you want. In
this example, the value of the src attribute is leepark.jpg, which is the name of the
file with Lee Park’s headshot.

The name of the second attribute is alt, which is shorthand for “alternate
text.” It tells a browser that you want it to show text if it can’t display the image.
Its value is the text you want to display, which is “Lee Park Portrait” in this case.

Once you understand the image element, you’re ready to use it in an HTML docu-
ment. Just place it wherever it makes sense, inside or after an existing paragraph:

<!DOCTYPE html>
<html>
<head>
<title>Hire Me!</title>
</head>
<body>
<p>I am Lee Park. Hire me for your company, because my work is off the
hizzle.

</p>
<p>My skills include:</p>

 Fast typing (nearly 12 words/minute).
 Extraordinary pencil sharpening.
 Inventive excuse making.
 Negotiating with officers of the peace.

</body>
</html>

Figure 1-15 shows exactly where the picture ends up.

CHAPteR 1: CREATING YOUR FIRST PAGE 29

TUTORIAL:
BUILDING A
COMPLETE

HTML
DOCUMENT

FiGURE 1-15
Here’s a web page that embeds a picture, thanks to
the linking power of the image element. To display this
document, a web browser performs a separate request
to retrieve the image file. As a result, your browser may
display the text of the web page before it downloads the
graphic, depending on how long the download takes (typi-
cally, that’s a fraction of a second).

 NOTE  You’ll learn many more techniques for web graphics, including how to change their size and wrap
text around them, in Chapter 4.

The 10 Most Important Elements (and a Few More)
You’ve now reached the point where you can create a basic HTML document, and
you already have several elements under your belt. You know the fundamentals—all
that’s left is to expand your knowledge by learning how to use more elements.

HTML has a relatively small set of elements. You’ll most likely use fewer than 25 on a
regular basis. This is a key part of HTML’s success, because it makes HTML a simple,
shared language that anyone can understand.

 NOTE  You can’t define your own elements and use them in an HTML document, because web browsers
won’t know how to interpret them.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn30

TUTORIAL:
BUILDING A
COMPLETE

HTML
DOCUMENT

Some elements, like the <p> element that formats a paragraph, are important for
setting out the overall structure of a page. These are called block elements. Block
elements get extra space—when you add one to a page, the browser starts a new
line (separating this block element from the preceding one). The browser also adds
a new line at the end of the block element, separating it from the following element.

You can place block elements directly inside the <body> section of your web page
or inside another block element. Table 1-1 provides a quick overview of some of the
most fundamental block elements, several of which you’ve already seen. It also
points out which of these are container elements and which are standalone ele-
ments. (As you learned on page 15, container elements require start and end tags,
but standalone elements get by with just a single tag.) You’ll study all of these ele-
ments more closely in Chapter 2.

TABLE 1-1 Basic block elements.

ELEMENT NAME TYPE OF ELEMENT DESCRIPTION

<p> Paragraph Container As your high school English teacher probably
told you, the paragraph is the basic unit for
organizing text. When you use more than one
paragraph element in a row, a browser inserts
space between the two paragraphs—just a bit
more than a full blank line.

<h1>,<h2>,<h3>,
<h4>,<h5>,<h6>

Heading Container Heading elements are a good way to add struc-
ture to your page and make titles stand out. They
display text in large, boldfaced letters. The lower
the number, the larger the text, so <h1> produces
the largest heading. By the time you get to <h5>,
the heading has dwindled to the same size as
normal text, and <h6>, although bold, is actually
smaller than normal text.

<hr> Horizontal line
(or horizontal
rule in
HTML-speak)

Standalone A horizontal line can help you separate one
section of your web page from another. The line
automatically matches the width of the browser
window. (Or, if you put the line inside another
element, like a cell in a table, it takes on the
width of its container.)

, Unordered list,
list item

Container These elements let you build basic bulleted lists.
The browser automatically puts individual list
items on separate lines and indents each one. For
a quick change of pace, you can substitute
with to get an automatically numbered list
instead of a bulleted list (ol stands for “ordered
list”).

Other elements are designed to deal with smaller structural details—for example,
snippets of bold or italicized text, line breaks, links that lead to other web pages, and
images. These elements are called inline elements. You can put an inline element in
a block element, but you should never put a block element inside an inline element.
Table 1-2 lists the most useful inline elements.

CHAPteR 1: CREATING YOUR FIRST PAGE 31

TUTORIAL:
BUILDING A
COMPLETE

HTML
DOCUMENT

TABLE 1-2 Basic inline elements.

ELEMENT NAME TYPE DESCRIPTION

, <i> Bold and italic Container These two elements apply character styling—either bold or italic
text. (Technically, <i> means “text in an alternate voice” and
means “stylistically offset text,” and there are ways to change the
formatting they apply, as you’ll see in Chapter 3. But in the real
world, almost all web developers expect that <i> means italics and
 means bold.)

 Line break Standalone Sometimes, all you want is text separated by simple line breaks,
not separate paragraphs. This keeps subsequent lines of text closer
together than when you use a paragraph.

 Image Standalone To display an image inside a web page, use this element. Make sure
you specify the src attribute to indicate the filename of the picture
you want the browser to show.

<a> Anchor Container The anchor element is the starting point for creating hyperlinks that
let website visitors jump from one page to another. You’ll learn about
this indispensable element in Chapter 6.

To make the sample resumé look more respectable, you can use a few of the ingre-
dients from Tables 1-1 and 1-2. Figure 1-16 shows a revised version of the web page
that throws some new elements into the mix.

FiGURE 1-16
Featuring more headings, lists, and a horizontal line, this
HTML document adds a little more style to the resumé.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn32

CHECKING
YOUR PAGES
FOR ERRORS

Here’s the pumped-up HTML, with the new headings and the horizontal rule high-
lighted in bold:

<!DOCTYPE html>
<html>
<head>
 <title>Hire Me!</title>
</head>

<body>
 <h1>Hire Me!</h1>
 <p>I am Lee Park. Hire me for your company, because my work is off the
hizzle. As proof of my staggering computer skills and monumental work
ethic, please enjoy this electronic resume.</p>
 <h2>Indispensable Skills</h2>
 <p>My skills include:</p>

 Fast typing (nearly 12 words/minute).
 Extraordinary pencil sharpening.
 Inventive excuse making.
 Negotiating with officers of the peace.

 <p>And I also know HTML!</p>
 <h2>Previous Work Experience</h2>
 <p>I have had a long and illustrious career in a variety of trades.
 Here are some highlights:</p>

 2008-2009 - Worked as a typist at <i>Flying Fingers</i>
 2010-2013 - Performed cutting-edge web design at <i>Riverdale
 Farm</i>
 2014-2015 - Starred in Chapter 1 of <i>Creating a Website: The
 Missing Manual</i>

 <hr />
</body>
</html>

Don’t worry if this example has a bit too much markup for you to digest at once. In
the next chapter, you’ll get some more practice turning ordinary text into structured
HTML.

Checking Your Pages for Errors
Even a web designer with the best intentions can write bad markup and break the
rules of HTML. Although browsers really should catch these mistakes, virtually none of
them do. Instead, they do their best to ignore mistakes and display flawed documents.

CHAPteR 1: CREATING YOUR FIRST PAGE 33

CHECKING
YOUR PAGES
FOR ERRORS

At first glance, this seems like a great design—after all, it smooths over any minor
slip-ups you might make. But there’s a dark side to tolerating mistakes. In particular,
this behavior makes it all too easy for serious errors to lurk undetected in your web
pages. What’s a serious error? A problem that’s harmless when you view the page
in your favorite browser but makes an embarrassing appearance when someone
views the page in another browser; a mistake that goes undetected until you edit the
code, which inadvertently exposes the problem the next time your browser displays
the page; or an error that has no effect on page display but prevents an automated
tool (like a search engine) from reading the page.

Fortunately, there’s a way to catch problems like these. You can use a validation tool
that reads through your web page and checks its markup. If you use a professional
web design tool like Dreamweaver, you can use its built-in error-checker (Chapter 5
has the details). If you create pages by hand in a text editor, you can use a free online
validation tool (see below).

Here are some potential problems that a validator can catch:

• Missing mandatory elements (for example, the <title> element).

• A container start tag without a matching end tag.

• Incorrectly nested tags.

• Tags with missing attributes (for example, an element without the src
attribute).

• Elements or content in the wrong place (for example, text that’s placed directly
in the <head> section).

You can find plenty of validation tools online. The following steps show how to use
the popular validator provided by the W3C standards organization (the official
owners of the HTML language). Try it out with the resume.htm file you created in
the second tutorial (page 21). Or give the validator something to complain about
with the popsicles.htm file you created in the first tutorial (page 9). Because it’s an
HTML snippet, not a full HTML document, the validator is quick to complain about
the missing bits, like the required <html>, <head>, and <body> elements.

Once you decide what you want to validate, here’s what to do:

1. Make sure your document has a doctype (page 18).

The doctype tells the validator what rules to use when validating your document.
In this book, we stick with the universal HTML5 doctype (page 19).

2. In your web browser, go to http://validator.w3.org (Figure 1-17).

The W3C validator gives you three choices, represented by three tabs: Validate
by URI (for a page that’s already online), Validate by File Upload (for a page
that’s stored on your computer), and Validate by Direct Input (for markup you
type directly into the provided box).

http://validator.w3.org

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn34

CHECKING
YOUR PAGES
FOR ERRORS

FiGURE 1-17
The website http://valida-
tor.w3.org gives you three
options for validating
HTML. You can fill in the
address of a page on the
Web, you can upload a
file of your own (shown
here), or you can type the
markup in directly.

3. Click the tab you want, and supply your HTML content.

Validate by URI lets you validate an existing web page. Simply enter the URL
(that’s the full Internet address) for the page in the Address box (like www.
MySloppySite.com/FlawedPage.html).

Validate by File Upload lets you upload any file from your computer. First, click
the Browse button (called Choose File in Chrome) to see the standard Open
dialog box. Browse to the location of your HTML file, select it, and then click
Open. This is the easiest way to make sure you got everything right with the
resume.htm page you built earlier.

Validate by Direct Input lets you validate any markup—you just need to type
it into the large box provided. The easiest way to use this option is to copy the
markup from your text editor and paste it into the box.

Before continuing, you can click More Options in any of the tabbed windows to
set other options, but you probably won’t. It’s best to let the validator automati-
cally detect the document type; that way, the validator will use the doctype
specified in your web page. Similarly, leave the Character Encoding option set
to “detect automatically” unless you wrote your page in something other than
English and the validator has trouble determining the correct character set.

http://validator.w3.org
http://validator.w3.org

CHAPteR 1: CREATING YOUR FIRST PAGE 35

CHECKING
YOUR PAGES
FOR ERRORS

4. Click the Check button.

After a brief delay, the validator reports whether your document passed the
validation check or, if it failed, what errors the validator detected (see Figure 1-18).

The validator also may offer a few harmless warnings for a perfectly valid HTML
document, including a warning that the character encoding was determined
automatically and a warning that the HTML5 validation service is considered
to be an experimental, unfinished feature.

FiGURE 1-18
In this file, the validator
has discovered 10 errors
that stem from two
mistakes. First, the page is
missing the manda-
tory <title> element.
Second, it closes the
element before closing
the element nested
inside. (To solve this prob-
lem, you would replace
 with
.) Incidentally, this
file is still close enough to
correct that browsers can
display it correctly.

SHARPEN UP

Putting More Pages under the Microscope
A validator is a good way to double-check the work you do for
any of the tutorials in this book. But if you’re keen to practice
more validation right now, why not try the sample files from
the companion site? This chapter includes a sample bad file,

called invalid_resume.htm, that ’s chock-full of common
mistakes. For a real challenge, peek inside the file and see if
you can spot the problems before you hand it off to the W3C
validator.

37

CHAPTER

2

Getting text into a web page is easy—you just open up an HTML file, drop in
your content, and add the occasional HTML tag to format that content. But
getting text to look exactly the way you want it to is a different story.

Before you can make your web pages look pretty, you need to organize their structure
a bit. In this chapter, you’ll learn about the first set of tools you need: the collection
of HTML elements that let you break masses of text into neatly separated headings,
paragraphs, lists, and more. You already put several of these elements to work in
the Lee Park resumé tutorial in Chapter 1. In this chapter, you’ll take a more detailed
tour of all the HTML elements that let you structure text. Think of it as a condensed,
one-chapter exploration of HTML’s most important elements.

What you won’t learn in this chapter is how to create the look of your pages. That’s
because HTML has virtually no formatting features. Instead, you need a separate
standard—that’s CSS, or Cascading Style Sheets—to change the way something
looks on a web page. You’ll tackle that subject in the next chapter. But for now, you’ll
focus on preparing properly structured HTML pages that you can pizazz up later.

Types of Elements
Before you dig in, it’s time to review a couple of HTML essentials. As you learned in
Chapter 1, you need to know two things about every new element you meet:

• Is it a container element or a standalone element?

• Is it a block element or an inline element?

 Becoming Fluent
in HTML

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn38

TYPES OF
ELEMENTS

The answer to the first question tells you something about the syntax you use when
you add an element to a document. Container elements (like the element that
boldfaces text) require a start and end tag, with the content sandwiched in between.
Standalone elements (like the element that inserts an image into a page) use
a single, all-in-one tag.

The answer to the second question tells you something about where you can place
an element and how a browser will position your content. When you build a page,
you build its HTML framework first, using block elements. Block elements (like the
<p> element) go inside a page’s main <body> element, or within another block ele-
ment on the page. Each block element is a distinct chunk of content, and browsers
automatically separate block elements from one another. Inline elements are for
smaller bits of content, and they can slip seamlessly into another block element,
with no extra spacing.

For example, consider this fragment of HTML:

<h1>Bread and Water</h1><p>This economical snack is really all you need to
sustain life.</p>

This snippet has a title in large, bold letters followed immediately by a paragraph of
ordinary text. When a browser displays the page, you might expect to see both the
heading and the text on the same line. However, the <h1> element is a block element.
When you close it with the </h1> tag, the browser does a little housecleaning and
adds a line break and some extra space before the next element. The paragraph of
text starts on a new line, as you can see in Figure 2-1.

 NOTE  In an attempt to talk less about formatting and more about structure, HTML5 proposes some new
terminology. It suggests that inline elements be called phrasing elements and block elements be called flow
elements. The goal is to emphasize the difference in the way you can use and place these types of elements, while
downplaying the way they affect formatting. (After all, the formatting details can be changed with style sheets,
as you’ll learn in the next chapter.) However, the terms “block element” and “inline element” are so common
that it will be a while before new lingo replaces them—if the HTML5 jargon catches on at all.

FiGURE 2-1
HTML separates block elements by a distance
of approximately one and a half lines (in this
figure, that’s the space between “Bread and
Water” and the sentence below it).

CHAPteR 2: BECOMING FLUENT IN HTML 39

HTML
ELEMENTS FOR

BASIC TEXT
Browsers space out block elements to help ensure that one section of text doesn’t
run into another. However, in many cases, you won’t be happy with this automatic
spacing. For example, for dense, information-laden pages, the standard spacing looks
far too generous. You can tighten up your text and shrink the spaces in between
block elements using style sheets (page 91).

 TIP  If you’re ever in doubt about an element’s status (container or standalone? block or inline?), just refer
to the HTML reference in Appendix B, HTML Quick Reference.

HTML Elements for Basic Text
Now that you’ve reviewed element types, it’s time to take a tour through your ele-
ment toolkit. Once you learn all the text-structuring elements, you’ll get a chance
to put your skills to work with an exercise that invites you to mark up plain text with
HTML tags (page 49).

But first, you’ll start at the beginning, with the humble paragraph—the fundamental
ingredient of many a web page.

Paragraphs
You’ve already seen the basic paragraph element, <p>. It’s a block element that
defines a paragraph of text.

<p>It was the best of times, it was the worst of times....</p>

You should get into the habit of thinking of the text in your web pages as a series of
paragraphs. In other words, before you type in any text, add the <p> and </p> tags
to serve as a container. Most of the time, paragraphs are the first level of structure
you add to a page.

Figure 2-2 shows several paragraph elements in action.

 NOTE  As you’ve no doubt noticed in your travels across the Internet, HTML paragraphs aren’t indented as
they often are in print. That’s just the way of the Web, though you can change this with style sheets (page 91).

Web browsers don’t pay attention to hard returns (the line breaks you create when
you hit the Enter key). Consider, for example, this paragraph:

<p>
It looks
like
this text is spaced out. But really, the browser doesn't care about your extra
spaces, no matter how many you add.
</p>

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn40

HTML
ELEMENTS FOR

BASIC TEXT

FiGURE 2-2
When you put several
paragraphs of text in a row,
a browser separates each
one with a little over one line
of space. Browsers ignore
empty paragraph elements
completely, however, and
don’t add any extra space
for them.

Although this paragraph contains a few extra hard returns, the browser displays it
as an unbroken paragraph, wrapping the text to fit the window, like this:

It looks like this text is spaced out. But really, the browser doesn’t care about your
extra spaces, no matter how many you add.

This is the way browsers treat the text inside all elements (except the <pre> element,
discussed on page 44). Web page writers often take advantage of this behavior,
spacing out their HTML over several lines as they type it in. That makes the code
easier to read and edit in a text editor, and the browser still wraps the content to fit
the window. To insert a real break between your lines, check out the next section.

 NOTE  Technically, browsers don’t ignore line breaks. They actually treat every line break as a single space.
However, whenever a browser finds more than one space in a row, it ignores the extra ones. So, in the example
above, the browser converts the two line breaks between “like” and “this” into two spaces, and then changes
that to a single space. This behavior is called collapsing the white space.

Line Breaks
Sometimes you want to start a new line of text, but you don’t want to use a para-
graph element because browsers add extra space between paragraphs. This is the
case, for example, when you want to include a business address on your site and
you want it to appear in the standard single-spaced three-line format. In situations
like this, the standalone line break element
 comes in handy.

Line breaks are exceedingly simple: They tell a browser to move to the start of the
following line (see Figure 2-3). They’re inline elements, so you need to use them
inside a block element, like a paragraph:

CHAPteR 2: BECOMING FLUENT IN HTML 41

HTML
ELEMENTS FOR

BASIC TEXT
<p>This paragraph appears

on two lines</p>

FiGURE 2-3
The line break element
 is great for separating lines in an ad-
dress. If you want to skip down several lines, you can use a series of

 elements.

UP TO SPEED

Getting More Space
The way that browsers ignore spaces can be exasperating.
What if you really do want several spaces in a row? The trick is
to use a special HTML character entity (see page 63) called the
nonbreaking space, and written as . When a browser
sees this entity, it interprets it as a space that it can’t ignore.
So if you create a paragraph by typing in this:

<p>Hello Bye</p>

You end up with this:

Hello Bye

Some web editors automatically add nonbreaking spaces
when you press the space bar. This happens in Dreamweaver,
for example, when you use the graphical preview of your web
page and press the space bar.

Try not to use nonbreaking spaces more than necessary. And
never, ever use spaces to align columns of text—that always
ends badly, with the browser scrambling your attempts.
Instead, use the layout features described in Chapter 8.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn42

HTML
ELEMENTS FOR

BASIC TEXT
Don’t overuse line breaks. Remember, when you resize a browser window, the
browser reformats your text to fit the available space. If you try to perfect your
paragraphs with line breaks, you’ll end up with pages that look bizarre at differ-
ent browser window sizes. A good rule of thumb is to avoid line breaks in ordinary
paragraphs. Instead, use them to force breaks in addresses, outlines, poems, and
other types of text whose spacing you want to tightly control. Don’t use them for
bulleted or numbered lists, either—HTML offers elements designed just for lists, as
detailed on page 51.

In some cases, you want to prevent a line break, like when you want to keep the
longish name of a company or a product on a single line. The solution is to use the
HTML nonbreaking space code (which looks like) instead of just hitting the
space bar. The browser still displays a space when it gets to the , but it won’t
wrap the words on either side of it (see Figure 2-4).

FiGURE 2-4
Paragraphs 2 and 3 in this figure show how the code af-
fects line breaks. Paragraph 3 is actually coded as Microsoft
Office 2010. As a result, the browser won’t split this term.

Headings
Headings are section titles, like the word “Headings” just above this paragraph.
Browsers display them in boldface at various sizes, depending on the heading level.
HTML supports six levels, starting at <h1> (the biggest) and dwindling down to <h6>
(the smallest). Both <h5> and <h6> are smaller than regularly sized text.

Headings aren’t just useful for formatting—they also help define the hierarchy of
your document. Big headings identify important topics, while smaller ones denote
lesser issues related to that larger topic. To make sure your document makes sense,
start with the largest headings (level 1) and then work your way down. For instance,
don’t jump straight to a level-3 heading just because you like the way it looks.

 NOTE  It’s probably occurred to you that if everyone uses the same heading levels in the same order, the
Web will become as bland as a bagel in a chain supermarket. Don’t panic—it’s not as bad as it seems. When you
add style sheets into the mix, you’ll see that you can completely change the look of any and every heading you
use. So for now stick to using the right heading levels in the correct order.

CHAPteR 2: BECOMING FLUENT IN HTML 43

HTML
ELEMENTS FOR

BASIC TEXT

DESIGN TIME

Webifying Your Text
You can’t present text on the Web in the same way that you
present it in print, but sometimes old habits are hard to shake.
Here are some unwritten rules that can help you make good
use of text in your web pages:

• Split your text into small sections. Web pages (and
the viewers who read them) don’t take kindly to long
paragraphs.

• Create short pages. If a page goes on for more than two
screens, split it into two pages. Not only does this make
your pages easier to read, but it also gives you more web
pages, which helps with the next point.

• Divide your content into several pages. The next step is
to link these pages together (see Chapter 6). This gives

readers the flexibility to choose what they want to read,
and in what order.

• Put your most important information on the first
screen. The basic idea is to make sure there’s something
eye-catching or interesting for visitors to read without
having to scroll down. This technique is called designing
above the fold. Well-designed newspapers use the
same strategy; it gives newsstand visitors something
interesting to read without having to flip over the folded
broadsheet, hence the term “above the fold.”

• Proofread, proofread, proofread. Typos and bad grammar
shatter your site’s veneer of professionalism and web-
coolness.

Horizontal Lines
Paragraphs and line breaks aren’t the only way to separate sections of text. Another
useful divider is the standalone <hr> element, which translates to “horizontal rule.”
A horizontal rule element adds a line that stretches from one side of its container
to the other, separating everything above and below it.

 NOTE  Usually, you position a horizontal break between paragraphs, which means it will stretch from one
side of a page to the other. However, you can also put a horizontal rule in a narrower container, like a single cell
in a table, in which case it won’t turn out nearly as long.

Horizontal rules are block elements, so you can stick them between paragraphs
(see Figure 2-5).

Obviously, the <hr> element is a design element, because it draws a line on your page.
But the authors of the HTML5 specification want you to think of it as part of a page’s
structure by describing it not as a “horizontal rule” but as a “thematic break”—in
other words, a basic way to separate different blocks of content, like scenes in a
novel or topics in an academic paper. But it still looks like a line.

Preformatted Text
Preformatted text is a unique concept in HTML that breaks the rules you’ve read
about so far. As you’ve seen, web browsers ignore multiple spaces and flow your
text to fit the width of a browser window. Although you can change this to a certain
extent using line breaks and nonbreaking spaces, some types of content are harder
to deal with.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn44

HTML
ELEMENTS FOR

BASIC TEXT

FiGURE 2-5
In this example, an <hr> element sits
between the two paragraphs, inserting
the solid line you see.

Imagine you want to display a bit of poetry. Using nonbreaking spaces to align the
text is time-consuming and makes your HTML markup difficult to read. The <pre>
element gives you a better option. It tells your browser to display the text just as
you entered it, including every space and line break. Additionally, the browser puts
all that text into a monospaced font (typically Courier), further setting this content
off from the rest of the page. Figure 2-6 shows an example.

 NOTE  In a monospaced font, every letter occupies the same amount of space. HTML documents and books
like this one use proportional fonts, where letters like W and M are much wider than l and i. Browsers use mono-
spaced fonts for preformatted text because they let you line up rows of text exactly. The results, however, don’t
look as polished as when you use proportional fonts.

CHAPteR 2: BECOMING FLUENT IN HTML 45

HTML
ELEMENTS FOR

BASIC TEXT

FiGURE 2-6
There’s no mystery as to how this e. e. cummings poem will
turn out. Because it’s in a <pre> block, you get the exact
spacing and line breaks as those in your HTML file. The <pre>
element also works well for blocks of programming code.

Quotes
It may be a rare web page that spouts literary quotes, but the architects of HTML
created a block element, named <blockquote>, especially for long quotations. When
you use this element, your browser indents text on the left and right edges.

Here’s an example:

<p>Some words of wisdom from "A Tale of Two Cities":</p>
<blockquote>
<p>It was the best of times, it was the worst of times, it was the age of
wisdom, it was the age of foolishness, it was the epoch of belief, it was
the epoch of incredulity, it was the season of Light, it was the season of
Darkness, it was the spring of hope, it was the winter of despair, we had
everything before us, we had nothing before us, we were all going direct to
Heaven, we were all going direct the other way-in short, the period was so

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn46

HTML
ELEMENTS FOR

BASIC TEXT
far like the present period, that some of its noisiest authorities insisted
on its being received, for good or for evil, in the superlative degree of
comparison only.</p>
</blockquote>
<p>It's amazing what you can fit into one sentence...</p>

Figure 2-7 shows how this appears in a browser.

FiGURE 2-7
Here, the <blockquote> element indents the
middle paragraph.

Occasionally, people use the <blockquote> element purely for its formatting ca-
pability—they like the way it sets off text. Of course, this compromises the spirit of
the element, and you’d be better off using style sheets to achieve a similar effect.

As a block element, the <blockquote> element always appears independently of
other block elements, like paragraphs and headings. It has one further restriction: It
can hold only other block elements, which means that you need to put your content
into paragraphs rather than simply type in free-form text between the blockquote
start and end tags.

If, instead of using a quote that runs a paragraph or longer, you want to include
a simple one-line quote, HTML’s got you covered. It defines an inline element for
short quotes that you can nest inside a block element. It’s the <q> element, which
stands for “quotation”:

<p>As Charles Dickens once wrote, <q>It was the best of times, it was the
worst of times</q>.</p>

CHAPteR 2: BECOMING FLUENT IN HTML 47

HTML
ELEMENTS FOR

BASIC TEXT
Some browsers, like Firefox, add quotation marks around the text in a <q> element.
Other browsers, like Internet Explorer, do nothing. If you want your quotation to stand
out from the text around it in every browser, you might want to add some different
formatting, like italics. You can do this by applying a style sheet rule (see Chapter 3).

And if you want to pack more information, you can add a URL that identifies the
source of the quote (assuming it’s on the Web) using the cite attribute:

<p>As Charles Dickens once wrote,

<q cite="http://www.literature.org/authors/dickens-charles/two-cities">It
was the best of times, it was the worst of times</q>.</p>

Looking at this example, you might expect this link to take readers to the referenced
website (when they click the paragraph, for example). But that doesn’t happen. In
fact, the information in the cite attribute won’t appear on your page at all. The are
available to programs that analyze your page, like automated programs that scan
pages and compile a list of references, or a search engine that uses this information
to provide better search results. Most of the time, however, the reference has little
benefit, except that it stores an extra piece of information that you, the website
creator, might need later to double-check your sources.

If you do want to reference a source in your text, you might want to use the <cite>
element (not the cite attribute mentioned above). It identifies the title of a work,
like this:

<p>The quote <q>It was the best of times, it was the worst of times</q> is
from <cite>A Tale of Two Cities</cite>.</p>

In this case, a browser displays the text in the <cite> element in italics, just as if you
had used the <i> element.

 TIP  Should you indeed want this paragraph to link to a reference, you need to investigate the <a> element
described in Chapter 6.

Divisions and Spans
The last block element you’ll learn about—<div>—is one of the least interesting, at
least at first glance. On its own, it doesn’t actually do anything.

You use <div> to group together one or more block elements. That means you
could group together several paragraphs, or a paragraph and a heading, and so
on. Here’s an example:

<div>
 <h1>...</h1>
 <p>...</p>
 <p>...</p>
</div>
<p>...</p>

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn48

TUTORIAL:
CONVERTING
RAW TEXT TO

HTML
Given the fact that <div> doesn’t do anything, you’re probably wondering why it
exists. The lowly <div> tag becomes a lot more interesting when you combine it
with style sheets, because you can apply formatting commands directly to a <div>
element, and therefore to all the other elements and their contents in the <div>.
For example, if a <div> element contains three paragraphs, you can format all three
paragraphs at once simply by formatting the <div> element.

 TIP  As you’ll see throughout this book, the <div> element is an indispensable, all-purpose container. You
use it to shape the layout of your page, creating columns of text, navigation bars, floating figures, and more.

The <div> element has an important relative: the inline element. Like its
cousin, the element doesn’t do anything on its own, but when you place it
inside a block element and define its properties in a style sheet, you can use it to
format just a portion of a paragraph, which is very handy. Here’s an example:

<p>In this paragraph, some of the text is wrapped in a span element. That
gives you the ability to format it in some fancy way later on.
</p>

You’ll put the <div> and elements to good use in later chapters.

POWER USERS’ CLINIC

HTML5’s Supercharged Structure
The <div> element is supremely flexible, but it doesn’t say
much about the real structure of your page. For example, one
<div> element might represent a header that sits at the top
of your page, while another might wrap a set of navigation
links. For this reason, the <div> element isn’t much help
to anyone (or any program) trying to scan your markup and
figure out what it all means. While this isn’t a fatal flaw, it is
a nagging shortcoming.

Part of the dream for the future of the Internet is to embed
structural details into your pages, so that browsers, search
engines, and automated tools can understand their structure
and find important bits of information. To make the task easier,
HTML5 offers several new elements that you can substitute for
a plain-vanilla <div>, including <header>, <footer>,
<article>, <section>, <aside>, and <nav>. Like the
<div> element, these elements have no built-in formatting.
They’re simply containers where you can place content (and
then position and format it with style sheets, as you’ll learn

in Chapter 3). But unlike the <div> element, these elements
have more meaning in your markup—they tell the person edit-
ing your page something about its structure. For that reason,
HTML5 purists prefer to put a group of navigation links in a
<nav> element rather than a generic <div> element, even
though the final result in the browser looks the same.

Of course, because the HTML5 elements are relatively new, not
all browsers can interpret them. This isn’t a huge problem—
after all, the <div>-replacement elements don’t apply any
formatting anyway, so it’s perfectly fine if a browser chooses to
ignore them. But there’s a wrinkle with Internet Explorer, which
doesn’t let you use styles with elements it doesn’t recognize.
To fix this, you need to use a JavaScript workaround. Appendix
B describes this workaround (page 578) and details the new
elements that HTML5 adds. But people who don’t need to be
on the bleeding edge may prefer to wait for a while and stick
to the tried-and-true <div>.

CHAPteR 2: BECOMING FLUENT IN HTML 49

TUTORIAL:
CONVERTING
RAW TEXT TO

HTMLTutorial: Converting Raw Text to HTML
So far, you’ve considered a relatively small set of elements. But by combining these
basic ingredients, you can create an endless number of different web pages. In this
tutorial, you’ll use just a few of these elements to transform plain, unremarkable
text into a proper web page.

 TIP  Like all the tutorials in this book, you can find the solution for this exercise on the companion site at
http://prosetech.com/web. Just look in the folder named Tutorial-2-1 (which stands for “Chapter 2, first tutorial”).

The starting point is the file PessimistReviews_unformatted.htm, which you can find
in the Tutorial-2-1 folder. It contains the essential HTML elements that every web
page requires: <html>, <head>, <title>, and <body>. But that’s it—you’ll find not a
single formatting tag more:

<!DOCTYPE html>
<html>
<head>
<title>The Pessimist Reviews</title>
</head>
<body>
The Pessimist's Review Site

Here you'll learn about the greatest unpublished books ever (not) written.

The reviews on this Web site do not correspond to reality. Any correspondence
is purely coincidental.

How To Fail in Life
Chris Chu
Party Press, 1st edition
Tired of sabotaging yourself endlessly? With this book, the author Chris Chu
explains how to level the playing field and take on a challenge you can really
master. So throw away those old self-help books and start accomplishing
something!

Europe: Great Places to Miss
Antonio Cervantes
Focalio, 1st edition
Europe is brimming with world class attractions: glorious art galleries,
charming bed-and-breakfast inns, old school restaurants and much more. But who
can afford it? This book carefully documents some of the best attractions
across Europe, and provides detailed plans that explain how to miss them and
keep your last few paltry cents in your pocket.
</body>
</html>

http://prosetech.com/web

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn50

TUTORIAL:
CONVERTING
RAW TEXT TO

HTML
Remember, browsers ignore line breaks and other white space in HTML, so if you
open this unfinished file in a browser, all the text will flow in a single, unbroken
paragraph (Figure 2-8).

FiGURE 2-8
Top: With no formatting
tags, you’ve got a mess on
your hands.

Bottom: Can you transform
PessimistReviews
_unformatted.htm to
PessimistReviews_solution.
htm using the basic HTML
elements covered so far in
this chapter?

To conquer this challenge, begin by looking at the solution file (PessimistReviews_so-
lution.htm) either on your own computer or in Figure 2-8. Identify each section of
content, or block element, as best you can. You should be able to spot two levels of
headings, some paragraphs, and a horizontal line, for starters.

CHAPteR 2: BECOMING FLUENT IN HTML 51

HTML
ELEMENTS FOR

LISTS
Then add the corresponding elements to the unformatted file (PessimistReviews
_unformatted.htm). The text is already split up on separate lines and waiting; all
you need to do is fill in the missing start and end tags. For example, here’s how you
would mark up the title:

<h1>The Pessimist's Review Site</h1>

As you work, save your edits and check out the result in a browser. To double-check
your finished effort, compare your work with PessimistReviews_solution.htm.

 NOTE  Earlier incarnations of HTML still have a number of useful elements you can use in an HTML5-built
page. In the rest of this chapter, you’ll look at the elements that let you build lists and tables, and the HTML codes
you need to write special characters (like symbols and accented letters).

HTML Elements for Lists
Once you master HTML’s basic text elements, you can tackle its list elements. HTML
lets you create three types of lists:

• Ordered lists give each item in a list a sequential number (as in 1, 2, 3). They’re
handy when sequence is important, like when you list a series of steps that tell
your relatives how to drive to your house.

• Unordered lists are also known as bulleted lists, because a bullet appears before
each item. To some degree, you can control what the bullet looks like. You’re
reading a bulleted list right now.

• Definition lists are handy for displaying terms followed by definitions or descrip-
tions. For example, the dictionary is one huge definition list. In a definition list
on a web page, your browser left-aligns the terms and indents the definitions
underneath them.

In the following sections, you’ll learn how to create all three types of lists.

Ordered Lists
In an ordered list, HTML numbers each item consecutively, starting at some value
(usually 1). The neat part about ordered lists in HTML is that you don’t need to sup-
ply the numbers. Instead, the browser automatically adds the appropriate number
next to each list item (sort of like the auto-number feature in Microsoft Word). This
is handy for two reasons. First, it lets you insert and remove list items without screw-
ing up your numbering. Second, HTML carefully aligns the numbers and list items,
which isn’t easy to do on your own.

To create an ordered list, use (“ordered list”), a block element. Then, inside
the element, place an element for each item in the list (stands for
“list item”).

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn52

HTML
ELEMENTS FOR

LISTS
For example, here’s an ordered list with three items:

<p>To wake up in the morning:</p>

 Rub eyes.
 Assume upright position.
 Turn on light.

In a browser, you’d see this:

To wake up in the morning:

1. Rub eyes.

2. Assume upright position.

3. Turn on light.

The browser inserts some space between the paragraph preceding the list and the
list itself, as it does with all block elements. Next, it gives each list item a number.

Ordered lists get more interesting when you mix in the start and type attributes.
The start attribute lets you start the list at a value other than 1. Here’s an example
that starts the counting at 5:

<p>To wake up in the morning:</p>
<ol start="5">
 Rub eyes.
 Assume upright position.
 Turn on light.

Now you’ll get the same list but with the items numbered 5, 6, 7 instead of 1, 2, 3.

HTML doesn’t limit you to numbers in your ordered list. The type attribute lets you
choose the numbering style. You can use sequential letters and Roman numerals,
as described in Table 2-1. Figure 2-9 shows a few examples.

TABLE 2-1 Types of ordered lists.

TYPE ATTRIBUTE DESCRIPTION EXAMPLE

1 Numbers 1, 2, 3, 4…

a Lowercase letters a, b, c, d…

A Uppercase letters A, B, C, D…

i Lowercase Roman numerals i, ii, iii, iv…

I Uppercase Roman numerals I, II, III, IV…

CHAPteR 2: BECOMING FLUENT IN HTML 53

HTML
ELEMENTS FOR

LISTS

FiGURE 2-9
The type attribute in action. For example, the code to start
off the first list is <ol type="I">.

Unordered Lists
Unordered lists are similar to ordered lists except that they aren’t consecutively
numbered or lettered. They do, however, use the same container element, ,
and you wrap each item inside an element. The browser indents each item in
the list and automatically draws the bullets.

The most interesting option that comes with unordered lists is the type attribute,
which lets you change the style of bullet. You can use disc (a black dot, which is
automatic), circle (an empty circle), or square (a filled-in square). Figure 2-10 shows
the different styles.

Definition Lists
Definition lists are perfect for creating your own online glossary. Each list item
consists of two parts, a term (which the browser doesn’t indent) and a definition
(which the browser indents underneath the term).

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn54

HTML
ELEMENTS FOR

LISTS

FiGURE 2-10
Varying the bullet style gives you three flavors of the same list.

Definition lists use a slightly different tagging system than ordered and unordered
lists. First, you wrap the whole list in a dictionary list element (<dl>). Then you wrap
each term in a <dt> element (dictionary term), and each definition in a <dd> element
(dictionary definition). Here’s an example:

<dl>
 <dt>eat</dt>
 <dd>To perform successively (and successfully) the functions of mastication,
 humectation, and deglutition.</dd>
 <dt>eavesdrop</dt>
 <dd>Secretly to overhear a catalog of the crimes and vices of another or
 yourself.</dd>
 <dt>economy</dt>
 <dd>Purchasing the barrel of whiskey that you do not need for the price of
 the cow that you cannot afford.</dd>
</dl>

In a browser you’d see this:

eat

To perform successively (and successfully) the functions of mastication,
humectation, and deglutition.

eavesdrop

Secretly to overhear a catalog of the crimes and vices of another or yourself.

CHAPteR 2: BECOMING FLUENT IN HTML 55

HTML
ELEMENTS FOR

LISTS
economy

Purchasing the barrel of whiskey that you do not need for the price of the
cow that you cannot afford.

Nesting Lists
Lists work well on their own, but you can get even fancier by placing one complete
list inside another. This technique is called nesting lists, and it lets you build multi-
layered outlines and detailed sequences of instructions.

To nest a list, declare a new list inside an element in an existing list. For example,
the following daily to-do list has three levels. “Monday” is an example of an item at
the first level, “Plan schedule for week” is at the second level, and “Wild Hypothesis”
is at the third level. Figure 2-11 shows the result.

 Monday

 Plan schedule for week
 Complete Project X
 <ul style="square">
 Preliminary Interview
 Wild Hypothesis
 Final Report

 Edit bucket list

 Tuesday

 Revise schedule
 Procrastinate (time permitting). If necessary, put off
 procrastination until another day.

 Wednesday
 ...

 TIP  When using nested lists, it’s a good idea to use indents in your HTML so you can see the different levels
of list elements at a glance. Otherwise, you’ll find it difficult to determine where each list item belongs.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn56

HTML
ELEMENTS FOR

LISTS

FiGURE 2-11
In nested lists, the different list styles really start to become
useful for distinguishing each level. In this example, a
bulleted list holds several numbered lists, and some of these
numbered lists hold their own bulleted sub-lists. When you
nest lists, browsers indent each subsequent list. Although
you aren’t limited in the number of levels you can use, you’ll
eventually run out of room in your browser window and force
your text up against the right side of the page.

SHARPEN UP

Finish the Nested List
The example in Figure 2-11 covers five days of the week.
However, the sample code shows the markup for just two
days: Monday and Tuesday. If you understand the way HTML
works with nested lists, you can fill in the rest—and it makes
for excellent list-writing practice.

To try this out, start with the HTML document for the two-day
list, which you can find in the Tutorial-2-2 folder on the com-
panion site at http://prosetech.com/web. Then add the extra
content to match what you see in Figure 2-11. You’ll need to use
the familiar suspects: the , , and elements.
When you finish, take a look in a browser, or check the solution
in the Tutorial-2-2 folder to see if you got every detail.

http://prosetech.com/web

CHAPteR 2: BECOMING FLUENT IN HTML 57

HTML
ELEMENTS FOR

TABLESHTML Elements for Tables
As with any table, an HTML table is a grid of cells built out of rows and columns
using elements designed for the purpose. In the Bad Old Days of the Web, crafty
web designers used invisible tables to line up pictures and arrange text into col-
umns. Now style sheets fill that gap with top-notch layout features (as described
in Chapter 8) and HTML tables are back to being just tables.

A Basic Table
You can whip up a table using these HTML elements:

• <table> wraps the whole shebang. It’s the starting point for every table (and
</table> is the end point).

• <tr> represents a single row in a table. Every table element (<table>) contains
a series of one or more <tr> elements.

• <td> represents a table cell (“td” stands for “table data”). For each cell you want
in a row, add one <td> element. Put the text you want to appear in the cell inside
the <td> element. Browsers display it in the same font as ordinary body text.

• <th> is an optional table element designed for column headings. (Technically,
you can use a <th> element instead of a <td> element at any time, although it
usually makes the most sense in the first row of a table.) Browsers format the
text inside the <th> element in almost the same way as text in a <td> element,
except that they automatically boldface and center the text (unless you apply
different formatting rules with a style sheet).

Figure 2-12 shows a table at its simplest. Here’s a portion of the HTML used to create it:

<table>
 <tr>
 <th>Rank</th>
 <th>Name</th>
 <th>Population</th>
 </tr>
 <tr>
 <td>1</td>
 <td>Rome</td>
 <td>450,000</td>
 </tr>
 <tr>
 <td>2</td>
 <td>Luoyang (Honan), China</td>
 <td>420,000</td>
 </tr>

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn58

HTML
ELEMENTS FOR

TABLES
 <tr>
 <td>3</td>
 <td>Seleucia (on the Tigris), Iraq</td>
 <td>250,000</td>
 </tr>
 ...
</table>

FiGURE 2-12
Top: This basic table doesn’t have any borders
(which is standard), but you can still spot the
signature feature of a table: text lined up neatly
in rows and columns.

Bottom: This behind-the-scenes look at the HTML
powering the table above shows the <table>,
<tr>, <th>, and <td> elements for the first
three rows.

CHAPteR 2: BECOMING FLUENT IN HTML 59

HTML
ELEMENTS FOR

TABLES
The markup for this table uses indented table elements to help you see the table’s
structure. Indenting table elements like this is always a good idea, as it helps you
spot mismatched tags. In this example, the only content in the <td> elements is
ordinary text. But you can put other HTML elements in cells, too, including images
(the element), numbers, and pretty much any other HTML you like.

 NOTE  To add borders to tables or control the breadth of table columns, you need to use a style sheet. Page
111 shows you how to use CSS properties to create table borders.

Spanning Cells
Tables support spanning, a feature that lets a single cell stretch out over several
columns or rows. Think of spanning as HTML’s version of the Merge Cells feature in
Microsoft Word and Excel.

Spanned cells let you tweak your tables in all kinds of funky ways. You can, for ex-
ample, specify a column span to stretch a cell over two or more columns beside it.
Just add a colspan attribute to the <td> element you want to extend, and specify
the total number of columns you want to merge.

Here’s an example that stretches a cell over two columns:

<table>
 <tr>
 <td>Column 1</td>
 <td>Column 2</td>
 <td>Column 3</td>
 <td>Column 4</td>
 </tr>
 <tr>
 <td> </td>
 <td colspan="2">Look out, this cell spans two columns!</td>
 <td> </td>
 </tr>
 ...
</table>

Figure 2-13 shows this column-spanning in action. To make sure your table doesn’t
get mangled, you need to keep track of the total number of columns you have to
work with in each row. In the previous example, the first row starts off by defining
four columns:

<tr>
 <td>Column 1</td>
 <td>Column 2</td>
 <td>Column 3</td>
 <td>Column 4</td>
</tr>

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn60

HTML
ELEMENTS FOR

TABLES

FiGURE 2-13
A table with row spanning and
column spanning run amok.
Here, the page creator turned
on table borders (page 111)
so you can see the outline of
each cell.

In the next row, the second column extends over the third column, thanks to col-
umn spanning (see the markup below). As a result, the third <td> element actually
represents the fourth column. That means you need only three <td> elements to fill
up the full width of the table:

<tr>
 <!-- This fills column 1 -->
 <td> </td>
 <!-- This fills columns 2 and 3 -->
 <td colspan="2">Look out, this cell spans two columns!</td>
 <!-- This fills column 4 -->
 <td> </td>
</tr>

This same principle applies to row spanning and the rowspan attribute. In the fol-
lowing example, the first cell in the row actually takes up two rows:

<tr>
 <td rowspan="2">This cell spans two rows.</td>
 <td> </td>
 <td> </td>
 <td> </td>
</tr>

In the next row, the cell from above already occupies the first cell, so the first <td>
element you declare actually applies to the second column. All in all, therefore, this
row needs only three <td> elements:

CHAPteR 2: BECOMING FLUENT IN HTML 61

INLINE
FORMATTING

<tr>
 <td> </td>
 <td> </td>
 <td> </td>
</tr>

If you miscount and add too many cells to a row, you end up with an extra column
at the end of your table.

Inline Formatting
It’s best not to format HTML too heavily. To get maximum control over your pages’
appearance and to more easily update your website’s look later on, you should head
straight to style sheets (as described in the next chapter). However, a few basic HTML
formatting elements are truly useful. You’re certain to come across them, and you’ll
probably want to use them in your own pages. These elements are all inline ele-
ments, so you use them inside a block element, like a paragraph, a heading, or a list.

Formatting Text: Italics and Bold
You know the elements for bold () and italic (<i>) formatting from Chapter 1.
They’re staples in the HTML world, letting you quickly format snippets of text. Here’s
an example:

<p>
Stop! The mattress label says <i>do not remove under penalty
of law</i> and you <i>don't</i> want to mess with mattress companies.
</p>

A browser displays that HTML like this:

Stop! The mattress label says do not remove under penalty of law and you don’t
want to mess with mattress companies.

To make life more interesting, HTML has a second set of elements that appear—at first
glance—to do the same things. These are (for emphasized text) and .

Here’s the previous example rewritten to use the and elements:

<p>
Stop! The mattress label says do not remove under penalty
of law and you don't want to mess with mattress companies.
</p>

Ordinarily, the element italicizes text, just like the <i> element does. Similarly,
the element bolds text, just as the element does. The difference is
philosophical.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn62

INLINE
FORMATTING

Here’s what the latest version of the HTML standard suggests:

• Use for words that are more important than the surrounding text. The
word “Stop!” in the previous example is a good example.

• Use for text that should be presented in bold but doesn’t have greater im-
portance than the rest of your text. This could include keywords, product names,
and anything else that would be bold in print. For example, you might decide
to bold the first three words of every paragraph in your document for stylistic
reasons. It wouldn’t be pretty, but would be a better choice than .

• Use for emphasized text, which would have a different inflection if read
out loud. One example is the word “don’t” in the previous example.

• Use <i> for text in an alternate voice, such as foreign words, technical terms,
and anything else that you’d set in italics in print. The mattress warning in the
previous example is a good model.

 NOTE  Truthfully, very few web designers haven’t broken these guidelines at least a few times. The best advice
is to be as consistent as possible in your own work. Also, remember that you can change the way you emphasize
your text long after you apply your markup. For example, you might decide that you don’t want
text to be bold, but to have a different color, a different font, or a different size. As you’ll see in Chapter 3, you
can change the formatting of any element with style sheets.

A Few More Formatting Elements
A few more elements can change the appearance of small snippets of text (see
Figure 2-14), although you won’t use them much, if at all. Do take the time to learn
them, however, so you can be ready, in the rare case that you need one.

First up are two elements that change the size and placement of your text. You can
use the <sub> element for subscripts—text that’s smaller than and placed at the
bottom of the current line. The <sup> element stands for superscript—small text at
the top of the current line.

Next is the element, which generally represents deleted text in a revised
document or text that doesn’t apply anymore. The browser displays this text but
crosses it out with a horizontal line. (HTML5 adds a complementary <mark> element
for highlighting text, but it’s still too new to get reliable browser support.)

Finally, the <small> element is the right way to format “small print,” like the legalese
at the bottom of a contract that a business is really hoping you’ll overlook. In the
past, the <small> element simply meant “small-looking text,” and web designers
rarely used it. HTML5, however, redefined it with a perfectly logical meaning, and
with that gave it a new lease on life.

 NOTE  HTML also has a <u> element for underlining text, but webmasters consider it obsolete. If you really
want to underline text, put it in a element (which applies no formatting on its own), and then use the
text-decoration style property to format the span using CSS (see page 96).

CHAPteR 2: BECOMING FLUENT IN HTML 63

INLINE
FORMATTING

FiGURE 2-14
Deleted text, superscript, subscript,
and small print in action.

Special Characters
Not all characters are available from your keyboard. For example, what if you want
to add a copyright symbol (©), a paragraph mark (¶), or an accented e (é)? Good
news: HTML supports them all, along with about 250 relatives, including mathematical
symbols and Icelandic letters. To add them, however, you need to use some sleight
of hand. The trick is to use HTML character entities—special codes that browsers
recognize as requests for unusual characters. Table 2-2 has some common options,
with a sprinkling of accent characters.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn64

INLINE
FORMATTING

TABLE 2-2 Common special characters.

CHARACTER NAME OF CHARACTER WHAT TO TYPE

© Copyright ©

® Registered trademark ®

¢ Cent sign ¢

£ Pound sterling £

¥ Yen sign ¥

€ Euro sign € (but € is better supported)

° Degree sign °

± Plus or minus sign ±

÷ Division sign ÷

x Multiply sign ×

μ Micro sign µ

¼ One-fourth fraction ¼

½ One-half fraction ½

¾ Three-fourths fraction ¾

¶ Paragraph sign ¶

§ Section sign §

« Left angle quote, guillemot left «

» Right angle quote, guillemot
right

»

¡ Inverted exclamation mark ¡

¿ Inverted question mark ¿

æ Small ae diphthong (ligature) æ

ç Small c, cedilla ç

è Small e, grave accent è

é Small e, acute accent é

ê Small e, circumflex accent ê

ë Small e, dieresis or umlaut
mark

ë

ö Small o, dieresis or umlaut
mark

ö

É Capital E, acute accent É

CHAPteR 2: BECOMING FLUENT IN HTML 65

INLINE
FORMATTING

HTML character entities aren’t just for non-English letters and exotic symbols. You
also need them to deal with characters that have special meaning in HTML—namely
angle brackets (< >) and the ampersand (&). You shouldn’t enter these characters
directly into a web page because a browser will assume you’re trying to give it a
super-special instruction. Instead, you need to use the equivalent character entity,
as shown in Table 2-3.

TABLE 2-3 HTML character entities.

CHARACTER NAME OF CHARACTER WHAT TO TYPE

< Left angle bracket <

> Right angle bracket >

& Ampersand &

“ Double quotation mark "

Strictly speaking, you don’t need all these entities all the time. For example, it’s safe
to insert ordinary quotation marks into your web page text. However, you can’t use
quotation marks in attribute values, because there they have a special meaning (they
indicate the beginning and ending of the value). If you need a quotation mark in an
attribute value, you need to rely on the " character entity. On the other hand,
the character entities for in-text angle brackets are always necessary, no matter
where you plan to put them in a page.

Here’s some flawed text that won’t display correctly:

I love the greater than (>) and less than (<) symbols. Problem is, when I type
them my browser thinks I'm trying to use a tag.

And here’s the corrected version, with HTML character entities. When a browser
processes and displays this text, it replaces the entities with the characters you
really want.

I love the greater than (>) and less than (<) symbols. Problem is, when
I type them my browser thinks I'm trying to use a tag.

 TIP  To get a more comprehensive list of special characters and see how they look in your browser, check out
the reference on http://tinyurl.com/special-chrs, courtesy of the folks at Wired Webmonkey.

http://tinyurl.com/special-chrs

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn66

INLINE
FORMATTING

UP TO SPEED

Taming Long URLs with TinyURL
Keen eyes will notice something unusual about the web address
mentioned in the Tip box on page 65 (that’s the URL http://
tinyurl.com/special-chrs). Although the address leads to the
Webmonkey site, the URL starts with the seemingly unrelated
domain name http://tinyurl.com. That’s because the full Web-
monkey URL has been deliberately shortened using TinyURL,
a free website redirection service. TinyURL is a handy tool you
can use whenever you come across a URL that’s so impracti-
cally long or convoluted that you’d ordinarily have no chance
of jotting it down, typing it in, or shouting it over the phone.

Here’s how to use TinyURL. First, copy your awkwardly long URL.
Then, head to the website http://tinyurl.com, type or paste the
URL into the text box on the front page, and click Make TinyURL.
The site rewards you with a much shorter URL that starts with
http://tinyurl.com. You can suggest some descriptive text for

the URL (like special-chrs in the Webmonkey example) or you
can let TinyURL pick an arbitrary address that includes random
characters (like http://tinyurl.com/ye8mf7k).

Best of all, a TinyURL works just as well as the original one—
type it into any browser and you’ll get to the original site. So
how does this system work? When you type a TinyURL, your
browser takes you to the TinyURL website. TinyURL keeps a
long list of all the whacked-out URLs people provide, as well
as the new, shorter URLs it issues in their place. When you
request a page, the site looks up the TinyURL in that list, finds
the original URL, and redirects your browser to the site you
really want. Here’s the neat part: The whole process unfolds
so quickly that you’d have no idea it was taking place if you
hadn’t read this box.

Non-English Languages
Although character entities work perfectly well, they can be a bit clumsy if you need
to rely on them all the time. For example, consider the famous French phrase, “We
were given speech to hide our thoughts,” shown here:

La parole nous a été donnée pour déguiser notre pensée.

Here’s what it looks like with character entities replacing all the accented characters:

La parole nous a été donnée pour déguiser notre
pensée.

French-speaking web creators would be unlikely to put up with this for long. Fortu-
nately, there’s a solution called Unicode encoding. Essentially, Unicode is a system
that converts characters into the bytes that computers understand and that display
properly on your web page. By using Unicode encoding, you can create accented
characters just as easily as if they were keys on your keyboard.

So how does it work? First, you need a way to get the accented characters into your
web page. Here are some options:

• Type it in. Many non-English speakers will have the benefit of keyboards that
include accented characters.

http://tinyurl.com/special-chrs
http://tinyurl.com/special-chrs
http://tinyurl.com
http://tinyurl.com
http://tinyurl.com
http://tinyurl.com/ye8mf7k

CHAPteR 2: BECOMING FLUENT IN HTML 67

INLINE
FORMATTING

• Use a utility. In Windows, you can run a little utility called charmap (short for
Character Map) that lets you pick from a range of special characters and copy
your selected character to the Clipboard so it’s ready for pasting into your text
editor. To run charmap, click the Start button and then type charmap in the
search box. Click the program name when it appears (Figure 2-15).

• Use your web page editor. Some web page editors include their own built-
in symbol-pickers. In Dreamweaver, you can use Insert→HTML→Special
Characters→Other. In Expression Web, choose Insert→Symbol. Usually, this
process inserts character entities, not Unicode characters. Though the end result
is the same, your HTML markup will still include a clutter of codes.

FiGURE 2-15
Charmap gives you a comprehensive list of special
characters you can copy and paste into any
program. Just double-click the character you want,
and then click the Copy button. When you paste
the character into another program, you get the
actual character, Unicode-style, not the cryptic
character entity.

When you use Unicode encoding, make sure you save your web page correctly. This
isn’t a problem if you use a professional web page editor, which is smart enough
to get it right the first time, but Unicode can trip up text editors. For example, in
Windows Notepad, you need to choose File→Save As, and then pick UTF-8 from the
Encoding list (see Figure 2-16). For the Mac’s TextEdit, go to TextEdit→Preferences.
Choose the “Open and Save” tab and make sure you select “Unicode (UTF-8)” for
the Encoding setting.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn68

INLINE
FORMATTING

FiGURE 2-16
The overwhelming standard
of the Web, UTF-8 is a
slimmed-down version of
Unicode. However, you need
to explicitly tell Notepad to
use UTF-8 encoding when
you save a web page that
includes special characters,
like accented letters.

SHARPEN UP

Decode the Markup
Here’s an excellent exercise that will force you to think like a
web browser. In your text editor, open an HTML file that you’ve
never seen before. Then read through the markup and try to
piece together the document’s structure, just by remember-
ing what each element represents. When you finish, you can
take a look at the page in a browser to see if you correctly
interpreted all the tags.

Interested in giving it a shot? In the Tutorial-2-3 folder on
the companion site, there’s a small collection of sample web
pages that feature the common text elements you explored
in this chapter. However, there’s a twist. Each web page uses

HTML comments (page 27) to hide the web page content. That
means that you can’t sneak a peek in your browser—if you do,
all you’ll see is a blank page.

Instead, you need to open the web page in a text editor,
remove the two comment markers (that’s the <!-- code at
the beginning of the content and the --> code at the end),
and save the changes. Then you can open the page in your
browser and see the result. But by this point, you’ll have read
through the markup, and you can make your prediction about
what you’ll see.

69

CHAPTER

3

Last chapter, you learned HTML’s dirty little secret: It doesn’t have much format-
ting muscle. As a result, if you want your web pages to look sharp, you need to
add style sheets into the page-creation mix.

A style sheet is simply a document filled with formatting rules. Browsers read these
rules and apply them when they display web pages. For example, a style sheet rule
might say, “Make all the headings on this site bold and fuchsia, and draw a box
around each one.”

You want to put formatting instructions in a style sheet instead of embedding them
in a web page for several reasons. The most obvious is reusability. Thanks to style
sheets, for example, you can create a single rule to, say, format all level-3 headings
a certain way. When you apply this rule to your site, it changes the appearance of
every level-3 heading on every web page.

The second reason is that style sheets help you write tidy, readable, and manage-
able HTML files. Because style sheets handle all your site’s formatting, your HTML
document doesn’t need to do that work. All it needs to do is organize your pages
into logical sections.

Finally, style sheets give you more extensive formatting choices than HTML does.
Using style sheets, you can control colors, borders, margins, alignment, and fonts.
These formatting features are either out of reach in HTML, or they require some
seriously messy markup.

In this chapter, you’ll learn how style sheets work, and how to attach one to a web
page. Once you have these basics under control, you’ll study the finer details of CSS,
including how to get the colors, alignment, fonts, and borders you want in your pages.

 Building a Style Sheet

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn70

GRAPHIC
DESIGN ON THE

WEB
 NOTE  You won’t learn about every CSS feature in this chapter. For example, some properties apply primarily
to pictures or to page layout. You’ll learn about those properties as you work your way through different topics
in later chapters.

Graphic Design on the Web
Sooner or later, every website creator discovers that designing for the Web is very
different from designing for something that’s going to be printed. Before you can
unleash your inner web page graphic designer, you need to clear a few conceptual
hurdles.

Consider the difference between an HTML page and a page created in a word proces-
sor. Word processing programs show you exactly how a document will look before
you print it: You know how large your headlines will be, what font they’re in, where
your text wraps from one line to the next, and so on. If you see something you don’t
like, you change it using menus and formatting commands. Your word processor, in
other words, gives you absolute control over every detail of your page.

The Web is a more freewheeling place. When you create an HTML document, you
know some—but not all—of the details about how that page will appear on some-
one else’s computer. While one person’s browser may display large type instead of
standard-size characters and stretch it to fill the full expanse of a 28-inch widescreen
monitor, another’s may be shrunk and tucked away in a corner of the desktop. And
guests who visit your site with a smartphone, tablet computer, or web-enabled
toaster will get yet another—and completely different—view. In short, you can’t mi-
cromanage display details on the Web the way you can in print. But you can supply
all the information a web browser needs to present your pages properly. You do this
by structuring your pages so that browsers treat your page elements consistently,
regardless of your visitors’ browser settings.

Logical Structure vs. Physical Formatting
As you learned in the previous chapter, there’s a sharp difference between structuring
a document (dividing it into discrete chunks of content like headings, paragraphs,
and lists) and formatting a document (making those chunks look pretty by applying
italics, changing the text size, adding color, and so on). Novice webmasters who don’t
understand this difference often end up formatting when they should be structuring,
which leads to messy and difficult-to-maintain HTML pages.

In the early days of the Web, HTML used two types of elements to emphasize the
distinction between document structure and document formatting:

• Semantic elements define the individual components that make up your web
page. They identify what in a page is a heading, a paragraph, a list, and so on.
In other words, they tell you about the structure of your page.

CHAPteR 3: BUILDING A STYLE SHEET 71

STYLE SHEET
BASICS

• Presentational elements are all about formatting—what your content looks
like onscreen. Examples include elements that apply italics, boldface, and
underlining to text.

Over the years, the creators of HTML worked hard to strip the formatting details
out of the HTML language. They made some presentational elements obsolete
(like the clumsy element) and redefined others. For example, no longer
means “bold text” (the standard presentational definition), but “stylistically offset
text” (which is a more semantic definition). Similarly, <i> no longer means “italic
text” but “text in an alternate voice, such as foreign words and technical terms.”
Of course, web browsers aren’t affected. They still render text in bold and <i>
text in italics, unless you use a style sheet that tells them not to. But the change
in wording emphasizes a fundamental shift in philosophy—namely, that HTML ele-
ments should describe the logical function of portions of text, not the typographic
presentation of it.

CSS (Cascading Style Sheets)
If web pages are supposed to be clean and formatting-free, what’s left to make
those pages look good? The answer is found in another standard: Cascading Style
Sheets, or CSS.

Here’s how it works. First, you create a regular HTML document, like the one you
learned to build in Chapter 1. Next, you create a separate document using the CSS
standard. This document is called a style sheet, and it defines how browsers format
the different elements in your HTML document. For example, a style sheet might
contain instructions like “Make every heading bright red” or “Give all paragraphs a
12-pixel left margin.”

The style sheet system offers many benefits. First, you can reuse the same style
sheet for all your web pages. Because getting your formatting right can be a long
and tedious chore, this is a major timesaver. Once you perfect your site’s look and
feel, you link your pages to this style sheet so they all take on that design (see
Figure 3-1). Even better, when you’re ready for a new look, you don’t need to mess
with your HTML documents—just tweak your style sheet and every linked page
gets an instant face-lift.

Style Sheet Basics
Style sheets use a standard that’s officially known as CSS (Cascading Style Sheets).
CSS is a system for defining style rules. These rules change the appearance of the
elements in your web pages, tweaking details like color, font, size, borders, and
placement.

When you use CSS in a web page, a browser reads both the page’s HTML file and its
style sheet rules. The browser then uses those rules to format the page. Figure 3-2
shows the process.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn72

STYLE SHEET
BASICS

FiGURE 3-1
Left: This page displays
just plain text, but it’s
ready for a style sheet: the
author carefully separated
the page into logical sec-
tions.

Right: When you apply a
style sheet to the page,
its formatting and layout
change dramatically.
You’ll see this example in
Chapter 8.

FiGURE 3-2
When you go to a web
page that uses a style
sheet, the following things
happen: 1) Your browser
requests the HTML page
from a web server.
2) The browser finds an
instruction in the HTML in-
dicating that the page uses
a style sheet. The browser
then grabs that style sheet
by making a separate
request to the server.
3) The browser chews
through the HTML in the
web page and uses the
rules in the style sheet
to adjust the page’s ap-
pearance.

CHAPteR 3: BUILDING A STYLE SHEET 73

STYLE SHEET
BASICS

UP TO SPEED

Why HTML Is Not a Formatting Language
The keepers of the HTML standard chose to strip the formatting
details out of HTML documents and stuff them into style sheets.
Here are some of the reasons why:

• To keep HTML simple. If HTML handled formatting, your
pages would get messy. That’s because even a simple
web page needs a lot of fine-tuned formatting. Put those
details in a page along with your HTML, and you’d lose
your content in a swamp of markup.

• To make it easy to change your formatting. If HTML had,
say, an element to specify text color, you’d need to
include that element every time you placed a heading
on a page. Now imagine that you later decide to go with
a more refined dark purple heading. To change your
website, you’d have to open and edit each and every
HTML page that had a heading—a time-consuming job,
even for simple sites.

• To make your pages more adaptable. By taking the
formatting out of your page, it becomes much more
f lexible. Using a style sheet , you can change the
formatting of a page without editing the HTML. And if

you need to display the web page in a different way on a
smartphone or another type of web-enabled device, you
can do that, too, by adding another set of style instructions.

• To make your pages more meaningful. Semantic elements
let external programs analyze a page’s HTML. For example,
someone could create an automated search program
that scanned web pages and extracted just the top-level
headings to produce a bare-bones outline of the page.
Or a program could browse Amazon.com to find only
book reviews. Or one could create a junk-mail list by
reading <address> elements. A comparable program
that looked at web page formatting would produce less
interesting results. After all, who cares how much of
eBay’s text is in boldface?

• To make HTML more accessible. Screen-reading software
and other automated tools work far better with logically
structured pages. For example, a screen-reading program
can guide a visually impaired person around your page by
announcing only headings or links, rather than reading
all the copy.

This system gives web weavers the best of both worlds—a rich way to format pages
and a way to avoid mucking up your HTML beyond recognition. In an ideal world,
the HTML document describes only the structure of your page (what’s a header,
what’s a paragraph, what’s a list, and so on), and the style sheet formats that page
to give it its hot look.

The Three Types of Style Sheets
Before you learn how to write CSS rules, you first have to think about where you’re
going to place those instructions. CSS gives you three ways to apply a style sheet
to a web page:

• You store an external style sheet as a separate file. This is the most powerful
approach, because it completely separates formatting rules from your HTML
pages. It also gives you an easy way to apply the same rules to many pages.

• You embed an internal style sheet inside an HTML document (it goes right
inside the <head> section of your page). You still have the benefit of separating
the style information from the HTML, and if you really want, you can cut and
paste the embedded style sheet from one page to another (although it gets

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn74

STYLE SHEET
BASICS

difficult to keep all those copies synchronized if you make changes later on).
You use an internal style sheet if you want to give someone a complete web
page, formatting instructions and all, in a single file—for example, if you email
someone your home page. You might also use an internal style sheet if you know
that you aren’t going to use any of its style rules on another page.

• An inline style is a way to insert style sheet language directly inside the start
tag of an HTML element. At first glance, this sounds suspicious. You’ve already
learned to avoid embedding formatting instructions inside a web page, because
formatting details tend to be long and unwieldy. That’s true, but you might oc-
casionally use the inline style approach to apply one-time formatting in a hurry,
like italicizing the name of a book on the fly. It’s not all that clean or structured,
but it does work.

These choices give you the flexibility to either follow the CSS philosophy wholeheart-
edly (with external style sheets) or to use the occasional compromise (with internal
style sheets or inline styles). Because style sheet language is always the same, even
if you use a “lazier” approach like internal style sheets, you can always cut and paste
your way to an external style sheet when you’re ready to get more structured.

UP TO SPEED

CSS Browser Compatibility
Before you embrace style sheets, you need to make sure they
work on all the browsers your site visitors use. That’s not as
easy to figure out as it should be, because there’s actually
more than one version of the CSS standard—there’s the original
CSS1, the slightly improved CSS2, the corrected CSS2.1, and the
latest-and-greatest CSS3. But the real problem is that browsers
don’t necessarily support the entire CSS standard, no matter
what version it is.

In this book you’ll focus on CSS properties known to be well-
supported on all the major browsers. That said, don’t forget
to test your pages in a variety of browsers to be sure they look
right. And if you’re thinking of experimenting with one of the
newer CSS3 features, you can learn more at http://caniuse.
com. You’ll find a list of advanced features in CSS3, HTML5,
and related standards. Click the feature you’re interested in,
and the website details exactly which versions of the world’s
web browsers support it.

The Anatomy of a Rule
Style sheets contain just one thing: rules. Each rule is a formatting instruction that
applies to a part of your page. A style sheet can contain a single rule, or it can hold
dozens (or even hundreds) of them.

Here’s a simple rule that tells a browser to display all <h1> headings in blue:

h1 { color: blue }

CSS rules don’t look like anything you’ve seen in HTML markup, but you’ll have no
trouble with them once you realize that every rule uses only three ingredients: a
selector, a property, and a value. Here’s the format that every rule follows:

selector { property: value }

http://caniuse.com
http://caniuse.com

CHAPteR 3: BUILDING A STYLE SHEET 75

STYLE SHEET
BASICS

And here’s what each part means:

• The selector identifies the type of content you want to format. A browser
then hunts down all the parts of a web page that match the selector. For now,
you’ll concentrate on selectors that match every occurrence of a specific page
element, like a heading. Later in this chapter (page 84), you’ll learn to create
more sophisticated selectors that act on only specific sections of your page.

• The property identifies the type of formatting you want to apply. Here’s where
you choose whether you want to change colors, fonts, alignment, or something
else.

• The value sets a value for the property defined above. This is where you bring
it all home. For example, if your property is color, the value could be light blue
or a queasy green.

Of course, it’s rarely enough to format just one property of an HTML element. Usu-
ally, you want to format several properties at the same time. You can do this with
style sheets by creating a rule like this:

h1 {
 text-align: center;
 color: black;
}

This example changes the color of and centers the text inside an <h1> element.
That’s why style rules use the funny curly braces, { and }, so you can group as many
formatting instructions inside them as you want. You separate one property from the
next using a semicolon (;). It’s up to you whether to include a semicolon at the end
of the last property. Although it’s not necessary, web-heads often do so to simplify
adding additional properties onto the end of a rule.

 TIP  CSS files let you use spacing and line breaks pretty much wherever you want, just as HTML files do.
However, people often put each formatting instruction on a separate line (as in the example above) to make
style sheets easy to read.

Conversely, you might want to create a single formatting instruction that affects
several elements. For example, imagine you want to make sure that the first three
heading levels, <h1> to <h3>, all have blue letters. Rather than write three separate
rules, you can create a selector that includes all three elements, separated by com-
mas. Here’s an example:

h1, h2, h3 {
 color: blue;
}

Believe it or not, selectors, properties, and values are the essence of CSS. Once you
understand these three ingredients, you’re on your way to style sheet expertise.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn76

TUTORIAL:
ATTACHING A
STYLE SHEET

TO A PAGE
Here are a few side effects of the style sheet system that you might not yet realize:

• A single rule can format a whole bunch of HTML. When you implement a rule
for the kind of selectors listed above (called type selectors), that rule applies
to every one of those elements. So when you specify blue <h1> headings as in
the example above, every <h1> element in your page becomes blue.

• It’s up to you to decide how much of your content you want to format. You can
fine-tune every HTML element on your page, or you can write rules that affect
only a single element, using the technique discussed on page 84.

• You can create two different rules for the same element. For example, you could
create a rule that changes the font of every heading level (<h1>, <h2>, <h3>,
and so on), and then add another rule that changes the color of <h1> elements
only. Just make sure you don’t try to set the same property multiple times with
conflicting values, or the results will be difficult to predict.

• Some elements have built-in style rules. For example, browsers always display
text that appears in a element as boldfaced, even when the style sheet
doesn’t include a rule to do so. Similarly, browsers display text in an <h1> head-
ing in a large font, with no style sheet rule necessary. But you can override any
or all of these built-in rules using custom style rules. For example, you could
explicitly set the font size of an <h1> heading so that it appears smaller than
normal text. Similarly, you can take the underline off of a link, make the
element italicize text instead of bolding it, and so on.

Don’t worry about memorizing the kinds of properties and values you can specify.
Later in this chapter, after you see how style sheets work, you’ll get acquainted with
the formatting instructions you can use.

Tutorial: Attaching a Style Sheet to a Page
Now it’s time to see style sheets in action. Before you go any further, dig up the
resume.htm file you worked on in Chapter 1. If you don’t have it handy, or if you’re
not sure which version to use, you can grab a copy from the companion site, in the
Tutorial-3-1\Start folder.

 TIP  Like all the tutorials in this book, you can find the solution for this exercise on the companion site at
http://prosetech.com/web. Just look in the folder named Tutorial-3-1 (which stands for “Chapter 3, first tutorial”).
Inside the Tutorial-3-1 folder is a Start folder that holds the files you start the exercise with and an End folder that
holds the solution.

Right now the resume.htm file is a blank canvas, with content but not a lick of
style (Figure 3-3, left). The goal is to apply a style sheet that will give it a face-lift
(Figure 3-3, right), without touching a line of the original HTML markup.

http://prosetech.com/web

CHAPteR 3: BUILDING A STYLE SHEET 77

TUTORIAL:
ATTACHING A
STYLE SHEET

TO A PAGE

FiGURE 3-3
Left: By now, you can
recognize a plain-vanilla
web page.

Right: A style sheet
revamps the entire page.

The following steps lead you through the process:

1. First, you need to create your style sheet. To start, open your text editor.

You can use the same text editor you used to create HTML documents (Notepad
or TextEdit). In fact, creating a style sheet is much the same as creating an HTML
page—it’s all plain text. But instead of HTML markup, your style sheet will contain
style rules, like the one you considered in the previous section.

2. Type the following rule into your style sheet:

h1 {
 color: fuchsia;
}

This rule instructs your browser to display all <h1> elements in bright fuchsia
lettering.

3. Save the newly created style sheet with the name resume.css. Make sure
you place it in the same folder as the resume.htm file.

Like an HTML document, a style sheet can have just about any filename. As a
matter of convention, however, style sheets almost always use the extension
.css. For this example, make sure you save the style sheet in the same folder
as your HTML page.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn78

TUTORIAL:
ATTACHING A
STYLE SHEET

TO A PAGE
Now you have a style sheet you can use with a web page (or several web pages).
However, you still need to connect your web page to your style sheet. That’s
the task you’ll undertake next.

4. Open the resume.htm file in your text editor.

If you don’t have the resume.htm file handy, you can test this style sheet with
any HTML file that has at least one <h1> element.

5. Add the <link> element to your HTML file, somewhere between the <head>
start tag and the </head> end tag.

The <link> element points your browser to the style sheet you wrote for your
pages. You have to place it in the <head> section of your HTML page. Here’s the
revised <head> section of resume.htm with the <link> element added:

<head>
 <title>Hire Me!</title>
 <link rel="stylesheet" href="resume.css" />
</head>

The link element includes two details:

The rel attribute indicates that the link points to a style sheet (rel stands for
relationship, because it indicates the relationship between the current page
and the file you’re linking to).

The href attribute is the important bit, because it identifies the location of your
style sheet (href stands for “hypertext reference”). If you put your style sheet in
the same folder as your HTML file, the href attribute is simply the style sheet’s
filename, as it is in this example. If you put the style sheet in a different folder,
you need to supply a relative file path (as explained on page 177).

6. Save the HTML file, and then open it in a browser.

Here’s what happens. Your browser begins processing the HTML document and
finds the <link> element, which tells it to find an associated style sheet and
apply all its rules. The browser then reads the first (and only, in this case) rule
in the style sheet. To apply this rule, it starts by analyzing the selector, which
targets all level-1 heading elements. Then it finds all the <h1> elements in the
HTML and applies the fuchsia formatting.

The style sheet in this example isn’t terribly impressive. In fact, it probably seems like
a lot of work to simply get a pink heading. However, once you get this basic model
in place, you can quickly take advantage of it. For example, you could edit the style
sheet to change the font of your resume.htm headings. Or you could add rules to
format other parts of the document. After you do, simply save the new style sheet,
and then refresh the web page to see the effect of the changed or added rules.

CHAPteR 3: BUILDING A STYLE SHEET 79

TUTORIAL:
ATTACHING A
STYLE SHEET

TO A PAGE
In this chapter, you’ll learn about plenty of useful settings for your style sheet rules.
But to get a taste of how a few rules can change a web page, edit the resume.css
style sheet so that it has these instructions:

body {
 font-family: Verdana,Arial,sans-serif;
 font-size: 83%;
}

h1 {
 border-style: double;
 color: fuchsia;
 text-align: center;
}
h2 {
 color: fuchsia;
 margin-bottom: 0px;
 font-size: 100%;
}
li {
 font-style: italic;
}
p {
 margin-top: 2px;
}

These rules change the font for the entire document (through the <body> element
rule), tweak <h1> and <h2> headings, italicize list items, and shave off some of the
spacing between paragraphs. Although you won’t recognize all these rules at first,
the basic idea stays the same—you put the content in the web page and the format-
ting in the style sheet. Figure 3-3 (right) shows the result. You can find this finished
example in the Tutorial-3-1\End folder.

Using an Internal Style Sheet
In the previous example, you used an external style sheet. They’re everybody’s fa-
vorite way to use CSS because they let you link a single lovingly crafted style sheet
to as many web pages as you want. But there are times when you’re not working on
an entire website, and you’d be happy with a solution that’s a little less ambitious.

With an internal style sheet, you embed your style rules in the <head> area of your
web page rather than link the page to an external style sheet. Yes, it bulks up your
pages and forces you to give each page a separate style sheet. But sometimes the
convenience of having just one file that contains your page and its style rules makes
this approach worthwhile.

 TIP  You should practice using all three types of styles: external, internal, and inline. Sooner or later, you’ll
need to use each technique in your own web pages.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn80

TUTORIAL:
ATTACHING A
STYLE SHEET

TO A PAGE
To change the earlier example so that it uses an internal style sheet, follow these steps:

1. Open the resume.htm file you created previously.

2. Remove the <link> element from your HTML markup.

This disconnects the page from the resume.css style sheet.

3. Add a <style> element to the <head> section of the page.

You need both a <style> start tag and a </style> end tag. This is where you’ll
put all your style rules. It looks like this:

<head>
 <title>Hire Me!</title>
 <style>
 </style>
</head>

4. Add your rules between the <style> start and end tags.

For example, to add a rule that makes <h1> headings fuchsia, you’d type this:

<head>
 <title>Hire Me!</title>
 <style>
 h1 {
 color: fuchsia
 }
 </style>
</head>

As you can see, there’s really no difference between the way you write an ex-
ternal and an internal style sheet rule. The syntax is the same—the only thing
that changes is the place you put it.

 TIP  You can find the solution for this exercise on the companion site at http://prosetech.com/web. Just look
in the folder named Tutorial-3-2.

Using Inline Styles
If you want to avoid writing a style sheet altogether, you can use yet another ap-
proach. Inline styles let you insert the property and value portion of a style sheet
rule right into the start tag for an HTML element. You don’t need to specify the
selector because browsers understand that you want to format only the element
where you add the rule.

Here’s how you write an inline style that formats a single heading:

<h1 style="color: fuchsia">Hire Me!</h1>

http://prosetech.com/web

CHAPteR 3: BUILDING A STYLE SHEET 81

WHEN STYLES
OVERLAP

The rule above affects only the <h1> element where you added it; any other <h1>
headings on the page are unchanged.

Inline styles may seem appealing at first because they’re clear and straightforward.
You define the formatting information exactly where you want to use it. But if you
try to format a whole page this way, you’ll realize why web developers go easy on
this technique. Quite simply, the average CSS formatting rule is long. If you need
to put it alongside your content and copy it each time you use the element, you
quickly end up with a web page that’s mangled beyond all recognition. For example,
consider a more complex heading that needs several style rules:

<h1 style="border-style: double; color: fuchsia; text-align: center">Hire
Me!</h1>

Even if this happens only once in a document, it’s already becoming a loose and
baggy monstrosity. So try to avoid inline styles if you can.

WORD TO THE WISE

Boosting Style Sheet Speed
External style sheets are a more efficient way to format
websites than internal and inline styles because browsers
use caching. Caching is a performance-improving technique in
which browsers store a copy of some downloaded information
on your computer so they don’t need to download it again.

When a browser loads a web page that links to a style sheet, it
makes a separate request for that style sheet, as shown back
in Figure 3-2. If the browser opens another page that uses
the same style sheet, it’s intelligent enough to realize that it
already has the right .css file on hand. As a result, it doesn’t
make the second request. Instead, it uses the cached copy of

the style sheet, which makes the page load a little faster. (Of
course, browsers only cache things for so long. If you go to
the same site tomorrow, the browser will have to re-request
the style sheet.)

If you embed the style sheet in each of your web pages, the
browser always downloads the full page, including the style
sheet rules. It has no way of knowing that you’re using the
same set of rules over and over again. Although this probably
won’t make a huge difference in page-download time, it could
start to add up for a website with lots of pages. Speed is just
one more reason web veterans prefer external style sheets.

When Styles Overlap
By now, you might be wondering what happens when styles disagree. For example,
if an external style sheet indicates that <h1> headings should have blue letters, and
then you apply bold formatting with an inline style, you’ll end up with the sum of
both changes: a blue-lettered, boldfaced heading. But what happens if the rules
conflict? What if, for example, one rule specifies blue text while another mandates
red? Which color setting wins?

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn82

WHEN STYLES
OVERLAP

The Cascade
To figure out the victor in a style conflict, you need to understand what the “cascad-
ing” part of “Cascading Style Sheets” means. It refers to the way browsers decide
which property settings take precedence when you have multiple sets of rules.

When a browser formats a page according to your style sheet, it follows a specific
sequence. It applies styles in this order:

1. The browser’s standard settings

2. External style sheet

3. Internal style sheet (inside the <head> element)

4. Inline style (inside any HTML element)

The steps toward the bottom are the most powerful. The browser implements them
after it applies the steps at the top, and they override any earlier formatting. So if an
external style sheet conflicts with an internal style sheet, the setting in the internal
style sheet wins.

 NOTE  This sequence assumes that you place any <link> element (which invokes the external style sheet)
before the <style> element (which defines the internal style sheet). This is the way most people like to arrange
the content in their <head> section, but it’s not mandatory. If you flip the order around and put the <style>
element before the <link> element, the styles in the external style sheet will override the styles in the inline
style sheet.

Based on this sequence, you might think that you can use this cascading behavior
to your advantage by defining general rules in external style sheets and then over-
riding them with the occasional exception using inline styles. In fact you can, but
there’s a much better option. Rather than format individual elements with inline style
properties, you can use class selectors to target and then format those elements,
as you’ll see shortly (page 84).

 NOTE  The “cascading” in Cascading Style Sheets is a little misleading, because in most cases you won’t
use more than one type of style sheet (for the simple reason that it can quickly get confusing). Most web artistes
favor external style sheets primarily and exclusively.

Inheritance
Along with the idea of cascading styles, there’s another closely related concept—style
inheritance. To understand inheritance, you need to recall that in HTML documents,
one element can contain other elements. Remember the unordered list element
()? It contained list item elements (). Similarly, a <p> paragraph element
can contain character formatting elements like and <i>, and the <body> element
contains all the other elements that make up your web page.

CHAPteR 3: BUILDING A STYLE SHEET 83

WHEN STYLES
OVERLAP

Thanks to inheritance, when you apply formatting instructions to an element that
contains other elements, that formatting rule applies to every one of those other
elements. For example, if you set a <body> element to the font Verdana (as in the
resumé style sheet shown earlier), every element inside that <body> element, includ-
ing all the headings, paragraphs, lists, and so on, gets the Verdana font.

 NOTE  Elements inherit most, but not all, style properties. For example, elements never inherit margin set-
tings from another element. Look for the “Can Be Inherited?” column in each table in this chapter to see whether
CSS passes a property setting from one element to another through inheritance.

However, there’s a trick. Sometimes, formatting rules may overlap. In such a case,
the most specific rule—that is, the one hierarchically closest to the element—wins.
For example, if you specify settings for an <h1> element, those settings will over-
ride the settings you specified for the <body> element for all level-1 headings. Or
consider this style sheet:

body {
 color: black;
 text-align: center;
}
ul {
 color: fuschia;
 font-style: italic;
}
li {
 color: red;
 font-weight: bold;
}

These rules overlap. In a typical document (see Figure 3-4), you put an (list
item) inside a list element like , which in turn exists inside the <body> element.
In this case, the text for each item in the list will be red, because the rule over-
rides the and <body> rules that kick in first.

Crafty style sheet designers can use this behavior to their advantage. For example,
you might apply a font to the <body> element so that everything in your web
page—headings, paragraph text, lists, and so on—has the same font. Then you
can judiciously override this font for a few elements by applying element-specific
formatting rules.

 NOTE  Although you probably won’t see cascading styles in action very often, you’ll almost certainly use
style inheritance.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn84

CLASS
SELECTORS

FiGURE 3-4
When rules collide, the most specific element
wins. In this example, your browser displays the
list items in red because the rule for the
element overrides the inherited properties from
the and <body> elements (top). However,
elements retain the style of an inherited rule
if it doesn’t conflict with another rule. In this
example, that means the element gets
italics and center alignment through inheritance
(bottom).

Class Selectors
So far, you’ve seen style sheet rules that affect every occurrence of a specific HTML
element. The selectors in these universal styles are known as type selectors.

Type selectors are powerful, but not that flexible. Sometimes you need a way to
modify just one section of your HTML document or even just a single element. You
could use inline styles, adding the formatting to the actual element tag itself, but
that’s messy. Fortunately, style sheets provide a practical solution to this problem:
class selectors.

Class selectors are one of the best style sheet features around. First, you single out
specific elements in your page by giving them the same class name. Then, you tell
your browser to apply formatting to all the elements that carry that class name.

CHAPteR 3: BUILDING A STYLE SHEET 85

CLASS
SELECTORS

To try this out, begin by choosing a descriptive class name. You can pick whatever
name you want, as long as you stick to letters, digits, and dashes and make sure
that the first character is always a letter. The following example uses the class name
FancyTitle.

Once you choose a class name, you need to define a rule for the class in your style
sheet. This rule looks like any other, except that instead of using a tag name as the
selector, you use the class name, preceded by a period (.):

.FancyTitle {
 color: red;
 font-weight: bolder;
}

You can put this rule in an external style sheet (like the resume.css file you created
in the previous example) or directly inside an HTML file, as an internal style sheet.

So how does a browser know when to apply a rule that uses a class selector? Unlike
type selectors, browsers never apply class rules automatically. Instead, you have to
add the class name to the elements in your HTML markup that you want to format
using the class attribute.

For example, if you want to apply the FancyTitle class to a heading in your HTML
document, you would change its start tag like this:

<h3 class="FancyTitle">Learning to Embroider</p>

The class attribute makes the magic happen. When a browser discovers the instruc-
tion shown above, it looks for a class selector with the name FancyTitle, and then it
applies the FancyTitle formatting to the heading, giving it red, bold lettering.

As long as the class name in the element matches a class name in the style sheet,
the browser applies the formatting. If the browser can’t find a style associated with
that class name, nothing happens. So if you mistype a class name (say, writing
“FancyTitel” instead of “FancyTitle”), you won’t receive an error message, but your
heading won’t get the bold red formatting you expect, either.

 NOTE  Class rules work in addition to any other rules. For example, if you create a rule for the <p> element,
that rule applies to all paragraphs, including those that are part of a specialized class. However, if the class rule
conflicts with any other rules, the class rule wins.

You can also create a rule that has a class name and specifies a type of element.
For example, if you know that you want to use the FancyTitle class with the <h3>
element only, you’d write the style rule like this:

h3.FancyTitle {
 color: red;
 font-weight: bolder;
}

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn86

CLASS
SELECTORS

Now, the FancyTitle formatting springs into action only if two conditions are met.
First, you need to call it into action by adding the class attribute to an element (as
you did before). Second, the element you use must be an <h3> heading. Apply the
class somewhere else, and nothing will happen.

Most web designers use both element-specific class rules and more generic class
rules (in other words, those that don’t specify an element). Although you could stick
with generic rules exclusively, if you know that you’ll use a certain set of formatting
options with only a specific type of element, it’s good to clearly indicate that with
an element-specific class rule. That way, you won’t forget the purpose of the rule
when you edit your style sheet later on.

id Selectors
Class selectors have a closely related cousin called id selectors. Like a class selector,
an id selector lets you format just the elements you choose. And like a class selector,
an id selector lets you assign it a descriptive name. But instead of using a period in
front of the name, you use a number-sign character (#), as shown here:

#Menu {
 border-width: 2px;
 border-style: solid;
}

Right now, you can apply this Menu rule to any element. However, you can also limit
your id selector to a specific type of element by putting the element name before
the number sign, like this:

div#Menu {
 ...
}

Now you can apply the id selector named Menu only to <div> elements.

As with class rules, browsers don’t apply id rules unless you specifically tell them
to in your HTML. Instead of switching on the rules with a class attribute, however,
you do so with the id attribute. For example, here’s a <div> element that uses the
Menu style:

<div id="Menu">...</div>

At this point, you’re probably wondering why you would use an id selector—after
all, it seems almost exactly the same as a class selector. But there’s one difference:
You can assign a given id to just one element in a page. In the current example, that
means you can give the Menu style to just one <div>. This restriction doesn’t apply
to class names, which you can reuse as many times as you like.

The id selector is a good choice if you want to format a single, never-repeated element
on your page. The advantage here is that the id selector clearly indicates the special
importance of that element. For example, if a page has an id selector named Menu
or NavigationBar, the web designer automatically knows that the page features only

CHAPteR 3: BUILDING A STYLE SHEET 87

COLORS
one menu or navigation bar. Of course, you never need to use an id selector. Some
web designers use class selectors for everything, whether the section is unique or
not. It’s really just a matter of preference.

You’ve now learned the basics of building styles and calling them into action. Your
next step is to explore the huge family of style properties that you can use to change
the way things look. You’ll start by learning how to add color to your pages.

Colors
Every web page starts out in stark black and white. A little color in your page—for
example, a subtly shaded background, or dark red lettering that highlights important
words—can add a touch of class. You want that. But too much will make your site
look like a sunburned flamingo, so be judicious.

It isn’t difficult to inject some color into your web pages. Style sheet rules have two
color-related properties, listed in Table 3-1. You’ll learn about the values you can
use when setting colors (color names, color codes, and RGB values) in the follow-
ing sections.

TABLE 3-1 Color properties.

PROPERTY DESCRIPTION COMMON VALUES CAN BE INHERITED?

color The color of the text. This
is a handy way to make
headings or emphasized text
stand out.

A color name, color code, or
RGB color value.

Yes

background-color The color behind the text for
just that element.

A color name, color code,
or RGB color value. You
can also use the value
transparent, which
lets the background of the
containing element (or page)
show through.

No*

* The background-color style property doesn’t use inheritance (page 82). If you give the <body> section
of a page a blue background and you then place a heading on the page, the heading doesn’t inherit the
blue background. However, there’s a trick. If you don’t explicitly assign a background color to an element,
its color is transparent. This means the color of the containing element shows through, which has the
same effect as inheritance. So the heading in this example still ends up with the appearance of a blue
background.

The color property is easy to understand; it’s the color of your text. The background-
color property is a little more unusual.

If you apply a background color to the <body> element of a web page, the whole
page adopts that color, as you might expect. However, if you specify a background
color for an individual element, like a heading, the results are a bit stranger. That’s
because CSS treats each element as though it were enclosed in an invisible rectangle.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn88

COLORS
When you apply a background color to an element, CSS applies that color to just
that rectangle.

For example, the following style sheet applies different background colors to a page,
its headings, its paragraphs, and any bold text:

body {
 background-color: yellow;
}

h1 {
 color: white;
 background-color: blue;
}
p {
 background-color: lime;
}
b {
 background-color: white;
}

Figure 3-5 shows the result.

FiGURE 3-5
If you apply a background color
to an element like <h1>, the CSS
rule colors just that line. If you use
a background color on an inline
element like or ,
it affects only the words in that
element. Both results look odd—it’s
a little like someone went wild with
a bunch of highlighters. A better
choice is to apply a background
color to the whole page by
specifying the color in the <body>
element, or to tint just a large
box-like portion of the page (like a
sidebar), using a container element
like <div>.

Specifying a Color
The trick to using color is finding the code that indicates the exact shade of electric
blue you love. You can go about this several ways. First, you can use a plain English
name (“lime”), as you’ve seen in the examples so far. This system limits you to a
relatively small set of 140 colors, including the original standards: aqua, black, blue,
fuchsia, gray, green, lime, maroon, navy, olive, purple, red, silver, teal, white, and
yellow). For the full list, see www.cssportal.com/css3-color-names.

www.cssportal.com/css3-color-names

CHAPteR 3: BUILDING A STYLE SHEET 89

COLORS NOTE  A set of 140 colors might seem like a lot, but it’s actually pretty limited. For example, in typical design
work you might start with two or three basic colors, and then flesh out a whole color palette with similar colors
that have slightly different shades or intensities. (The color-picking tools on page 90 can help with this job.) But
if you’re stuck with a grab-bag of 140 colors, you won’t have the variety you need.

Today’s computers can display millions of colors. And even though CSS doesn’t
name these colors, you can add them to your web pages using two different color-
specifying options: hexadecimal color values and RGB (or red-green-blue) values.

HEXADECIMAL COLOR VALUES
With hexadecimal color values, you use a strange-looking code that starts with a
number sign (#). Technically, hexadecimal color values use three numbers to repre-
sent the amounts of red, green, and blue that go into creating a color. (You can create
any color by combining various amounts of these three primary colors.) However,
the hexadecimal color value combines these three ingredients into an arcane code
that’s perfectly understandable to computers but utterly baroque to normal people.

You’ll find hexadecimal color notation kicking around the Web a lot, because it’s the
original format for specifying colors under HTML. However, it’s about as intuitive as
reading the 0s and 1s that power your computer.

Here’s an example:

body {
 background-color: #E0E0E0
}

Even a computer nerd can’t tell that #E0E0E0 applies a light-gray background. To figure
out the code for your favorite color, check out the section “Finding the Right Color” below.

RGB COLOR VALUES
The other approach to specifying color is RGB values. According to this more logi-
cal approach, you simply specify how much red, green, and blue you want to “mix
in” to create your final color. Each component takes a number from 0 to 255. For
example, a color composed of red, green, and blue, each set to 255, appears white;
on the other hand, all those values set to 0 generates black.

Here’s an example of a nice lime color:

body {
 background-color: rgb(177,255,20)
}

Finding the Right Color
Style sheets can handle absolutely any color you can imagine. But how do you find
the color code for the perfect shade of sunset orange (or dead salmon) you need?

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn90

COLORS
Sadly, there’s no way this black-and-white book can show you your choices. But there
are a lot of excellent color-picking programs online. For example, try www.colorpicker.
com, where all you need to do is drag your mouse around a color gradient to preview
the color you want (and to see its hexadecimal code). Or try www.colorschemer.
com/online.html, which groups complementary colors together, which is especially
helpful for creating websites that look professionally designed. Some web design
tools, like Dreamweaver, make life even easier with built-in color-picking (page 174).

 NOTE  The RGB system lets you pick any of 16.7 million colors, which means that no color-picking website
will show you every single possible RGB color code (if they do, make sure you don’t hit the Print button; even
with 10 colors per line, you’d wind up with thousands of pages). Instead, most sites limit you to a representative
sampling of colors. This works, because many colors are so similar they’re nearly impossible to distinguish.

The RGB color standard is also alive and well in many computer programs. For ex-
ample, if you see a color you love in a professional graphics program like Photoshop
(or even in a not-so-professional graphics program like Windows Paint), odds are
there’s a way to get the red, green, and blue values for that color. This gives you a
great way to match the text in your web page with a color in a picture. Now that’s
a trick that will please even the strictest interior designer.

DESIGN TIME

Making Color Look Good
Nothing beats black text on a white background for creating
crisp, clean, easy-to-read web pages with real presence. This
black-and-white combination also works best for pages that
have a lot of colorful pictures. It’s no accident that almost
every top website, from news sites (www.cnn.com) to search
engines (www.google.com) to ecommerce shops (www.
amazon.com) and auction houses (www.ebay.com), use the
winning combination of black on white.

But what if you’re just too colorful a person to leave your web
page in plain black and white? The best advice is to follow the
golden rule of color: Use restraint. Unless you’re creating a six-
ties revival site or a Led Zeppelin tribute page, you don’t want
your pages to run wild with color. Here are some ways to inject
a splash of color without letting it take over your web page:

• Go monochrome. That means use black, white, and
one other dark color. Use the new color to emphasize
an important design element, like subheadings in an
article. For example, the Time magazine website uses its
trademark red for some links and text.

• Use lightly shaded backgrounds. Sometimes, a faint wash
of color in the background is all you need to perk up a site.

For example, a gentle tan or gold can suggest elegance or
sophistication (see the Harvard library site at http://lib.
harvard.edu). Or light pinks and yellows can get shoppers
ready to buy sleepwear and other feminine accouterments
at Victoria’s Secret (www.victoriassecret.com).

• Use color in a box. Web designers frequently use shaded
boxes to highlight important areas of a web page (check
out the Wikipedia page at http://en.wikipedia.org). You’ll
learn how to create boxes later in this chapter.

• Be careful about using white text. White text on a black
or dark blue background can be striking—and strikingly
hard to read. The rule of thumb is to avoid it unless
you’re trying to make your website seem futuristic,
alternative, or gloomy. (Even if you do fall into one of
these categories, you might get a stronger effect with a
white background and a few well-chosen graphics with
splashy electric colors.)

www.colorpicker.com
www.colorpicker.com
www.colorschemer.com/online.html
www.colorschemer.com/online.html
www.cnn.com
www.google.com
www.amazon.com
www.amazon.com
www.ebay.com
http://lib.harvard.edu
http://lib.harvard.edu
www.victoriassecret.com
http://en.wikipedia.org

CHAPteR 3: BUILDING A STYLE SHEET 91

TEXT
ALIGNMENT

AND SPACINGText Alignment and Spacing
At first, text alignment may seem like a boring subject. You can be forgiven for
thinking that the way lines and paragraphs meet the borders of a page is a micro-
scopically small detail. But the truth is that the flow of text shapes the feeling of your
pages—and sets the first impression for new visitors. For example, crisp, crowded
text might suggest a news magazine or a professional journal. By comparison,
text with room to breathe may feel more casual, relaxed, or modern. Either way,
choosing your text alignment and spacing is one of the ways that you establish the
personality of your site.

CSS includes a great many properties that let you control how text appears on a
web page. If you’ve ever wondered how to indent paragraphs, space out lines, or
center a title, these are the tools you need.

Table 3-2 details your alignment options.

TABLE 3-2 Alignment and spacing properties.

PROPERTY DESCRIPTION COMMON VALUES CAN BE INHERITED?

text-align Lines up text on one or both
edges of a page.

left, right, center, justify Yes

text-indent Indents the first line of text
(typically in a paragraph).

A pixel value (indicating
the amount to indent) or a
percentage of the width of the
containing element.

Yes

margin Sets the spacing around the
outside of a block element
(page 30). To change the
margin on just one edge, use
the similar properties margin-
bottom, margin-left, margin-
right, and margin-top.

A pixel value or a percentage
indicating the amount of space
to add around the element.

No

padding Sets the spacing around the
inside of a block element. Has
the same effect as margin,
unless you have an element
with a border or a background
color.

A pixel value or a percentage
indicating the amount of space
to add around the element.

No

wordspacing Sets the space between words. A pixel value or a percentage. Yes

letterspacing Sets the space between letters. A pixel value or a percentage. Yes

line-height Sets the vertical space
between lines.

A pixel value or a percentage.
You can also use a multiple
(for example, use 2 for double
spacing).

Yes

white-space Tells the browser how to deal
with spaces in your text.

normal, pre, nowrap Yes

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn92

TEXT
ALIGNMENT

AND SPACING
For example, if you want to create a page with indented paragraphs (like those in
a novel or a newspaper), use this style sheet rule:

p {
 text-indent: 20px
}

In the following sections, you’ll see examples that use the alignment and margin
properties.

Alignment
Ordinarily, all the text on a web page lines up on the left side of the browser win-
dow. Using the text-align property, you can center that text, line it up on the right
edge of the page, or justify it (that is, line it up along both edges). Figure 3-6 shows
your options.

FiGURE 3-6
This page shows common types
of text alignment.

The most interesting alignment choice is full justification, which formats text so
that it appears flush with both the left and right margins of a page, like the text in
this book. You specify full justification with the justify setting. Originally, printers
preferred full justification because it crams more words onto each page, reducing
a book’s page count and, therefore, its printing cost. These days, it’s a way of life.
Many people feel that text with full justification looks neater and cleaner than text
with a ragged edge, even though tests show plain, unjustified text is easier to read.

Justification doesn’t work as well in the web world as it does in print. A key problem
is a lack of rules that split long words into syllables, hyphenates them, and extends

CHAPteR 3: BUILDING A STYLE SHEET 93

TEXT
ALIGNMENT

AND SPACING
them over two lines. Browsers use a relatively simplistic method to justify text. Es-
sentially, they add words to a line one at a time, until no more words can fit, at which
point they add extra spacing between the words to pad the line to its full length. By
comparison, the best page layout systems for print analyze an entire paragraph and
find the justification strategy that best satisfies every line. In problematic cases, a
skilled typesetter may need to step in and adjust line breaks manually. Compared to
this approach, web browsers are irredeemably primitive, as you can see in Figure 3-7.

FiGURE 3-7
If you decide to use full justification on a web page, make
sure you use fairly wide paragraphs. Otherwise, you’ll
quickly wind up with gaps and rivers of white space. Few
websites use justification.

 NOTE  Right now, all the text flows through the middle of your page. Later, in Chapter 8, you’ll learn to
divide your content into multiple columns and use styles to create more complex layouts.

Spacing
To adjust the spacing around any element, use the margin property. For example,
here’s a rule that adds 8 pixels of space to all sides of a paragraph:

p {
 margin: 8px;
}

This particular rule doesn’t have much effect, because web browsers already apply 8
pixels of margin around block elements on all sides to ensure a basic bit of breathing
space. If you want to create dense pages of information, however, you might find
this space allowance a bit too generous. Therefore, many website developers look
for ways to slim down the margins a bit.

One common technique is to close the gap between headings and the text that fol-
lows them. Here’s an example that puts this tightening into action using inline styles:

<h2 style="margin-bottom: 0px">This heading has no bottom margin</h2>
<p style="margin-top: 0px">This paragraph has no top margin.</p>

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn94

TEXT
ALIGNMENT

AND SPACING
You’ll notice that this style rule uses the more targeted margin-top and margin-
bottom properties to home in on just one edge at a time. You can use margin-left
and margin-right to set side margins. Figure 3-8 compares some different margin
choices.

FiGURE 3-8
When you change the spacing between
page elements like headers and paragraphs,
consider both the element above and the
element below. For example, if you stack
two paragraphs on top of each other, two
factors come into play—the bottom margin
of the top paragraph and the top margin
of the bottom paragraph. Browsers use the
larger of these two values. That means there’s
no point in shrinking the top margin of the
bottom element unless you also shrink the
bottom margin of the top element. On the
other hand, if you want more space, you need
to increase the margin of only one of the two
elements.

Many CSS properties support a shorthand syntax that can compress several prop-
erties into one setting. For example, instead of setting your four margin properties
separately (margin-top, margin-bottom, margin-left, and margin-right), you can
set them at once with a rule like this:

p {
 margin: 5px 10px 15px 20px;
}

This sets the top margin to 5 pixels, the right margin to 10 pixels, the bottom margin
to 15 pixels, and the left margin to 20 pixels. The key is to make sure you separate
each number by a space—don’t add commas or extra semicolons.

If you’re daring, you can even use negative margins. Taken to its extreme, this can
cause two elements to overlap. However, a better approach for overlapping elements
is absolute positioning, a style treatment you’ll pick up on page 235.

 NOTE  Unlike most other CSS properties, elements never inherit margin settings. That means that if you
change the margins of one element, other elements inside that element aren’t affected.

CHAPteR 3: BUILDING A STYLE SHEET 95

TEXT
ALIGNMENT

AND SPACING
White Space
As you learned in earlier chapters, HTML has a quirky way of dealing with spaces.
If you put several blank spaces in a row, HTML treats the first one as a true space
character but ignores the others. That makes it easy for you to write clear HTML
markup, because you can add spaces wherever you like without worrying about it
affecting your web page.

In the previous chapter, you learned two ways to change how browsers deal with
spaces: the character entity and the <pre> element. You can replace both of
these workarounds with the white-space style sheet property.

First, consider the character entity. It serves two purposes—it lets you insert
spaces that a browser won’t ignore, and it prevents a browser from wrapping a line
in the middle of a company name or some other important term. Here’s an example
of the latter technique:

<p>You can trust the discretion of
Hush Hush Private Plumbers</p>

This works (the page displays the text “Hush Hush Private Plumbers” and doesn’t
wrap the company name to a second line), but it makes the markup hard to read.
Here’s the style-sheet equivalent with the white-space property set to nowrap:

<p>You can trust the discretion of
Hush Hush Private Plumbers</p>

To make this work, your HTML needs to wrap the company name in a container that
applies the formatting. The element (page 48) is a good choice, because it
doesn’t apply any formatting except where you explicitly add it.

Now consider the <pre> element, which tells a browser to pay attention to every space
in the content inside it. On page 45, you saw how you could use <pre> to apply the
correct spacing to an e. e. cummings poem. You can get the same effect by setting
the white-space property of an element (say, a <div>, , or <p> element) to pre:

<p style="white-space: pre">Your browser won't ignore these
 s p a c e s .</p>

When you use the pre value for the white-space property, the browser displays
all spaces, tabs, and hard returns (the line breaks you create when you press the
Enter key). But unlike the <pre> element, the pre value of the white-space property
doesn’t change the text font. If you want to use a fixed-width font like Courier to
space your letters and spaces proportionally, you need to add a font-family prop-
erty (see the next section).

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn96

BASIC FONTS Basic Fonts
So far, your pages have been limited to the standard but somewhat old-fashioned
Times font. Most sites use a different typeface, and many use more than one—for
example, they might use one font for headings and another for the rest of their text.

Using the CSS font properties, you can choose a font family, font weight (its boldness
setting), and font size (see Table 3-3). Be prepared, however, for a bit of web-style
uncertainty, as this is one case where life isn’t as easy as it seems.

TABLE 3-3 Font properties.

PROPERTY DESCRIPTION COMMON VALUES CAN BE INHERITED?

font-family A list of font names. The
browser scans through the
list until it finds a font that’s
on your visitor’s computer.
If it doesn’t find a supported
font, it uses the standard font
the browser always uses.

A font name (like Verdana, Times, or
Arial) or a generic font-family name:
serif, sans-serif, monospace.

Yes

font-size Sets the size of the font. A specific size, or one of these
values: xx-small, x-small, small,
medium, large, x-large, xx-large,
smaller, larger.

Yes

font-weight Sets the weight of the font
(how bold it appears).

normal, bold, bolder, lighter Yes

font-style Lets you apply italic
formatting.

normal, italic Yes

font-variant Lets you apply small caps,
which turns lowercase letters
into smaller capitals (like this).

normal, small-caps Yes

text-decoration Applies a few miscellaneous
text changes, like underlining
and strikeout. Technically
speaking, these aren’t part of
the font (the browser adds
these).

none, underline, overline,
line-through

Yes

text-transform Transforms text so that it’s
in all capital or all lowercase
letters.

none, uppercase, lowercase Yes

Finding the Right Font
Although most CSS font properties are straightforward, the font-family property
has a nasty surprise—it doesn’t work the way you probably expect. The problem you
face is that no two computers have the same set of fonts installed, so the fonts you
want to use for your web page won’t necessarily exist on your visitors’ machines.
And if your visitor doesn’t have a font you specify, his browser simply ignores your
font-family setting and goes back to using ordinary Times text.

CHAPteR 3: BUILDING A STYLE SHEET 97

BASIC FONTS
You can solve this problem in two ways:

• Use a standard, web-safe font. These are guaranteed to work on almost every
computer and web-connected device there is. The tradeoff is that you’re limited
to a very small collection of typefaces.

• Use a downloadable font (also known as a web font). This is a newer option
that was standardized with CSS3, though most browsers already supported it.
It’s a bit more complicated to set up (and you need to use a font that explicitly
lets you share it with your guests). The great advantage is that you’ll have
thousands of distinctive typefaces to choose from.

In this chapter, you’ll start with the easiest and least-risky approach, web-safe fonts.
Then you’ll delve into web typefaces using Google Fonts.

So what are the standard fonts that a web page can use? Unfortunately, web experts
aren’t always in consensus. If you want to be conservative, you won’t go wrong with
any of these fonts:

• Times

• Arial

• Helvetica

• Courier

Of course, all of them are insanely boring. If you want to take more risk, you can use
one of the following fonts, found on almost all Windows and Mac computers (but
not necessarily on other PCs running other operating systems, like Unix):

• Verdana

• Georgia

• Tahoma

• Comic Sans MS

• Arial Black

• Impact

As you’ll see in the following section, you can create a whole list of font preferences,
so if one font (like Georgia) isn’t available, the visitor’s browser goes to the next
choice in the list (like Times). This gives you an ironclad safeguard, and it’s the ap-
proach most websites use.

To compare these fonts, see Figure 3-9.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn98

BASIC FONTS

FiGURE 3-9
Have you spotted these fonts at large on
the Web?

Verdana, Georgia, and Tahoma can all help give your web pages a more up-to-date
look. However, the characters in Verdana and Tahoma start off a bit large, so you
usually need to ratchet them down a notch using the font-size property (page 100).

For a good discussion of fonts, the platforms that reliably support them, and the
pros and cons of each font family (some fonts look nice onscreen, for example, but
lousy when you print them out) see http://tinyurl.com/cr9oyx and http://tinyurl.
com/325f9qs.

Specifying a Font
You use the font-family property to assign a font. Here’s an example that changes
the font of an entire page:

body {
 font-family: Arial;
}

Arial is a sans-serif font found on just about every modern computer, including those
running Windows, Mac OS, Unix, and Linux operating systems. (See Figure 3-10 for
more about the difference between serif and sans-serif fonts.)

 NOTE  When you set the font of the <body> element, it affects your whole page. That’s because every
other HTML element on the page is inside the <body> element, and so those other elements inherit the font-
family setting from the <body> element (as described on page 82). Of course, you can change the font of a
specific element by creating an additional style sheet rule that targets its font-family property.

http://tinyurl.com/cr9oyx
http://tinyurl.com/325f9qs
http://tinyurl.com/325f9qs

CHAPteR 3: BUILDING A STYLE SHEET 99

BASIC FONTS

FiGURE 3-10
Serif fonts use adornments, or
serifs, that make them easier
to read in print. For example,
if you look closely at the letter
“T” that’s at the beginning of
the first line in this web page,
you’ll see tiny curlicues on the
top-left, top-right, and bottom
corners.

On the other hand, sans-serif
fonts have a spare, streamlined
look. They can make pages
seem less bookish, less formal,
more modern, and colder.
Examples include the Arial font
that appears in the second line
of this web page, and the font
that’s used in the paragraph
you’re reading right now.

The font you specify with font-family is just a recommendation. If a computer
doesn’t have the font you request, the browser reverts to its standard font (Times).
So instead of specifying a single font and blindly hoping that it’s available to a
browser, you should create a list of font preferences for your pages. That way, a
browser tries to match your first choice and, if it fails, your second choice, and so
on. At the end of this list, you should specify a generic font-family name. Every
computer supports three generic fonts, named serif, sans-serif, and monospace.

Here’s the modified style rule:

body {
 font-family: Arial, sans-serif;
}

At this point, you might be tempted to get a little creative by adding support for a
less common sans-serif font. Here’s an example:

body {
 font-family: Eras, Arial, sans-serif;
}

If Eras is relatively similar to Arial, this technique might not be a problem. But if the
fonts are significantly different, it’s a bad idea.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn100

BASIC FONTS
The first problem is that by using a nonstandard font, you’re creating a page whose
appearance may vary dramatically depending on the fonts installed on your visi-
tor’s computer. Whenever pages vary, it becomes more difficult to tweak them to
perfection because you don’t know exactly how they’ll appear elsewhere. Different
fonts take up different amounts of space, and if text grows or shrinks, the layout of
other elements (like pictures) changes, too. And if you’re really unlucky, a visitor’s
computer might have a font with the same name that looks completely different.
Worst-case scenario: your lovingly crafted content turns into illegible text.

 NOTE  To avoid this problem, stick to the standard fonts, or—if you really must have fancier lettering—use
the web fonts discussed on page 103.

Lastly, if a font name has spaces or special characters, it’s a good idea to wrap the
whole thing in apostrophes or quotation marks so the browser reads the font name
as a cohesive whole, rather than trying to interpret the spaces as something else.
That means you should write:

body {
 font-family: "Comic Sans MS";
}

rather than:

body {
 font-family: Comic Sans MS;
}

Most browsers won’t care, but this practice helps avoid potential problems.

Font Sizes
Once you sort out the thorny issue of choosing a font, you need to choose an ap-
propriate font size. Here’s where things get messy. Although the font-size property
seems straightforward, you can set it using a dizzying range of units of measure, and
these units don’t behave the same when you use them in a densely nested page of
elements. Some older browsers don’t support the newer units, and even seasoned
web designers can trip over the finer points.

In the following sections, you’ll consider the simplest, most straightforward ways
to size your text. You’ll use three approaches that work on every browser and are
almost impossible to mess up.

KEYWORD SIZING
The simplest way to specify the size of your text is to use one of the size values listed
in Table 3-3 (page 96). For example, to create a really big heading and ridiculously
small text, you can use these two rules:

CHAPteR 3: BUILDING A STYLE SHEET 101

BASIC FONTS
body {
 font-size: xx-small;
}
h1 {
 font-size: xx-large;
}

These size keywords are often called absolute sizes, because they create text that’s a
precise size. Exactly what size, you ask? Well, that’s where it gets a bit complicated.
The basic rule of thumb is that the font size medium corresponds to a browser’s
standard text size, which is 12 points, and what it uses if a website doesn’t specify a
text size. Every time you go up a level, you add about 20 percent in size. (For math
geeks, that means that every time you go down a level, you lose about 17 percent.)

The standard font size for most browsers is 12 points (although text at this size
typically appears smaller on Macs than on Windows PCs). That means large text
measures approximately 15 points, x-large text is 18 points, and xx-large text is
27 points.

Figure 3-11 shows the basic sizes you can choose from.

FiGURE 3-11
HTML offers seven standard text sizes, ranging
from xx-large to xx-small. You can dictate font
size by specifying a pixel measurement, too (see
page 102).

 NOTE  When using size keywords, make sure your web page includes a doctype (page 18). If it doesn’t,
Internet Explorer renders your page in the dreaded “quirks” mode, which makes your text one size larger than
it should be. As a result, your page won’t look the same in Internet Explorer as it does in other browsers, like
Firefox.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn102

BASIC FONTS
RELATIVE SIZING

Another approach for setting font size is to use one of two relative size values—
larger or smaller. This takes the current text size of an element and bumps it up
or down a bit.

The easiest way to understand how this works is to consider the following style
sheet, which has two rules:

body {
 font-size: xx-small;
}
b {
 font-size: larger;
}

The first rule applies an absolute xx-small size to the whole page. If your page
includes a boldfaced element (), the text inside that element inherits the xx-
small size, and then the second style rule steps the text up one notch, to x-small.

Now consider what happens if you edit the <body> style in the example above to
use a larger font, like this:

body {
 font-size: x-small;
}
b {
 font-size: larger;
}

Now all bold text will be one level up from x-small, which is small.

Relative sizes are a little trickier to get used to than absolute sizes. You might use
them to write more flexible style rules. For example, you could use a relative size for
bold text to make sure bold text is always a little bit bigger than the text around it. If
you were to use an absolute size instead, the bold text would still appear larger than
the small-sized paragraph text, but it wouldn’t stand out in a large-sized heading.

 TIP  When you use absolute or relative sizes, you create flexible pages. If a visitor ratchets up the text using
his browser’s preferences, the browser resizes all your other fonts proportionately.

PIXEL SIZING
For precise control over the size of your text, specify it using a pixel size. Pixel sizes
can range wildly, with 12 or 14 pixels being about normal for body text. To specify
a pixel size, use a number immediately followed by the letters px, as shown here:

body {
 font-size: 11px;
}

CHAPteR 3: BUILDING A STYLE SHEET 103

WEB FONTS
WITH GOOGLE

h1 {
 font-size: 24px;
}

 NOTE  Don’t put a space between the number and the letters “px.” If you do, your rule may work in Internet
Explorer, but it will thoroughly confuse other browsers.

As always, you need to test, refine, and retest your font choice to get the sizes right.
Some fonts look bigger than others, so you should specify smaller sizes for them.
Other fonts work well at larger sizes but become less legible as you scale them down.

 NOTE  In the not-so-distant past, specifying a type size in pixels was discouraged. It caused problems with
mobile browsers (the ones that run on smartphones and tablets), by locking the text in at a vanishingly small
size. They also made it impossible (in some web browsers) for visually impaired people to scale up web pages
and make the text larger and easier to read. But today, most of these problems have been solved. Modern mobile
browsers deal with pixel sizes painlessly, and every web browser offers a zooming feature that magnifies the
entire page, including pixel-sized text.

Web Fonts with Google
For most of the Web’s history, page designers had to live with the limited capabilities
of the font-family property. They learned to get the most out of the small set of
standard fonts. But then CSS3 introduced a feature called @font-face, which pro-
vides a way for browsers to download the fonts for a web page on the fly (placing
them in its temporary cache of pages and pictures). As a result, designers can use
virtually any computer typeface.

At first glance, @font-face seems like the perfect solution to the font-family woes
web designers face. Unfortunately, there are two significant challenges:

• Font formats. For each typeface you want to use, you need to have a normal,
italic, and bold variation (so you can use bold and italic styling wherever you
want). Then you need to have each of these variations in several formats,
because different browsers require different formats. In the end, you need to
juggle more than a dozen font files on your website, along with some fairly
complex style sheet rules.

• Font licensing. Many fonts require a licensing fee. Even if you learn how to
take a font from your computer and convert it into the right web font formats,
you can’t just slap it on your website without breaking a few dozen copyright
laws. Instead, you’re better off looking for a free (or cheap) web-optimized font.

You can solve both of these problems on your own, the do-it-yourself way. If that’s
the approach you want to take, start with the detailed Six Revisions article at http://
tinyurl.com/font-face-guide, or try the comprehensive tutorial in HTML5: The Missing

http://tinyurl.com/font-face-guide
http://tinyurl.com/font-face-guide

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn104

WEB FONTS
WITH GOOGLE

Manual (O’Reilly). Both of these resources explain how to use the @font-face style
rule on your own. But if you don’t have an appetite for unnecessary extra challenges,
there’s an easier alternative: the Google Fonts service.

Google Fonts hosts free fonts that anyone can use. Their beauty lies in the fact that
guests don’t need to worry about font formats, because Google Fonts detects the
kind of browser they use and automatically sends them the right font file. You don’t
even need to write the complex @font-face style rule, because Google provides the
proper HTML, which you copy and paste into your style sheet.

To use a Google font in your pages, follow these steps:

1. Go to www.google.com/fonts.

Google displays a long list of available fonts (Figure 3-12).

FiGURE 3-12
Google Fonts offers a
relentlessly expanding
selection of typefaces.
When you look for a font,
you probably want to
tweak the font list’s sort-
ing and filtering options
(circled). For example, you
can sort alphabetically or
put the most popular fonts
first, and you can pare
the results to just serif,
sans-serif, or handwritten
(cursive) fonts.

www.google.com/fonts

CHAPteR 3: BUILDING A STYLE SHEET 105

WEB FONTS
WITH GOOGLE

2. At the top of the page, click a tab title (Word, Sentence, or Paragraph) to
choose how you preview fonts.

For example, if you’re hunting for a font to use in a heading, you’ll probably
choose Word or Sentence to take a closeup look at a single word or line of text.
But if you’re looking for a font to use in your body text, you’ll probably choose
Paragraph to study a whole paragraph of text at once. No matter what option you
choose, you can type in your own preview text and set an exact font size for it.

3. Set your search options.

If you have a specific font in mind, type its name into the search box. Otherwise,
you’ll need to scroll down, and that could take ages. To help you get what you
want more quickly, start by setting a sort order (to list fonts by, for example,
popularity, name, or date added) and perhaps some filtering options (to see
serif fonts only, for example). Figure 3-12 shows you where to find these options.

4. When you see a font you like, click the “Pop out” button (it looks like nested
squares).

Google opens an informative window that describes the font and shows each
of its characters.

5. If you like the font, click the “Quick-use” button to get the information you
need to use it.

Google gives you two bits of information. The first is the style sheet link, which
you must add to your web page (so a browser knows where to find the font).
The second is an example of a style sheet rule that uses the font.

6. Add the Google Fonts link to your page.

For example, if you picked the Metrophobic font, Google wants you to place
the following link in the <head> section of your page:

<link href="http://fonts.googleapis.com/css?family=Metrophobic"
rel="stylesheet">

 NOTE  Remember to put the link for the Google font style sheet before your other style sheet links. That
way, your other style sheets can use the Google font.

7. Use the font, by name, wherever you want.

For example, here’s how you could apply the newly registered Metrophobic
font to the resume.htm example you formatted in the tutorial earlier in this
chapter (page 76):

body {
 font-family: 'Metrophobic', arial, serif;
}

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn106

WEB FONTS
WITH GOOGLE

Figure 3-13 shows a revamped version of the resumé page with the Metrophobic
font.

FiGURE 3-13
The Metrophobic font gives Lee
Park’s resumé a different, unique
personality. Best of all, Google has
hundreds more fonts you can use.
And there’s no limit to how many
web fonts you can put in a page, so
why not use one for headings and
another for body text?

 NOTE  Before continuing on, take the time to give Google web fonts a spin. Pick a font (any font that
catches your fancy—it doesn’t need to be Metrophobic) and alter the resume.htm file to use it. If you run into
any trouble, double-check your work against the resume_WebFont.htm and resume_WebFont.css files, which
provide a working solution and are found in the sample content on the companion site at http://prosetech.com/
web.

http://prosetech.com/web
http://prosetech.com/web

CHAPteR 3: BUILDING A STYLE SHEET 107

BORDERS

POWER USERS’ CLINIC

Creating a Font Collection
These steps show you the fastest way to get the markup you
need for a font. But if you have a bunch of fonts you like, you
may want to create a font collection.

A font collection lets you tap all your favorite fonts using just a
single line of HTML in your pages. To create one, start by clicking
the “Add to Collection” button next to a font you like. As you
add fonts to your collection, each one appears in the fat blue
footer at the bottom of the page.

When you finish picking your fonts, click the Use button in the
footer. Google displays a page that looks like the “Quick-use”

page, except that it gives you a single style-sheet reference that
lets you use any of the fonts in your custom-picked collection.

Once you create a font collection, you might want to use two
buttons at the top right of the Google Fonts page. Click the
Bookmark button (which looks like a link in a chain) to create
a browser bookmark that takes you to your collection so you
can review and tweak it, and click the Download button (which
looks like a down-pointing arrow) to save copies of the fonts
to your computer, so you can install them and use them for
print work.

Borders
The last group of style sheet properties you’ll learn about in this chapter lets you
add borders to your page (Figure 3-14). Borders are a great way to separate small
pieces or entire blocks of content. You can add borders on one side of an element
or all around it. You’ll use borders throughout this book to separate content and
delineate headings, columns, footers, and the other ingredients on your page (such
as ads, pictures, or menu panels).

FiGURE 3-14
Left: The basic border styles look a
bit old-fashioned in today’s sleek
websites.

Right: Shrink these borders down
to 1 or 2 pixels, and they blend in
much better.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn108

BORDERS Table 3-4 lists the three key border properties.

TABLE 3-4 Border properties.

PROPERTY DESCRIPTION COMMON VALUES CAN BE INHERITED?

border-width Sets the thickness of the
border line. Usually, you want
to pare this down.

A pixel width. No

border-style Browsers offer eight built-in
styles for borders.

none, dotted, dashed, solid,
double, groove, ridge, inset,
outset

No

border-color The color of the border. A color name, hexadecimal
color code, or RGB value (see
page 88).

No

Basic Borders
The first choice you make when you create a border is the style you want it to have.
You can use a dashed or dotted line, a groove or a ridge, or just a normal thin hairline
(which often looks best). Here’s a style rule that creates a dashed border:

.noteBox {
 border-style: dashed;
}

You don’t want to apply the border to all <p> elements, because that would make for
one cluttered page. Instead, use a class rule. To try these border settings, remember
to apply the noteBox class to an element somewhere in your page, like this paragraph:

<p class="noteBox">There is a border around this text.</p>

The standard border width is almost always too clunky. To make a border look re-
spectable, reduce the width to 1 or 2 pixels, depending on the border style:

.noteBox {
 border-style: dashed;
 border-width: 2px;
}

You can also use properties like border-top-style and border-left-width to set
different styles, widths, and colors for every side of your element. Using many prop-
erties at once can occasionally create an odd effect, but you usually don’t need to
get this detailed. Instead, check out the border optimization tips in the next section.

Making Better Borders
In Figure 3-14, the actual borders look fine, but they’re too close to the text inside.
To remedy that, and to make your borders stand out, consider using the border
property in conjunction with three other properties:

CHAPteR 3: BUILDING A STYLE SHEET 109

BORDERS
• background-color (page 87) applies a background hue to your element. Used

in conjunction with a border, it makes your element look like a floating box,
much like a sidebar in a magazine.

• margin (page 93) lets you set the spacing between your border box and the rest
of your page. Increase the margin so that your boxes aren’t crowded up against
the rest of the page’s content or the sides of a browser window.

• padding works like the margin property, but it sets spacing inside your ele-
ment, between the edges of the box and the actual content within it. Increase
the padding so that there’s a good amount of space between a border and the
text in the box. Figure 3-15 shows the difference between margin and padding.

FiGURE 3-15
Usually, you can’t tell the difference between margins and padding,
because you can’t see the edges of the element. For example, a <p>
element displays a paragraph in an invisible box, but you won’t see
its sides. When you add a border, this changes. To get a good-looking
box, you need to increase both the margin and the padding. For added
effect, throw in a light background color (like the solid border box
shown here).

Here’s an example of a paragraph that looks like a shaded box:

.noteBox {
 background-color: #FDF5E6;
 margin: 20px;
 padding: 20px;
 border-style: solid;
 border-width: 1px;
}

The third box in Figure 3-15 shows how this combination of margin, padding, and
background-color properties changes an ordinary paragraph into a shaded box.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn110

BORDERS
Rounded Corners
In this book, we focus on style sheet properties that work everywhere, even in your
granddad’s browser. But every once in a while you can sneak in a newer setting
because older browsers simply ignore style sheet properties they don’t understand.

For example, consider the border-radius property, which rounds the corners of
bordered boxes. Officially, it’s a part of the relatively new CSS3 standard. If you’re set
up with Chrome, Firefox, or Safari, your browser almost certainly supports border-
radius, because these browsers update themselves frequently and automatically. But
if you come across a computer that’s languishing in the past with Internet Explorer
8 (for example, a corporate computer saddled with this ancient but still-popular
Windows XP operating system), it won’t understand border-radius. The person
using this computer will see ordinary square corners, which may not be as attractive
but certainly won’t hamper the overall visual effect or usability of your site.

When using the border radius property, you supply a size (usually in units of pixels).
Technically, this is the length of the radius of the circle used to draw the rounded
edge. However, you don’t see the entire circle—just enough to connect the vertical
and horizontal sides of the box. Set a bigger border-radius value, and you’ll get
a bigger curve and a more gently rounded corner. Finding the right size usually
requires a bit of trial and error.

.noteBox {
 background: yellow;
 border-radius: 25px;
}

You can also round each of the four corners differently, by supplying four distinct
values:

.noteBox {
 background: yellow;
 border-radius: 25px 50px 25px 85px;
}

But that’s not all—you can also stretch the circle into an ellipse, creating a curve
that stretches longer in one direction. To do this, you need to target each corner
separately (using properties like border-top-left-radius) and then supply two
numbers: one for the horizontal radius, the other for the vertical radius:

.noteBox {
 background: yellow;
 border-top-left-radius: 150px 30px;
 border-top-right-radius: 150px 30px;
}

Figure 3-16 shows some examples.

CHAPteR 3: BUILDING A STYLE SHEET 111

BORDERS

FiGURE 3-16
A clever application of the border-radius property can
create virtually any sort of curve in a border.

Using Borders with Tables
As you learned in Chapter 2 (page 57), a table starts out as a borderless collection
of cells. Using a style sheet, you can easily outfit your table with custom borders.
You simply need to apply the border properties to some combination of the <tr>,
<td>, <th>, and <table> elements.

For example, the following style sheet rules set a thin blue border around every cell
and a thick blue border around the table itself:

table {
 border-width: 3px;
 border-style: solid;
 border-color: blue;
}
td, th {
 border-width: 1px;
 border-style: solid;
 border-color: blue;
}

Figure 3-17 shows the result.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn112

BORDERS

FiGURE 3-17
Compare a standard HTML table, which has no border
(top), to the same table with a custom border added
using style rules (bottom).

CHAPteR 3: BUILDING A STYLE SHEET 113

BORDERS

DESIGN TIME

Good Design: The Art of Not Making Bad Sites
Now that you’ve completed this chapter, you know just enough
CSS to be dangerous. To prevent your site from winding up on
the dark side, you now need to master the critically important
art of Not Making Bad Websites. Here are a few general prin-
ciples that can help you out:

• Keep it simple (and don’t annoy your visitors). We all have
an impulse to play with color and texture. But unless your
formatting frills serve a purpose, just say no. You’ll find
that exercising restraint can make a few fancy touches
seem witty and sophisticated. Adding a lot of fancy
touches can make your site seem heady and delusional.
If you pare down the tricks, you’ll make sure that your
graphical glitz doesn’t overshadow your site’s content
and drive your visitors away in annoyance.

• Be consistent. No matter how logical you think your
website is, the majority of visitors probably won’t think

the same way. To cut down on the confusion, organize
your pages the same way, using similar headings, similar
graphics and links, a single navigation bar, and so on.
These touches help make visitors feel right at home. Best
of all, a style sheet can help you stay consistent and codify
the formatting rules you want to follow on all your pages.
(You’ll learn more about this way of thinking in Chapter 7.)

• Know your audience. Every type of site has its own
unwritten conventions. You don’t need to follow the same
design in an ecommerce store as you do on a promotional
page for an experimental electric harmonica band. To
help you decide what is and isn’t suitable, check out lots
of other sites that deal with the same sort of material
as yours.

115

CHAPTER

4

It’s safe to say that the creators of the Internet never imagined that it would look
the way it does today—thick with pictures, ads, videos, and animated graphics.
They designed a meeting place for leading academic minds; we ended up with

something closer to a Sri Lankan bazaar. But no one’s complaining, because the
Web would be an awfully drab place without pictures.

In this chapter, you’ll master the art of web graphics. You’ll learn how to add ordi-
nary images to a web page and to position them perfectly. You’ll also see how to
use styles to jazz up your pictures with borders, captions, and background effects.

Introducing the Element
Web page pictures don’t live in HTML files. Instead, you store them as separate
files, like banana.jpg and photo01.jpg. To display a picture in a web page, you use
the element.

For example, here’s an element that displays the picture banana.jpg:

When a browser reads the element above, it sends out a request for the banana.
jpg file. After retrieving it, the browser inserts the picture into the page in place of
the element. If the image file is large or the Internet connection is very slow,
you might actually see the web page text appear first, before the picture shows up.

Here’s an example that puts a picture in the second paragraph of a typical (albeit
somewhat boring) web page (Figure 4-1):

 Adding Graphics

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn116

INTRODUCING
THE
ELEMENT

<!DOCTYPE html>
<html>
<head>
 <title>Two paragraphs, One picture</title>
</head>
<body>
 <p>In the next paragraph, you'll see a picture.</p>
 <p></p>
</body>
</html>

FiGURE 4-1
One element is all it takes to summon the banana.jpg picture
and inject it into this SimplePic.htm web page.

Alternate Text
The src attribute is the only detail an element needs to function. But there’s
one other attribute you should supply—the alt attribute, which represents the al-
ternate text a browser displays if it can’t display the image itself.

Here’s an example of an element that includes alternate text:

<img src="matador.jpg" alt="There's no picture, so all you get is this
alternate text." />

Alternate text proves useful not only in the above circumstance, but in several other
cases as well, including when:

• A viewing-impaired visitor uses a screen-reading program (a program that
“speaks” text, including the words in an alt attribute).

• A search engine (like Google) analyzes a page and all its content so it can index
the content in a search catalog.

• A browser requests a picture but can’t find it. (Perhaps you forgot to copy it
to your web server?)

CHAPteR 4: ADDING GRAPHICS 117

INTRODUCING
THE
ELEMENT

• A web visitor switches off his browser’s ability to display pictures to save page-
download time (this isn’t terribly common today).

• A browser doesn’t support images (this is understandably rare these days, too,
but the text-only Lynx browser is still kicking around on some old Unix systems).

The first two reasons are the most important. Web experts always use meaning-
ful text when they write alt descriptions to ensure that screen readers and search
engines interpret the corresponding pictures correctly.

Don’t confuse alternate text with pop-up text, which is an optional message that
appears when a website visitor points to an image (see Figure 4-2). To add pop-up
text, use the title attribute:

<img src="matador.jpg" alt="A matador extends his cape in welcome."
title="Welcome to the ring." />

FiGURE 4-2
Left: For this
element to work,
you have to put the
file it points to in the
same folder as the
web page. Otherwise,
you’ll see the dreaded
broken image icon.

Middle: The alternate
text helps a bit when
you use it to explain
what your visitor
should see.

Right: You can also use
the title attribute
to supply pop-up text,
which appears when
a guest points to the
picture.

If an element links to a picture that doesn’t exist and you haven’t supplied any
alternate text, every browser reacts the same way—by showing a blank box with
a broken-image icon (Figure 4-2, left). But if you have a missing picture and your
 element includes alternate text, the result varies. Chrome continues to show
a blank box. Internet Explorer shows a blank box but adds the alternate text inside
it (see Figure 4-2, middle). And Firefox displays the alternate text as a paragraph of
ordinary content on the page, with no picture box or missing picture icon to alert
you of the problem.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn118

INTRODUCING
THE
ELEMENT

Picture Size
When it comes to pictures, the word size has two meanings: it can refer to the di-
mensions of the picture (how much screen space it takes up on a web page), or it
can signify the picture’s file size (the number of bytes required to store it). To web
page creators, both measures are important, but this section is all about the physical
dimensions. (We’ll talk about file sizes on page 123.)

Picture dimensions are noteworthy because they determine how much real estate
an image occupies onscreen. Web weavers measure graphics in units called pixels.
A pixel represents one tiny dot on a computer screen. The web world doesn’t work
with fixed units like inches and centimeters, because you never know how large your
visitor’s monitor is, and therefore how many pixels it can cram in.

Ordinarily, a picture gets its full resolution. So if your picture is a gigantic 2000 ×
4000 pixels, that’s what appears in your web page. However, the element
lets you resize a picture through its optional height and width attributes. Consider
this example:

<img src="photo01.jpg" alt="An explicitly sized picture" width="100"
height="150" />

In this markup, the element gives the picture a width of 100 pixels and a height
of 150 pixels. If this is larger than the real dimensions of the photo01.jpg picture,
the browser stretches and mangles the image to make it fit the size you set (see
Figure 4-3).

 NOTE  Approach height and width attributes with caution. Sometimes, novice web authors use them to
make thumbnails, small versions of large pictures. But using the height and width attributes to scale down a
large picture comes with a performance penalty—namely, the browser still needs to download the original, larger
image, even though it displays it at a smaller size. On the other hand, if you create thumbnails in a graphics editor
like Photoshop, the file sizes are smaller, ensuring that your pages download much more quickly.

Many web page designers leave out image height and width attributes. However,
experienced web developers sometimes add them using the same dimensions as the
actual picture. As odd as this sounds, there are a couple of good reasons to do so.

First, when you include image size attributes, browsers know how large a picture is
and can start laying out a page even as the graphic downloads (see Figure 4-2, left).
On the other hand, if you don’t include the height and width attributes, the browser
won’t know the dimensions of the picture until it’s fully downloaded, at which point
it has to rearrange the content. This is potentially distracting if your visitors have
slow connections and they’ve already started reading the page.

The second reason is because the dimensions control the size of the picture box if a
browser can’t download the image (see Figure 4-2, middle). However, you shouldn’t
rely on this strategy, because it doesn’t work in Firefox—that browser ignores the
height and width attributes for missing pictures, and it doesn’t display an image
box. (To really prevent a missing picture from scrambling your layout, carve your

CHAPteR 4: ADDING GRAPHICS 119

INTRODUCING
THE
ELEMENT

pages into separate sections using <div> elements, and position them with style
sheets, as described in Chapter 8.)

FiGURE 4-3
Never use HTML’s height
and width attributes to
resize a picture, because the
results are almost always un-
satisfying. Enlarged pictures
are jagged, shrunken pictures
are blurry, and if you change
the ratio of height to width
(as with the top-right and
bottom images shown here),
browsers squash pictures out
of their normal proportions
(top left).

So should you use the height and width attributes? It’s up to you, but they’re prob-
ably more trouble than they’re worth for the average website. If you use them, you
need to make sure to update them if you change the size of your picture, a chore
that can quickly get tedious.

Picture Placement
If you don’t take any extra steps, a browser inserts each image into the flow of your
text, right where you put the element in your HTML. It lines up the bottom
of the graphic with the baseline of the text that surrounds it. (The baseline is the
imaginary line on which the text sits.) This is called an inline image, and you can
see one in Figure 4-4.

You can change the vertical alignment of text using the vertical-align style sheet
property. Specify a value of top, middle, or bottom, depending on whether you want
the picture to line up with the top, middle, or bottom of the line of text.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn120

TUTORIAL:
STORING

IMAGES IN A
SUBFOLDER

FiGURE 4-4
Usually, you don’t want a
picture inside an ordinary
line of text (unless it’s a
very small emoticon, like
the ones you find in in-
stant message programs).
You can use paragraphs,
line breaks, or tables to do
a better job of separating
images from text.

Here’s an example that adds an inline style (page 80) to the image that sets the
vertical-align property. It lines the picture up with the top of the line of text.

This technique is worthwhile if you’re trying to line up a very small picture, like a
fancy bullet. But it doesn’t work very well with large images. That’s because no
matter which vertical-align option you choose, only one line of text can appear
alongside an inline picture (as you can see in Figure 4-4).

If you don’t want your picture to pop up in the middle of your text, you can separate
it from the surrounding content using line breaks (
) or horizontal rules (<hr>).
However, inline images never move on their own. If you want to create floating pic-
tures with wrapped text, hold that thought—you’ll see how on page 127.

Tutorial: Storing Images in a Subfolder
The previous examples kept things simple by assuming that your web pages and
image files are all in the same folder. If, for example, you put the SimplePic.htm page
(Figure 4-1) on your desktop, you also needed to put the banana.jpg file there as
well, so the element could find it.

This is all well and good, but sometimes you don’t want to keep your web pages
and pictures in the same place. In fact, if you have a large collection of pictures, it’s
a good idea to keep them in a separate subfolder. That way, you can better manage
the clutter, so you can edit web pages without tripping over picture files. This setup

CHAPteR 4: ADDING GRAPHICS 121

TUTORIAL:
STORING

IMAGES IN A
SUBFOLDER

also lets you browse and tweak the pictures without being distracted by the web
pages. In the following tutorial, you’ll set up this sort of arrangement.

 TIP  Like all the tutorials in this book, you can find the support files for this exercise on the companion site at
http://prosetech.com/web. Just look in the folder named Tutorial-4-1 (which stands for “Chapter 4, first tutorial”).
There you’ll find the files you need to get started in the Start subfolder, and the solution to the exercise in the
End subfolder.

Here’s what you need to do:

1. First, get the SimplePic.htm page and the banana.jpg image from the
Tutorial-4-1\Start folder.

Put them both on your desktop, or copy them to the location you use to store
web pages as you work on them.

2. Create a subfolder named images.

You can name your image-holding subfolder whatever you want. The name
“images” may not seem very descriptive, but it’s a common choice, so it’s the
approach we’ll take in this tutorial.

3. Move the image file (banana.jpg) into the images subfolder.

If you were to open the web page now, you’d find that your picture has gone
missing from the element. But fear not—a fix is at hand.

4. Open the SimplePic.htm web page in your text editor.

5. Edit the src attribute of the element so it includes the subfolder name.

In other words, you need to change this:

<p></p>

to this:

<p></p>

Notice that you use a forward slash (/) in relative addresses, not a backward
slash (\). If you’re used to file paths on Windows computers, this is a small but
important change—ignore it, and your pictures might not appear when a browser
opens your pages from a web server.

 NOTE  Make sure you’re consistent with capitalization. If you name a subfolder images but refer to it as
Images in the element, you can run into a serious headache. Your pictures may work when you test the
web page on your own computer, but they’ll fail to appear when you upload the page to a real website.

6. Save your changes and then open your page in a browser (or refresh it, if
it’s already open).

Now the image appears in the page, exactly as it did before.

http://prosetech.com/web

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn122

FILE FORMATS
FOR WEB
GRAPHICS

 NOTE  The technical term for the path that leads to the picture in this example (images/banana.jpg) is a
relative path. Relative paths tell a browser where to go, starting from the current location (where the web page
is located). Page 177 describes relative paths in more detail and has more examples.

File Formats for Web Graphics
So far, you’ve seen image examples that have the extension .jpg. However, web
browsers actually support a small set of standard image formats:

• The JPEG (pronounced “jay-peg”) format is suitable for photos and pictures
that can tolerate some loss of quality. JPEG doesn’t work as well if your picture
contains text or line art, because the resulting image won’t be as sharp.

• The GIF (pronounced “jif” or “gif”) format is suitable for graphics with a very
small number of colors (like simple logos or clip art). It gives lousy results if
you use it to display photos.

• The PNG (pronounced “ping”) format is suitable for all kinds of images, although
it doesn’t compress photos as well as JPEG. PNG is particularly good for small,
sharp graphics (like logos) and today it’s used as a more powerful replacement
for the GIF standard.

• SVG (Scalable Vector Graphics) is an up-and-coming standard for vector draw-
ings (for example, logos and figures that consist of text and shapes, rather
than photographs). For the right type of art, SVG has a number of advantages,
including its small size and flexibility. You can resize SVGs without losing detail
or getting blurry images. However, Internet Explorer versions 8 and earlier
don’t display SVG images, which means it’s still not a reliable choice for web
graphics. For that reason, this chapter doesn’t discuss it, although you can learn
more about it (and some of the workarounds that make it work, sort of, in old
versions of Internet Explorer) at http://tinyurl.com/2gy2vyg.

 NOTE  Some browsers give you a few more format options, but you’re better off steering away from them to
ensure widest browser compatibility. For example, Internet Explorer supports bitmaps (image files that end with
the .bmp extension). Don’t ever use them—not only will they confuse other browsers, but they’re also ridiculously
large because the standard doesn’t include compression.

Graphics formats differ in how they use compression to squash down file sizes,
and in how many colors they offer. You’ll dive deeper into these considerations in
the following sections. For now, Table 4-1 outlines how the different formats stack
up, and Figure 4-5 compares them in a web page (see the box on page 124 for an
explanation of compression types).

http://tinyurl.com/2gy2vyg

CHAPteR 4: ADDING GRAPHICS 123

FILE FORMATS
FOR WEB
GRAPHICS

TABLE 4-1 Image file formats for the Web.

FORMAT
TYPE OF
COMPRESSION MAXIMUM COLORS BEST SUITED FOR

JPEG Lossy 24-bit (16.7 million
colors)

Photos.

GIF Lossless 8-bit color (256
colors)

Simple logos,
graphical text, and
diagrams with line
art.

PNG Lossless 24-bit (16.7 million
colors)

Images that would
normally be GIF
files but need more
colors.

SVG Lossless (but it’s
optional, as SVG
data is already quite
small)

24-bit (16.7 million
colors)

Art drawn in an
illustration program.
However, IE version
8 and earlier don’t
support it.

FiGURE 4-5
JPEGs and GIFs are the original image formats of the Web. You’ll notice
that GIFs produce clearer text, while JPEGs do a much better job of
handling continuous bands of color. GIFs simulate extra colors through
dithering, a process that mixes different colored dots to simulate a
solid color. The results are unmistakably unprofessional. (You may not
be able to see the reduced text quality in this black-and-white screen
capture, but if you take a look at the file JPEGvsGIF.htm from the
companion site, you’ll see the difference up close.) For this reason, the
PNG standard has largely replaced the GIF standard.

Compression
Once upon a time, web connections were slow and web designers spent hours ago-
nizing over the size of every image on their sites. Today, image size is still a consid-
eration (albeit a smaller one) because of mobile devices. People using smartphones,
tablets, and other web-enabled devices are often forced to use slower connections
(for example, the overtaxed WiFi at the local coffee shop). Phone companies also
charge based on usage, so visit too many picture-clogged pages and it could cost you.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn124

FILE FORMATS
FOR WEB
GRAPHICS

To keep your website as fast, lightweight, and efficient as possible, follow this advice:

• Keep your pictures small. If you really must fill the browser window, create
a smaller version of the picture, put that on the page, and then make it a link
(page 175). Then, when someone clicks the picture, you can open a new page
with the full-sized image in it.

• Use the right image format. For large photos, that’s JPEG.

• Lower the quality. To get better compression, you can lower the quality of your
JPEGs (if your graphics program has this feature). But test out this approach
first to make sure you can tolerate the loss in detail. As you compress a JPEG
image, you introduce various problems collectively known as compression ar-
tifacts. The most common are blocky regions in an image, halos around edges,
and a general blurriness. Some pictures exhibit these flaws more than others,
depending on the image’s amount of detail.

• Use a picture-squishing tool. There are plenty of free tools that can scan
through a folder of image files and crush each one down to a smaller size. You’ll
probably need to go get coffee (because the process can take some time), but
you’ll be rewarded with files that are (on average) 15% to 40% smaller, with
no reduction in quality. Try FileOptimizer (http://tinyurl.com/FileOptimizer)
for Windows computers, and ImageOptim (http://imageoptim.com) for Macs.

UP TO SPEED

How Compression Works
All the standard web image formats use compression to shrink
picture information. However, the type of compression you get
with each format differs significantly.

The GIF and PNG formats use lossless compression, which
means there’s no loss of any information from your picture.
Lossless compression uses a variety of techniques to perform its
space-shrinking magic—for example, it might find a repeating
pattern in a file and replace each occurrence of it with a short
abbreviation. When the browser decompresses the file, it gets
all the original image data back.

The JPEG format uses lossy compression, which means it
discards (or loses) some information about your picture. As a

result, your picture’s quality diminishes, and there’s no way
to get it back to its original tip-top shape. However, the JPEG
format is crafty, and it tries to trick your eye by discarding
information that doesn’t harm the picture that much. For
example, it might convert slightly different colors to the same
color, or replace fine details with smoothed-out blobs, because
the human eye isn’t that sensitive to small changes in color
and shape. Usually, the overall result is a picture that looks
softer and (depending how much compression you use) more
blurry. On the other hand, the size-shrinking results you get
with lossy compression are more dramatic than those offered
by lossless compression.

Choosing the Right Format
It’s important to learn which format to use for a given task. To help you decide, walk
through the following series of questions.

http://tinyurl.com/FileOptimizer
http://imageoptim.com

CHAPteR 4: ADDING GRAPHICS 125

FILE FORMATS
FOR WEB
GRAPHICS

Is your picture a hefty photo?

Yes: JPEG is the best choice for cutting large, finely detailed pictures down to
size. Depending on the graphics program you use, you may be able to choose
how much compression you want to apply.

Does your picture have sharp edges and need more than 256 colors?

Yes: PNG is the best answer here. It supports full color and uses lossless com-
pression, so you don’t lose any detail. If your picture has a limited number of
colors (256 or fewer), you can use GIF instead of PNG, but there’s no reason to.

Does your picture include a transparent area?

Yes: Use PNG. As you’ll learn on page 127, PNG permits partial transparency,
which lets you stack transparent layers and blend them to create a more natural
effect. GIF has a cruder all-or-nothing transparency feature, and JPEG doesn’t
support transparency at all.

 NOTE  You read earlier that HTML keeps page elements like headlines in rectangular boxes. The same holds
true for images—even a picture of a beach ball is enclosed in a box. That’s why transparency in images is so
important. It lets you place an image on a page with that page’s background showing through; the result is a
page with a seamlessly integrated image.

FREQUENTLY ASKED QUESTION

Typical File Sizes for Images
How much disk space does a typical picture occupy?

There’s no single answer because it depends on several factors,
including the dimensions of the picture, the file format you
use, the amount of compression you apply, and how well the
picture responds to compression techniques. However, there
are a few basic things to keep in mind.

The file size of a typical website logo is vanishingly small. For
example, Google’s signature logo clocks in at a mere 20 KB
(it’s a PNG file).

Photos can take up much more space. On the small side of the
equation, a picture in an article on the New York Times website
rarely uses more than 70 KB. On the larger side of things, a
typical eBayer may include a product picture that’s 300 KB. At
this size, the picture usually takes up a larger portion of your
browser window. However, that’s nothing compared with the
size the picture would be if you weren’t using compression.
For example, even an ancient 1-megapixel camera can take a
raw, uncompressed picture that’s about 3,000 KB in size. In a
web page, you can compress this to 300 KB or less by using the
JPEG file format, which uses a lower quality level.

Putting Pictures on Colored Backgrounds
No matter what format you use, graphics programs store your image files as
rectangles, even if the image itself isn’t rectangular. For example, if you create a
smiley-face graphic, your graphics program saves that round illustration on a white,
rectangular background.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn126

FILE FORMATS
FOR WEB
GRAPHICS

If your page background is white as well, this doesn’t pose a problem because the
image’s background blends in with the rest of your page. But if your page has a
different background color (page 87), you’ll run into the graphical clunkiness shown
in Figure 4-6.

FiGURE 4-6
Top: When you place this smiley-face picture on a page with a white
background, it blends right in.

Bottom: With a non-white background, the white box around your
picture is glaringly obvious.

Web designers came up with two solutions. One is to use transparency, a feature
common to both PNG and GIF graphics. The basic idea is that your image contains
transparent pixels—pixels that don’t have any color at all. When a browser comes
across these, it doesn’t paint anything. Instead, it lets the background of the page
show through. To make part of an image see-through, you define a transparent color
using your graphics program. In the example above, for instance, you’d set the white
background of your smiley-face graphic as the transparent color.

Although transparency seems like a handy way to make sure your image always has
the correct background, in practice, it rarely looks good. The problem you usually
see is a jagged edge where the colored pixels of your picture end and the web page
background begins (see Figure 4-7).

The easiest way to fix this problem is to use the correct background color when you
create your web graphic, instead of using transparency. In other words, when you
draw your smiley-face image, give it the same background color as your web page.
Your graphics program can then perform antialiasing, a technology that smooths
an image’s jagged edges to make them look nice. That way, the image edges blend
in well with the picture’s background, and when you display the image on your web
page, it fits right in. The only limitation with this approach is its lack of flexibility. If
you change your page color, you need to edit all your graphics.

CHAPteR 4: ADDING GRAPHICS 127

TUTORIAL:
WRAPPING

TEXT AROUND
AN IMAGE

FiGURE 4-7
The picture at the bottom of this page uses transparency, but
the result—a jagged edge around the smiley face—is less than
stellar. To smooth this edge, graphics programs use a sophisticated
technique called antialiasing, which blends the picture color with
the background color. Browsers can’t perform this feat, so the edges
they make aren’t nearly as smooth.

Another approach is to use blended transparency (also known as alpha blending,
because the alpha value of an image is a number that represents how transparent
a pixel is). For example, instead of creating an image that cuts abruptly between
colored pixels and transparent pixels, use one that blends the edge out using a fringe
of semitransparent pixels. This feature sounds great, and PNG graphics use it, but
you need serious Photoshop skills to create this effect. (If you want to go this route,
try starting with the bare-bones tutorial at http://tinyurl.com/ypf78g.) Sadly, this is
the price of creating polished web graphics.

Tutorial: Wrapping Text Around an Image
When you put an ordinary, unadorned in your web page, it becomes an inline
image. As explained earlier, inline images are locked into place alongside your text.
You can put text above an inline image and text below it, but that’s about as fancy
as your page can get.

While inline images serve their purpose, they aren’t the most elegant solution. A
more flexible approach—and one that almost every web page uses—is to wrap text
around images, so that the page mixes text and pictures into a cohesive design.
Images that have text wrapped on one side or the other are called floating images,
because they float next to an expanse of text. To create a floating image, you rely
once more on the power of style sheets.

http://tinyurl.com/ypf78g

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn128

TUTORIAL:
WRAPPING

TEXT AROUND
AN IMAGE

UP TO SPEED

Graphics Programs
It’s up to you to choose the format for your image files. Most
good graphics programs (like Adobe Fireworks and Adobe
Photoshop) save your documents in a specialized file format
that lets you do some advanced editing. Photoshop, for
example, saves files in the .psd format. When you’re ready to
put your picture on a web page, you save a copy of the .psd file
in a different format, one specially designed for the Web, like
JPEG, GIF, or PNG. Usually, you do so by choosing File→Save As
from the program’s menu (although sometimes it’s something
a little different, like File→Export or File→Save For Web).

As a rule of thumb, you always need at least two versions
of every picture you create: one in your graphics program’s
original format, and a copy in the JPEG, GIF, or PNG format
you use on your website. You need to keep the original file
so you can make changes whenever necessary and to make
sure the image quality for future versions of the picture are
as high as possible.

Once you choose an image format, your graphics program
gives you a number of other options that let you customize

details, like the compression level. At higher compression
levels, your image file is smaller but of lower quality. Some
really simple image editors (like the Paint program that ships
with Windows) don’t let you tweak these settings, so you’re
stuck with the program’s built-in settings.

Graphics programs usually come in two basic flavors—image
editors like Adobe Photoshop that let you retouch pictures and
apply funky effects to graphics, and drawing programs like
Adobe Illustrator, which lets you create your own illustrations
by assembling shapes and text. If you’re editing pictures of
the office party to cut out an embarrassing moment, an image
editor makes sense. If you’re creating a logo for your newly
launched cookie company, you need a drawing program.

If you don’t have the luxury of getting a professional graphics
program, you can hunt for one on a shareware site like www.
download.com. Two popular free image editors are GIMP (www.
gimp.org), which works with all the major operating systems,
and Paint.NET (www.getpaint.net), which is Windows-only.

 TIP  Like all the tutorials in this book, you can find the solution for this exercise on the companion site at http://
prosetech.com/web. Just look in the folder named Tutorial-4-2 (which stands for “Chapter 4, second tutorial”).
There you’ll find the files that you need to get started in the Start subfolder, and the solution to the exercise in
the End subfolder.

Here’s how to get started:

1. Get the ordinary version of the page from the Tutorial-4-2\Start folder.

Find the web page TomatoSoupRecipe.htm and an image named TomatoSoup.
jpg. Right now, this page uses an inline image, so the picture of the steaming-
hot bowl of soup sits in the middle of the content, between the recipe list and
the recipe instructions. Figure 4-8 shows the page as it is now, and Figure 4-9
shows the result you’re after.

www.download.com
www.download.com
www.gimp.org
www.gimp.org
www.getpaint.net
http://prosetech.com/web
http://prosetech.com/web

CHAPteR 4: ADDING GRAPHICS 129

TUTORIAL:
WRAPPING

TEXT AROUND
AN IMAGE

FiGURE 4-8
This inline image cleaves one section of text
from the next.

2. Decide what kind of style sheet you want to use.

As always, you can apply style properties to the element using an ex-
ternal style sheet, an internal style sheet, or an inline style (page 73 covers the
differences).

In this example, the TomatoSoupRecipe.htm page already has an internal style
sheet that sets the font. You can find the rules in the <style> element, which is
in the <head> section at the top of the page.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn130

TUTORIAL:
WRAPPING

TEXT AROUND
AN IMAGE

FiGURE 4-9
Now that you’ve floated
the image to the left,
the text can fill the space
beside it, on the right.

3. Create a style for the element, and then add it to your style sheet.

This tutorial uses the following style, which you can add to the internal style
sheet:

<style>
 body {
 font-family: Georgia;
 }
 img.FloatLeft {
 }
</style>

This style has a two-part name. The first part, img, is the element name. It makes
sure that the style can work only on images. The second part, FloatLeft, is
the class name. It ensures that the rule targets images that have the FloatLeft

CHAPteR 4: ADDING GRAPHICS 131

TUTORIAL:
WRAPPING

TEXT AROUND
AN IMAGE

class associated with them (because you probably don’t want every picture on
your page to float).

To apply the FloatLeft style, you have to add the class attribute to the target
 element, like so:

You now have a style sheet, a style rule for floating images, and an image that
uses your rule. However, nothing has changed, because you haven’t defined
the FloatLeft style yet.

4. Set the float property.

You create floating images using a CSS property named float. You set the
value of the float property to either left or right, which lines up the image
on either the left or right edge of the text.

In this tutorial, you want to float your soup on the left, so you must add the
two lines shown in bold:

<style>
 body {
 font-family: Georgia;
 }
 img.FloatLeft {
 float: left;
 margin: 10px;
 }

</style>

When you set the float attribute, it makes sense to adjust the image’s margin
settings at the same time, so you have a little breathing room between your
image and the surrounding text.

5. Save your changes, and open (or refresh) the web page.

Now you can admire your handiwork (Figure 4-9).

To get floating text to work the way you want, always put the element just
before the text that should wrap around the image. In the soup recipe example, you
placed it just after the recipe list and before the list of instructions.

 NOTE  Based on this example, you might think that the float property sends a picture to the left or right
side of a page, but that’s not exactly what happens. Remember, in CSS, HTML treats each element on a page as a
container. When you create a floating image, the image actually goes to the left or right side of its container. If
you put an image inside a smaller container—like a cell in a table or a <div> that creates a sidebar—you’ll see
that the image floats to the side of that element.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn132

TUTORIAL:
WRAPPING

TEXT AROUND
AN IMAGE

Figure 4-10 shows a few more image-wrapping examples, which demonstrate what
happens if you move the image farther down into a paragraph of text or float it on
the right.

FiGURE 4-10
Remember, all image files
are rectangles. When you
wrap text around a float-
ing image, the browser
follows the contour of
this invisible square, even
if the image itself has
a different shape, like a
circle, or includes extra
white space.

TROUBLESHOOTING MOMENT

Floating with Lists
A strange thing happens if you try to float pictures around a
bulleted or numbered list. Although the text sits next to the
floating image, the bullets (if it’s a bulleted list) or the num-
bers (if it’s a numbered list) don’t show up where you expect.
Instead of sitting beside the picture, they’re superimposed
on top of it.

To solve this problem, simply add the following style sheet
rules. One fixes bulleted lists (the element) and the
other fixes numbered lists (the element).

ul { overflow: hidden; }
ol { overflow: hidden; }

The end result is that your lists fit perfectly next to any floating
image, with no overlapped bullets or numbers.

Adding a Border
Right now, your picture is sitting pretty in the page. But maybe you want something
else to divide the soup photo from its surrounding content. CSS has the perfect tool
for you: a customizable border that you can draw around your picture in a close-
fitting rectangle.

CHAPteR 4: ADDING GRAPHICS 133

TUTORIAL:
WRAPPING

TEXT AROUND
AN IMAGE

In Chapter 3, you learned to use the border-style and border-width properties to
add borders around blocks of text. Happily, you can use these properties to add a
border to an image just as easily.

In the tomato soup example, you simply add the border-style and border-width
properties to the style rule you already created. Here’s how you apply a thin, grooved
border to all sides of the soup image:

img.FloatLeft {

 float: left;
 margin: 10px;
 border-style: groove;
 border-width: 3px;
}

Figure 4-11 shows the basic border styles. Remember, you can change the thickness
and color of any border to get a very different look (page 108).

FiGURE 4-11
This example shows several inline images in a row,
separated from one another with a single space. Each
image sports a different border. The browser fits all the
pictures it can on the same line. When it reaches the right
edge of the browser window, it wraps the pictures to the
next line. If you resize the window, the arrangement of
the pictures changes.

Adding a Caption
Captions add a nice touch to photos, and you can put them above or below the
image. For inline images, you just add a line of text immediately before or after the
picture, separated by a line break. But that won’t work with floated images, because
the image and the caption have to float in tandem.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn134

TUTORIAL:
WRAPPING

TEXT AROUND
AN IMAGE

As it happens, the solution is simple. Just take the FloatLeft style rule shown earlier,
and change the name from img.FloatLeft to .FloatLeft. That way, you can use the
rule with any element:

.FloatLeft {
 float: left;
 margin: 10px;
}

Next, wrap the element and your text in a element, and then make the
entire element float using the FloatLeft style rule:

 <i>A bowl of rustic tomato soup</i>

Figure 4-12 shows the result.

FiGURE 4-12
If you don’t want to float a picture on
its own, you can float a box that holds
a picture and some other content, like
this caption.

CHAPteR 4: ADDING GRAPHICS 135

TUTORIAL:
WRAPPING

TEXT AROUND
AN IMAGE NOTE  You use a element in this example instead of a <div> element because you can put a

 element inside other block elements, like a paragraph. In other words, by using a element,
you can easily put your floating picture-and-caption container inside one of your paragraphs.

POWER USERS’ CLINIC

An Even Better Way to Float a Figure
Figure 4-12 shows how you can use a floating box to hold a
figure and some related text. This is a popular technique in
the web design world, but it isn’t perfect. One shortcoming is
that it muddies the structure of your web page. For example, it
doesn’t clearly indicate that the is meant to represent
a figure, or that the text has anything to do with the image.

This might not strike you as a serious problem (and it isn’t), but
high-minded markup purists are busy planning a world where
web pages have more structure, which, in turn, helps programs
better identify page elements—whether that program is a
browser, a search engine, an accessibility tool, or something
else altogether.

HTML5 adds two new elements that let you define a clear,
well-structured figure: <figure> and <figcaption>.
The <figcaption> element wraps the caption, and the
<figure> element wraps the whole shebang: picture,

caption, and all. Here’s how you’d use these two elements to
clean up the previous example:

<figure class="FloatLeft">
 <img src="planetree.jpg"
 alt="Plane Tree" />
 <figcaption> The bark of a plane
 tree
 </figcaption>
</figure>

Neither new element applies any formatting, so you still need
to use style sheet rules to get the appearance you want. But the
real problem is that, like with some other new HTML5 elements,
you can’t use CSS to style the <figure> and <figurecap-
tion> elements in any version of Internet Explorer before IE
9. So unless you’re willing to use a JavaScript hack (described
on page 578), it’s probably best to wait.

Clearing a Float
Wrapping text can get a little tricky, because the results you get depend on the width
of the browser window. For example, you might think that your text is long enough to
wrap around a graphic, but in a wide window, it might take up just a few short lines,
letting the rest of the page’s content bump into your floating graphic. You might
even end up with another floating picture bumping into your first floating picture.

To see this problem in action, it’s time to look at another tutorial. In this tutorial,
found in the Tutorial-4-3 folder, you’re still dealing with the same content as the
previous tutorial. However, there’s a second picture added to the mix, which exposes
a new problem.

Figure 4-13 demonstrates the issue, using the version of the TomatoRecipe.htm page
from the Tutorial-4-3\Start folder. This page includes two pictures, both floating on
the left edge. The effect works in a narrow window, but in a wide browser the two
pictures get into a tangle.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn136

TUTORIAL:
WRAPPING

TEXT AROUND
AN IMAGE

FiGURE 4-13
In this version of the
tomato soup page, the
goal is to place one picture
next to the list of ingredi-
ents, and another next to
the list of steps. But the
browser wraps everything
next to the first picture (as
long as it fits), causing this
jumbled layout.

To prevent this layout pileup, you use the clear property. It turns off any wrapping
that’s currently in effect on the page, forcing the browser to jump to the bottom of
the floating content before it continues displaying the rest of the page.

You can add the clear property to any element. Common choices include the para-
graph element (<p>) or the line break element (
). Here’s an example:

<br style="clear: both;" />

To fix the problem in Figure 4-13, use the clear property after the list of ingredients
ends and before the list of instructions starts. To try this out, open the starter version
of the TomatoRecipe.htm page, insert the
 element where you believe it should
go, and then refresh the page to see the result. If you put the line break in the right
place, you’ll get the more organized version of the page featured in Figure 4-14.

CHAPteR 4: ADDING GRAPHICS 137

TUTORIAL:
WRAPPING

TEXT AROUND
AN IMAGE

FiGURE 4-14
The clear property
tells your browser to stop
wrapping text, ensuring
that the next paragraph
starts after the floating
picture.

Here’s a shortened version of the solution, which shows where the pictures and line
break fall in the markup. You can review the full markup by looking at the page in
the Tutorial-4-3\End folder:

<h1>Simple Tomato Soup</h1>

<!-- Here's the first floating picture, next to the ingredients. -->

<p class="Description">A simple, nourishing soup that showcases fresh
tomatoes.</p>

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn138

BACKGROUND
IMAGES

2 carrots
2 sticks celery
1-2 onions
1 tsp salt
3 lbs tomatoes, peeled
A few mint leaves

<!-- Now jump past the first floated picture. -->
<br style="clear: both;" />

<!-- Here's the second floating picture, next to the instructions. -->

<p>Roughly chop the carrots, celery, and onions. The mixture ...

 NOTE  In this example, the clear property is set to both, which tells the browser to turn off floating for
both left-floated and right-floated content. Instead of using both, you can use left (skip past any left-floated
content only) or right (skip past any right-floated content).

Background Images
CSS makes it possible to use an image as the background for a page, which is a neat
but slightly old-fashioned way to add personality to your website. For example, you
could use light parchment paper as a background for a literary site. A Twilight fan
site might put a dark cemetery image to good use. Some people find the effect a
little distracting, but it’s worth considering if you want to add a dramatic touch and
you can restrain yourself from going overboard. (Or if you straight-up love kitsch.)

 TIP  Although professional websites don’t usually have a whole-page background, the CSS background image
feature is still plenty useful. As you’ll learn later in this section, you can use it to put a background behind any
individual element, which makes it a useful way to add headers, panel borders, and other sorts of decoration to
your pages.

Web designers almost always choose to tile background images, which means a
browser copies a small picture over and over again until it fills the window (see Figure
4-15). You can’t use a single image to fill a browser window because you have no way
of knowing how wide and tall to make it, given people’s variable browser settings.
And if you did have visitors’ exact screen measurements, you’d need to create an
impractically large image that would take a long time to download.

CHAPteR 4: ADDING GRAPHICS 139

BACKGROUND
IMAGES

FiGURE 4-15
Top: Start with a small tile graphic with a stony
pattern.

Bottom: Using style sheets, you can tile this graphic
over the whole page. In a good tiled image, the edges
line up to create the illusion of a seamless larger
picture.

To create a tiled background, use the background-image style property. Your first
step is to apply this property to the <body> element, so that you tile the whole page.
Next, you need to provide the name of the image file using the form url('filename'),
as shown here:

body {
 background-image: url('stones.jpg');
}

This tiles the image stones.jpg across a page to create your background.

Keep these points in mind when you create a tiled background:

• Make your background light, so the text displayed on top of it remains legible.
(If you really have to go dark, you can use white, bold text so that it stands
out. But don’t do this unless you’re creating a website for a trendy new band
or opening a gothic clothing store.)

• Set the page’s background color to match the color of the tiled image. For ex-
ample, if you have a dark background picture and use white text for your content,
make the background color black. That way, if a browser can’t download the
background image, visitors can still see your content.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn140

BACKGROUND
IMAGES

• Use small tiles to reduce the amount of time your visitors need to wait before
they can see the page.

• If your tiled image has an irregular pattern, make sure the edges line up. The
left edge should continue the right edge, and the top edge should continue the
bottom edge. Otherwise, when the browser tiles your image, you’ll see lines
where it stitches the tiles together.

 TIP  The Web is full of common background images, like stars, blue skies and clouds, fabric and stone
textures, fires, dizzying geometric patterns, borders, and much more. You can find these by searching Google for
“backgrounds,” or head straight to the somewhat dated sites that specialize in downloadable backgrounds, like
www.grsites.com/textures and www.backgroundsarchive.com.

Background Watermarks
Most websites tile a picture to create a background image, but that’s not your only
option. You can also take a single image and place it at a specific position on your
page. Think, for example, of a spy site whose background image faintly reads “Top
Secret and Confidential.”

An inconspicuous single-image background like this is called a watermark. (The
name stems from the process used to place a translucent logo on paper saturated
with water.) To make a good watermark, use a background picture that’s pale and
unobtrusive.

To add a watermark to your page, use the same background-image property you
learned about above. But you need to add a few more style properties (see Table
4-2). First, you have to turn off tiling using the background-repeat property. At the
same time, it makes sense to align your picture on the page to either side or centered,
using the background-position property.

Here’s an example that places a picture in the center of a web page:

body {
 background-image: url('smiley.jpg');
 background-repeat: no-repeat;
 background-position: center;
}

 NOTE  The center of your document isn’t necessarily the center of your browser window. If, for example,
you position your image in the center of a long web page, you won’t see it until you scroll down.

CHAPteR 4: ADDING GRAPHICS 141

BACKGROUND
IMAGES

TABLE 4-2 Background image properties.

PROPERTY DESCRIPTION COMMON VALUES CAN BE INHERITED?

background-
image

The image file you use as
your page background.

A URL pointing to
the image file, as in
url('mypig.jpg')

No*

background-
repeat

Whether or not you tile
the image to fill the page;
you can turn off tiling
altogether, or turn it off
in one dimension (so
that images tile vertically
but not horizontally, for
example).

repeat, repeat-x,
repeat-y, no-repeat

No

background-
position

Where you want to place
the image. Use this only
if you aren’t tiling the
image.

top left, top
center, top right,
center left, center,
center right, bottom
left, bottom center,
bottom right

No

background-
attachment

Whether you want to
fix the image (or tiles)
in place when a visitor
scrolls the page.

scroll, fixed No

* Background pictures aren’t inherited. However, if you don’t explicitly assign a background color to an
element, it’s given a transparent background, which means the background of the containing element
will show through.

You can also turn off an image’s ability to scroll along with the rest of a page to get the
rather odd effect of an image that’s fixed in place (see Figure 4-16). For example, this
style creates a background image that always sits squarely in the center of a window:

body {
 background-image: url('smiley.gif');
 background-repeat: no-repeat;
 background-position: center;
 background-attachment: fixed;
}

Backgrounds for Other Elements
You don’t need to apply a background to a whole page. Instead, you can bind a
background to a single paragraph or, more usefully, to a <div> element. That way,
you can create the same effect as a sidebar in a magazine. Usually, you want to
add a border around this element to separate it from the rest of your web page.
You might also need to change the color of the foreground text so it’s legible (for
example, white shows up better than black on dark backgrounds).

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn142

BACKGROUND
IMAGES

FiGURE 4-16
This staring smiley face remains perpetually in the center of the
window, even when you scroll up or down. It’s a little creepy.

Here’s an example of a background image you can use with any container element:

.pie {
 background-image: url('pie.jpg');
 margin-top: 20px;
 margin-bottom: 10px;
 margin-left: 70px;
 margin-right: 70px;
 padding: 10px;
 border-style: double;
 border-width: 3px;
 color: white;
 background-color: black;
 font-size: large;
 font-weight: bold;
 font-family: Verdana,sans-serif;
}

This style specifies a background image, sets the margins and borders, and chooses
background and foreground colors to match.

Here’s a <div> that uses this style:

<div class="pie">
 <p>Hungry for some pie?</p>
</div>

Figure 4-17 shows the result.

CHAPteR 4: ADDING GRAPHICS 143

BACKGROUND
IMAGES

FiGURE 4-17
Top: Using background images
in small boxes is surprisingly
slick.

Bottom: A particularly neat
feature is the way the picture
grows when you resize the
page, thanks to tiling.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn144

FINDING FREE
ART

Graphical Bullets in a List
In Chapter 2, you learned how to use the element to create a bulleted list. How-
ever, you were limited to a small set of predefined bullet styles. If you look around
the Web, you’ll see more interesting examples of bulleted lists, including some that
use tiny pictures as custom bullets.

You can add custom bullets by hand using the element, but there’s an easier
option. You can use the list-style-image property to set a bullet image. Here’s an
example that uses a picture named 3Dball.gif:

ul {
 list-style-image: url('3Dball.gif');
}

Once you create this style rule and put it in your style sheet, your browser automati-
cally applies it to an ordinary bulleted list like this one:

 Are hard to miss
 Help compensate for feelings of inadequacy
 Look so darned cool
 Remind people of boring PowerPoint presentations

Figure 4-18 shows the result.

FiGURE 4-18
Graphical bullets range from simple arrows and check-
boxes to extravagant three-dimensional spotted balls,
like those shown here.

Finding Free Art
The Web is awash in graphics. In fact, finding a web page that isn’t chock-full of
images is about as unusual as spotting Bill Gates in a dollar store. But how do you
generate all the pictures you need for a graphically rich site? Do you really need to
spend hours in a drawing program fine-tuning every picture you want? The answer

CHAPteR 4: ADDING GRAPHICS 145

FINDING FREE
ART

depends on exactly what type of pictures you need, of course, but you’ll be happy
to hear that the Web is a great resource for ready-to-use pictures.

It’s not hard to find pictures on the Web. You can, for example, use a handy Google
tool to search for graphics on a specific subject (type http://images.google.com
into your browser and search away). Unfortunately, finding an image usually isn’t
good enough. To use it without worrying about a lawyer tracking you down, you
also need the rights to use the picture. If you get lucky, a website owner might
grant you permission to use a graphic after you send a quick email. But that’s the
exception rather than the rule.

Fortunately, photo enthusiasts have set up community sites where they post their
pictures for the world to see—and on some of these sites, you can search for and
reuse anything you want, for free. One of the best was Stock.XCHNG (pronounced
“stock exchange,” after stock photography, the name for the vast catalogs of reus-
able pictures that graphic designers collect). Recently, Getty Images purchased the
Stock.XCHNG site and renamed it “Free Images.” Sadly, there aren’t many active
contributors any more, but you can still access the same free catalog of pics at
http://sxc.hu (Figure 4-19).

FiGURE 4-19
Stock.XCHNG offers a search-
able catalog of well over
100,000 photos on every
subject. Every day, eager
photo enthusiasts upload
their sometimes-striking
work, including some of the
images used in this book.
In this figure, a search for
“paris food” results in some
interesting culinary treats.

http://images.google.com
http://sxc.hu

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn146

FINDING FREE
ART

Another good place for digging up free photos is Flickr (www.flickr.com), though the
site includes both images that are free to reuse and those that are not. The best way
to find pictures you can use is with an advanced search at www.flickr.com/search/
advanced. Enter your search keywords (as you would in a normal search), but check
the “Only search within Creative Commons-licensed content” setting (Figure 4-20).
That ensures that you find only files you can snatch.

FiGURE 4-20
Here you’ve limited your
Flickr search to figures
you can use on your own
website. However, the
figures may still have
restrictions that prevent
you from using them on
commercial sites or from
modifying them.

Be aware, though, that content you use under a Creative Commons license may
come with one or two restrictions. For example, it may stipulate that you can’t use
the picture on a commercial website (at least not without getting permission from
the picture owner). It may also restrict you from changing or editing the picture.
When you find a picture you like, you can get the details by scrolling down to the
License box (which you’ll find in the bottom-right corner of the page). Or you can
explicitly search for pictures that don’t have these restrictions, using the additional
settings shown in Figure 4-20.

If you can’t find the picture you want at Stock.XCHNG or Flickr, you may never find
it—at least not without going to a commercial site, like iStockPhoto (www.istock-
photo.com), Fotolia (www.fotolia.com), or Dreamstime (www.dreamstime.com), all
of which charge a few dollars for royalty-free images. But if you’d like to look at
some other no-pay alternatives, check out the article on finding free photographs
at http://tinyurl.com/49yquv3.

www.flickr.com
www.flickr.com/search/advanced
www.flickr.com/search/advanced
www.istockphoto.com
www.istockphoto.com
www.fotolia.com
www.dreamstime.com
http://tinyurl.com/49yquv3

147

CHAPTER

5

In Chapter 1, you built your first HTML page with nothing but a text editor and a
lot of nerve—the same way all web page whiz kids begin their careers. To really
understand HTML (and to establish your HTML street cred), you need to start

from scratch.

However, very few web authors stick with plain-text editors or use them to create
anything other than simple test pages. The average HTML page is filled with tedious
detail. Try to write every paragraph, line break, and formatting tag by hand, and
you’ll probably make a mistake somewhere along the way. Even if you don’t, it’s hard
to visualize a finished page when you spend all day staring at angle brackets. This
is especially true when you tackle more complex pages, like those with graphics or
multicolumn layouts.

The downside to outgrowing Notepad or TextEdit is the expense. Professional web
design tools can cost hundreds of dollars. At one point, software companies planned
to include basic web editors as part of operating systems like Windows and Mac OS.
In fact, some older versions of Windows shipped with a scaled-down web editor
called FrontPage Express (and some old Macs included a severely truncated editor
called iWeb). But if you want a full-featured web page editor—one that catches your
errors, helps you remember important HTML elements, and lets you manage your
entire site—you have to find one on your own. Fortunately, there are free alternatives
for even the most cash-strapped web weaver.

In this chapter, you’ll learn how web page editors work and how to find the one that’s
right for you. You’ll also discover some free web editors that can do the same work
as their professional counterparts.

 Working with a
Web Editor

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn148

THE BENEFITS
OF A WEB

EDITOR The Benefits of a Web Editor
Tools like Notepad and TextEdit aren’t all that bad for starting out. They keep page
development simple and don’t mess with your HTML (as a word-processing program
would). Seeing the result of your work is just a browser refresh away. So why might
you outgrow a basic text editor? For a number of reasons, including these:

• Nobody’s perfect. With a text editor, it’s just a matter of time before you make
a mistake, like typing instead of . Unfortunately, you might not realize
your mistake even when you view your page in a browser. Browsers do their
best to compensate for HTML inaccuracies, even if that means obscuring the
real problems in your page. A good web page editor can highlight faulty HTML
and help you correct it.

• Edit-Save-Refresh. Repeat 1,000 times. Text editors are convenient for small
pages. But what if you’re trying to size a picture perfectly or line up a table
column? You need to jump back and forth between your text editor and your
web browser, saving and refreshing your page each time, a process that can
literally take hours. With a good web page editor, you get conveniences like
drag-and-drop editing to fine-tune your pages—make a few adjustments, and
your editor tweaks your HTML appropriately. Editors also have a preview mode
that lets you immediately see the effect of your edits, no browser required.

• Help, I’m drowning in HTML! One of the nicest little frills of a web page editor
is color-coded HTML. Color-coding makes those pesky tags stand out against
a sea of text. Without this feature, you’d be cross-eyed in hours.

• Just type . To create a bulleted list, of course. You haven’t
forgotten already, have you? The truth is, most web authors don’t memorize
every HTML element there is. With a web editor, you don’t need to. If you forget
something, there’s usually a menu command, keyboard shortcut, or pop-up
window to help you out.

Of course, using a graphical web page editor has its own risks. That’s why you
started out with a simple text editor and why you’ll spend a good portion of this
book learning more about HTML and CSS. If you don’t understand these standards
properly, you can fall into a number of traps. For example, you might unintention-
ally use non-web-safe fonts that won’t show up on other computers (page 97), or
include HTML5 elements that older browsers don’t recognize. And no matter what
editor you use, you still need to understand HTML, because you’ll spend a significant
amount of time looking at raw markup to see exactly what’s going on, to clean up
a mess, or to copy and paste useful bits to other pages.

Types of Web Page Editors
Although every web editor has its own personality, they generally fall into one of
three broad categories:

• Text-based editors require you to work with the text and tags of raw HTML.
The difference between an ordinary text editor (like Notepad) and a text-based

CHAPteR 5: WORKING WITH A WEB EDITOR 149

CHOOSING
YOUR WEB

EDITOR
HTML editor is convenience. Unlike Notepad or TextEdit, text-based HTML edi-
tors usually include buttons that let you quickly insert common HTML elements
or element combinations, and a one-click way to save your file and open it in a
separate browser window. They often use color-coding to help you read your
markup and highlighting to flag common problems (like missing or misspelled
tags). Essentially, text-based HTML editors are text editors with some useful
web-editing features stapled on top. The Brackets editor, which you’ll meet in
this chapter (page 169), is a good example.

• WYSIWYG (what you see is what you get) editors work like word processors.
Instead of writing HTML tags, you type in a page’s text, format it, and insert
pictures just as you would in a word-processing program. Behind the scenes,
the web editor writes your HTML markup. WYSIWYG web editors also give you
the freedom to switch your view, so you can dart back and forth between the
WYSIWYG rendition of your page and the HTML markup that creates it.

• Split-window editors combine the best of the text-based and WYSIWYG ap-
proaches. They use a split, two-paned window that puts your HTML markup
beside a live, browser-style preview. The magic is that as you revise the HTML,
the editor refreshes the preview. That way, you don’t need to switch back and
forth between text editor and browser to see what you’ve accomplished. The
most advanced split-window editors also let you edit in the WYSIWYG view.
Dreamweaver and Expression Web both provide this ability, as you’ll see in
this chapter.

Any of these editors make a good replacement for a simple text editor. The type you
choose depends mainly on how many features you want, how you prefer to work,
and how much money you’re willing to shell out.

No matter which type of editor you use, you still need to know a fair bit about HTML
to get the results you want. Even if you have a WYSIWYG editor, you’ll almost al-
ways want to fine-tune your markup by hand. Understanding HTML’s quirks lets you
determine what you can and can’t do—and the strategies you need to follow to get
the most sophisticated results. Even in a WYSIWYG editor, you’ll inevitably look at
the HTML underbelly of your web pages.

Choosing Your Web Editor
Getting the right web editor is a matter of taste, personal preference, and—perhaps
most importantly—money. If you plan to embark on a new career as a junior web
designer, you may not mind investing in a pricey commercial tool. But if your rela-
tionship with the Web begins and ends with a small hobby site that showcases your
stamp collection, you’ll be reluctant to part with any extra cash.

Here’s the good news: These days, there’s an excellent web editor for every budget,
right down to free. The following sections outline your choices.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn150

CHOOSING
YOUR WEB

EDITOR

FREQUENTLY ASKED QUESTION

Save as HTML
My word-processing/page layout/spreadsheet program has a
feature for saving documents as web pages. Should I use it?

Over the last decade, the Internet has become the hottest mar-
keting buzzword around. Every computer program imaginable
is desperate to boast about new web features. For example,
virtually every modern word processor has a feature for
exporting your documents to HTML. Don’t use it.

HTML export features don’t work very well. Often, the program
tries to wedge a document designed for one medium (usually
print) into another (the Web). But word processor documents
just don’t look like web pages. They tend to have larger mar-
gins, fancier fonts, more text, more generous spacing around
that text, no links, and a radically different layout. When you
export a document, your word processor tries to preserve these

details, in the process creating pages that aren’t readable or
attractive when viewed in a web browser.

Another problem with export features is that they often
create wildly complex HTML markup. You end up with an
ungainly web page that’s nearly impossible to edit because
it’s choked with formatting details. (Dreamweaver even has a
tool that aims to help you with the cleanup; look in the menu
under Commands→Clean Up Word HTML.) And if you want
to convert one of these pages into stricter, cleaner HTML, you
need to do it by hand.

The lesson? If you can, steer clear of the “Save as HTML”
command. You’re better off copying and pasting the contents
of your document into an HTML file as plain text, and then
formatting it with HTML tags on your own.

Dreamweaver: The Best Choice if You’re Not on a Budget
Adobe Dreamweaver is the favorite page-creation tool of graphic designers and
hard-core HTML experts. Packed with features, it gives you fine-grained control of
every HTML ingredient.

It’s hard to go wrong with Dreamweaver. The program is chock-full of high-grade
features, while relatively easy to use. It’s also the de facto standard of web designers
everywhere. So if you use Dreamweaver, you can talk shop with other Dreamweaver
fanatics and professional web designers. The only possible drawback (other than
price) is its complexity. You can’t be the world’s most advanced web editor with-
out having a few overstuffed command menus. But as you’ll see in this chapter,
Dreamweaver is surprisingly unintimidating considering its status as the expert’s
tool of choice.

Now for that price. To use Dreamweaver, you need a Creative Cloud subscription from
Adobe. That means that instead of forking over an eye-popping amount of money
as a one-time payment, you’re on the hook for a monthly fee. For Dreamweaver
only, that’s currently $20 per month. If you want to tap the complete catalog of
Creative Cloud apps, which includes Dreamweaver, Photoshop, Illustrator, InDesign,
and several more professional creative tools, you pay $50 per month (less if you’re
a student; alas, there is no student discount for the Dreamweaver-only plan).

CHAPteR 5: WORKING WITH A WEB EDITOR 151

CHOOSING
YOUR WEB

EDITOR
To learn more or sign up for a Creative Cloud plan, visit https://creative.adobe.com/
plans. To try the free 30-day trial, head to http://tiny.cc/creativecloud. You’ll get a
basic introduction to Dreamweaver on page 153.

Expression Web: A Solid Free Alternative (Windows Only)
Once upon a time, Microsoft mounted a challenge to Dreamweaver’s dominance
with a well-rounded editor called Expression Web. Expression Web attracted more
than a little love, but it never acquired anywhere near the popularity or street cred of
Dreamweaver. Many professional web designers still remembered the ugly markup
generated by Microsoft’s previous web editing tool, FrontPage, and they weren’t
ready to trust the company again.

Microsoft abandoned Expression Web at the end of 2012. At the same time, it de-
cided to release the last version of the program online, and for free. That version is
still available, and it continues to work with newer Windows operating systems. (At
the time of this writing, it’s been confirmed to work on computers running Windows
XP right up to Windows 8.1.)

Of course, you won’t get non-critical updates or new features with Expression Web,
and Mac fans are completely out of luck. But even with these limitations, Expres-
sion Web remains a capable choice. It offers many of the same advanced features
4as Dreamweaver, including the ability to create style sheets and manage entire
websites. It’s far better than the crowd of modestly priced web editors you find on
shareware sites like www.download.com.

 NOTE  Shareware is software that’s free to try, play with, and pass along to friends. If you like it, you’re politely
asked to pay for it, or not-so-politely locked out when the trial period ends. A typical shareware web editor (like
CoffeeCup HTML Editor or HTML-Kit) costs $50 or $60. To make sure your shareware is virus- and spyware-free,
download it from a reputable source like www.download.com. And if the setup program gives you the option to
install additional software goodies (like anti-virus tools, registry cleaners, and browser search bars), always say
no. At best, these programs will clog your computer; at worst, they’ll snoop on your web travels and bother you
with advertising.

So the bottom line is this: If you aren’t out to impress a crowd of black-turtleneck-
wearing web designers, and you don’t mind living with the knowledge that someday,
on some new system, your web editor will stop working, then Expression Web is
a bargain that’s almost too good to be true. (And if you’re concerned about the
editor’s limited lifetime, check out the box on page 152 for a possible backup plan.)

To download Expression Web, visit http://tinyurl.com/freeEW. You’ll get a chance
to try it out in a tutorial on page 162.

Brackets: A Good Choice for Text Lovers and Techies
Looking for something simple, straightforward, and fast? The newest web editor
you’ll meet in this chapter is Brackets, a free tool from Adobe (the same company
that owns Dreamweaver). Like Dreamweaver, Brackets works on Windows and Macs,
so no one’s left out.

https://creative.adobe.com/plans
https://creative.adobe.com/plans
http://tiny.cc/creativecloud
www.download.com
www.download.com
http://tinyurl.com/freeEW

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn152

CHOOSING
YOUR WEB

EDITOR

TROUBLESHOOTING MOMENT

What to Do When Expression Web Retires
Right now, Expression Web works great, and there’s no reason
to think that will change in the near future. But someday, you’ll
notice that Expression Web lacks something—maybe it won’t
recognize the yet-to-be invented details of a future edition of
HTML, or perhaps it will come to a shuddering halt on a new
version of the Windows operating system. If you’re worried
about that possibility, Microsoft has another professional-
grade choice that shares the same zero-dollar price tag: It’s
called Visual Studio Express for Web.

Visual Studio Express for Web is one of the wildly popular Visual
Studio tools designed for programmers who build applica-
tions for Windows computers, apps for Windows phones, and
interactive websites fueled by the server software ASP.NET. (By
writing web applications with ASP.NET, you can create highly
interactive websites that query databases or place orders for
ecommerce sites. The drawback is that you need to be a skilled

and patient programmer, and you need to run your website on
a server that supports ASP.NET.)

But here’s what non-techies often overlook: Visual Studio
works just as well for plain-vanilla websites, although some
might consider it overkill. Yes, there are plenty of developer
features tucked into every nook and cranny, and the program
just feels bigger and more complicated than Expression
Web. But if you’re not intimidated by Visual Studio’s focus on
programming, and you don’t mind ignoring everything that
doesn’t apply to you, you can use it as an ordinary WYSIWYG
web page editor, complete with the same sort of professional
features you can find in Dreamweaver and Expression Web.
Best of all, its high profile in the programming world means
that you never need to worry about Microsoft abandoning it.

To try Visual Studio Express for Web, go to www.asp.net/vwd.

Brackets has a few characteristics that make it distinctly different from the web
editors you’ve seen so far. First, it provides a no-nonsense editing environment
that’s like a supercharged, color-coded text editor. Unlike Dreamweaver, Expression
Web, or Visual Studio, you can’t preview your web pages in the Brackets window,
but Brackets works closely with your browser, triggering an automatic refresh every
time you change your markup.

Brackets is also unusual in that it’s open source, meaning that it’s in the public domain,
so anyone can use it or explore the code that makes it work. It also means that the
Brackets project relies on volunteer programmers, who contribute everything from
new features to bug fixes.

Open-source projects have impressive benefits—as long as the project is thriv-
ing, the software is likely to get frequent updates, people are quick to spot and
patch problems, and the team of developers listens closely to the comments and
requests that come from the community of people who use the program. Brackets,
for instance, gets new features and extensions every few weeks. But open-source
projects can run into problems, too—most commonly, volunteer developers can
get tired or move on, and if that happens, there’s no authority to step in and force
everyone to keep working.

www.asp.net/vwd

CHAPteR 5: WORKING WITH A WEB EDITOR 153

GETTING
STARTED WITH
DREAMWEAVER

Brackets was designed for web designers who like the simple, fast, uncluttered
editing experience of a text editor. It’s particularly well-suited to programmers, but
it’s an equally good tool for web-heads who want to keep things simple, and focus
on the markup in their pages.

If you’re interested, you can download Brackets at http://brackets.io. You’ll see it
in action on page 169.

GEM IN THE ROUGH

Other Fancy Text Editor Alternatives
If you aren’t sold on Brackets but you still like the idea of a
jacked-up text editor, there are other options.

For Windows computers, the free Notepad++ does an excellent
job of replacing the classic Notepad editor with a tool that works
similarly but offers much more. Among its best features are
tag highlighting and a document map that gives you a bird’s-
eye view of long, sprawling text documents. Get it at http://
notepad-plus-plus.org.

On Mac computers, TextWrangler is a similarly useful free
text editor. It’s not any more complicated than the standard

TextEdit tool, but it offers the indispensable tag-highlighting
feature so you can find your way through complex markup
without headaches. Download it from www.barebones.com/
products/textwrangler.

If you aren’t concerned about price, you can splurge on Sublime
Text, a really tricked-out text editor that runs on Windows or
Macs but costs a princely $70. Among its many extra features
are a way of opening files and jumping to a specific location in
one go, the ability to select and change multiple bits of text at
a time, and a ridiculous amount of customizability. Learn more
at www.sublimetext.com.

Getting Started with Dreamweaver
Because Dreamweaver is part of Adobe’s Creative Cloud program, it’s a little harder
to install than a standalone program, whether you’re paying for a subscription or
just starting a trial. The following steps take you through the process:

 NOTE  With a Creative Cloud subscription, you run the software on your computer, just as you do with a
standard program. However, every time you launch a Creative Cloud application, it checks in with Adobe’s web
servers to make sure you have a valid license. When you stop paying your subscription, you can’t use the software,
even though it’s still technically on your computer. This might seem harsh, and it has made more than a few
enemies among cash-strapped graphics designers.

1. In your browser, visit http://tiny.cc/creativecloud.

2. Click the Download button.

Adobe asks if you have an Adobe ID.

3. Click the “Sign up for an Adobe ID” button.

You’ll need to fill in some basic information about yourself, including your name,
birthdate, and email address.

http://brackets.io
http://notepad-plus-plus.org
http://notepad-plus-plus.org
www.barebones.com/products/textwrangler
www.barebones.com/products/textwrangler
www.sublimetext.com
http://tiny.cc/creativecloud

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn154

GETTING
STARTED WITH
DREAMWEAVER

4. When you finish, click Sign Up.

Your browser will begin downloading the setup program for the Creative Cloud
system. This won’t take long.

5. Confirm your email address.

When you sign up for an Adobe ID, Adobe sends you a welcome email. In that
email is a “Verify your email” link. At some point before you start using the
Creative Cloud applications, you must click the verification link to confirm your
email address.

6. When you finish downloading the Creative Cloud program, launch it.

The setup program has a name like CreativeCloudSet-Up.exe. The exact way
you launch it depends on the browser you’re using. You may see the setup
program appear in a message bar at the bottom of the window (in which case
you should click it), or your browser may ask you straight up if you’re ready to
run the program (click Yes).

The Creative Cloud is a setup and management tool for all your Creative Cloud
programs. It also includes some Adobe goodies, like free online storage. How-
ever, installing Creative Cloud doesn’t actually get you any of the Creative
Cloud applications. Instead, you need to opt in to each program you want, as
you’ll see shortly.

7. Once you install Creative Cloud, launch it.

Usually, the Creative Cloud application launches automatically when you fin-
ish the setup. If not, you can use the shortcut on the desktop (on a Windows
computer) or you can start it from the Launcher (on a Mac).

8. In the Creative Cloud window, click “Install or update an application.”

You’ll see a list of Creative Cloud applications (Figure 5-1).

9. Look for Dreamweaver CC, and then click the Try button next to it.

Now, at last, you’re installing Dreamweaver. This will take a bit longer than the
Creative Cloud setup, depending on the speed of your connection. To check how
the process is unfolding, look at the progress bar in the Creative Cloud window.

When you finish the installation, you’re ready to start experimenting with Dream-
weaver. Remember, if you chose the trial version, you have just 30 days before the
software becomes useless. If your trial period runs out and you want to stick with
Dreamweaver, you can upgrade to a paid account at https://creative.adobe.com/
plans.

Editing a Page
The first time you start Dreamweaver, you’ll need to click your way through a number
of messages. The program boasts about some of its new features, offers to give you
a tour, and, if you’re using the trial version, asks if you want to upgrade to the paid

https://creative.adobe.com/plans
https://creative.adobe.com/plans

CHAPteR 5: WORKING WITH A WEB EDITOR 155

GETTING
STARTED WITH
DREAMWEAVER

program. When you finally get to the Dreamweaver window, you may find some
unnecessary panels crowding up the sides. Look for the tiny arrow buttons to shift
them out of the way (Figure 5-2).

FiGURE 5-1
Left: The Creative Cloud
application starts you out
at the Home tab. Click
the first link to install a
program.

Right: You can try out any
of the Creative Cloud apps,
but the one you want right
now is Dreamweaver CC
(short for Dreamweaver
Creative Cloud).

FiGURE 5-2
Here, a panel advertising
one of Dreamweaver’s
newest fancy features (the
ability to convert parts of a
Photoshop file into images
or styles that a web page
can use) occupies the left
side of the window. Since
you don’t need the panel,
click the tiny “Collapse to
Icons” arrows (circled) to
hide it and reclaim the
space for editing your
pages.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn156

GETTING
STARTED WITH
DREAMWEAVER

To take Dreamweaver for a test spin, open one of the HTML sample files you worked
on in the previous chapters (all of which are available on the companion site at http://
prosetech.com/web), using the familiar File→Open command. Figure 5-3 shows
Dreamweaver with the resume4.htm page from Chapter 1 open.

When you open a file in Dreamweaver, it gives you a split window that previews your
page-in-progress on the top and shows the HTML markup on the bottom. Usually,
you’ll do your editing in the markup area.

As you type, Dreamweaver refreshes the preview to keep it in sync with the changes
you make to the HTML. For example, say you open the Lee Park resumé shown in
Figure 5-3 and replace the text “I am Lee Park” with “You can call me Mr. Park.”
Watch carefully, and you’ll see Dreamweaver automatically refresh the preview.

FiGURE 5-3
When you open a page
in Dreamweaver, you get
a handy split view that
shows you how the page
will look in a browser
(top) and its behind-the-
scenes markup (bottom).
In this example, you can
simultaneously see the
picture of Lee Park and the
 tag that inserts it
into the page.

You can also use the preview area to jump to a specific location in your markup. For
example, if you click a paragraph in the preview area, Dreamweaver selects the cor-
responding <p> element in the markup area. You can also double-click something in
the preview area to make a quick edit. To try this out, double-click the last list item
in the resumé example. This puts the preview area in edit mode so you can make
changes. Now move to the end of the line, press Enter, and then type in a new entry.
When you finish, click anywhere else in the page to make the change permanent.

http://prosetech.com/web
http://prosetech.com/web

CHAPteR 5: WORKING WITH A WEB EDITOR 157

GETTING
STARTED WITH
DREAMWEAVER

Dreamweaver refreshes the markup below to match, adding a new element
with the text you just typed in.

Even if you’re still a bit intimidated by angle brackets and HTML attributes, it shouldn’t
take you long to get comfortable in Dreamweaver’s split window. Here are a few
adjustments that let you customize the editing environment:

• You can move the splitter bar that divides the preview area from the markup
area. For example, you can drag it up to get more space to review your markup.

• If you prefer to have the markup up top and the preview below, choose
View→Live View on Top (which turns the “Live View on Top” setting off).

• If you have a large, widescreen monitor, you might prefer to put the preview
and the markup side by side. Choose View→Spit Vertically.

• If you want to focus on the markup and ignore the preview for the time being,
click the Code button at the top of the editing window (Figure 5-4). Click Split
to go back to the split view, or Live to show just the preview.

 NOTE  If you’re working with a complex page, or you need to make extreme changes, the live preview
feature could slow you down. If it takes a long ti me for Dreamweaver to refresh the live preview, you can switch
to the program’s older design view, which works the same way but updates less often. To make the switch, choose
View→Toggle Live view (or click the drop-down arrow next to the Live button at the top of the page, and then
choose Design). Now Dreamweaver won’t update the preview as you type in the markup area. Instead, it waits
until you click the preview area, click a menu command, or switch to another program and then come back.

FiGURE 5-4
One of the best features of a professional
web editor like Dreamweaver is the ability to
look at a web page from several perspectives,
depending on the task at hand.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn158

GETTING
STARTED WITH
DREAMWEAVER

Dreamweaver also has a neat way of dealing with style sheets. When you open a
page that uses a linked style sheet, it adds the name of the style sheet (for example,
resume.css) to the top of the editing window, just above the Code, Split, and Design
buttons. Click the style sheet’s name, and Dreamweaver shows the style sheet code
in the markup window. Click Source Code to switch back to the HTML markup for
your page. This handy feature lets you work with external style sheets as though
they were a part of your web page, without opening a new window.

HOW’D THEY DO THAT?

The Mystery of Empty Paragraphs
In web authoring tools like Dreamweaver, if you’re in Design
view and you press Enter, the program creates a new para-
graph. This seems a little counterintuitive, as you learned
earlier in this book that browsers normally ignore line breaks
and white space.

The trick is that when you hit the Enter key, both programs
insert a paragraph that contains a special code. Here’s what
that creation looks like:

<p> </p>

This paragraph is still empty, but the browser won’t ignore it
because it includes the code. Therefore, the browser
gives it the same space as a single-line paragraph and bumps
down the content underneath.

Incidentally, Dreamweaver does let you use more ordinary line
break elements (
) instead of empty paragraphs, even in
Design view. To do this, press Shift+Enter instead of just Enter.

Creating a New Page
Now that you’ve taken a look at Dreamweaver’s editing features, why not create a
new page of your own? Here’s how:

1. Just as in a text editor, you start by picking File→New.

When you ask Dreamweaver to create a new file, it offers you an overwhelming
panoply of choices (Figure 5-5). But right now, you want to stick with creating
a plain-vanilla, blank HTML page.

2. Make sure you select HTML5 from the DocType drop-down menu, and then
click Create.

Dreamweaver produces a bare-bones HTML page that includes the doctype
and the basic <html>, <head>, <title>, and <body> elements.

 NOTE  Later in this book, you’ll learn how to create fancy layouts and pile on other web page frills. But if
you let Dreamweaver add these details for you now, you’ll end up with some markup and styles that you don’t
quite understand. And when you don’t understand what’s in your markup, you start to lose control of your page.

As a general rule of thumb, you should use a web editor for its convenience, not because it knows something you
don’t. And never let a web editor add something to your page that you don’t fully understand.

CHAPteR 5: WORKING WITH A WEB EDITOR 159

GETTING
STARTED WITH
DREAMWEAVER

FiGURE 5-5
Dreamweaver lets you
choose from a long list
of file types in the Page
Type list, including CSS
style sheets and JavaScript
code files. Choose HTML,
and Dreamweaver gives
you the choice of several
ready-made page designs
with multicolumn layouts
(in the Layout list). To
avoid confusion and keep
things simple, stick with
the first choice, <none>.

3. Choose File→Save, pick a filename, and then save the HTML document to
your hard drive.

Technically, you don’t need to save your new web page right away, but doing
so can avoid potential problems. For example, if you insert an image into an
unsaved document, Dreamweaver writes a file path that points to the image
on your hard drive. Later, when you put the page online, visitors will see the
dreaded broken-image icon (page 117) because their browsers can’t tap into
your hard drive.

4. Add some content.

If you want some good practice, try recreating one of the examples from
Chapter 1. You can follow the instructions from the second tutorial, on page 21.

As you type, you’ll notice a few shortcuts. For example, when you start typing a
tag name (by typing the initial angle bracket, <), Dreamweaver displays a pop-
up menu with suggestions. You can choose a valid HTML tag from the list or
just keep typing. And when you start typing an end tag with the </ characters,
Dreamweaver figures out which element is currently open and fills in the rest
(for example, </h1> if you’re rounding off a heading).

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn160

GETTING
STARTED WITH
DREAMWEAVER

5. Preview your page in a browser.

Dreamweaver does an excellent job of showing you what your page will look
like once you put it on the Web. But to make sure the page works for all your
guests, take a look at it in several web browsers. You can launch a browser
and load up your page in one nifty step, right from inside Dreamweaver. Just
choose File→“Preview in Browser,” and then pick the browser you want to use.

Working with Several Pages at Once
Web editors like Dreamweaver have an elegant way of dealing with multiple pages.
Each time you open another page or create a new document, Dreamweaver adds
a tab at the top of the editing window (Figure 5-6). Switching from one page to
another is as easy as clicking the tab you want. There’s no need to juggle a dozen
different windows.

FiGURE 5-6
Here you have two web pages open in Dream-
weaver. You switch between them using the tabs
at the top of the editing window. The currently
selected tab is for the page resume_WithStyle.
htm (an example from Chapter 3). To close a tab,
click the tiny X next to the filename.

If you’re tired of opening all your site files one at a time, Dreamweaver has another
feature that can help you out. You can browse your site files and folders using
Dreamweaver’s Files panel, which sticks to the side of the main Dreamweaver win-
dow (Figure 5-7). To summon it into existence, choose Window→Files, and then
browse to the folder that holds your website. To open one of the files inside, give
it a quick double-click.

 TIP  To keep the Files panel from popping out of sight whenever you stop using it, click the tiny Expand Panels
arrows at the top of the skinny bar that sits against the right side of the Dreamweaver window (Figure 5-7).

CHAPteR 5: WORKING WITH A WEB EDITOR 161

GETTING
STARTED WITH
DREAMWEAVER

FiGURE 5-7
Using Dreamweaver’s Files panel, you
can browse all the files in a folder. A
few quick clicks, and you can open
every page you want to work on.

Defining a Dreamweaver Site
Dreamweaver also has a more formal sites feature. With it, you explicitly tell Dream-
weaver what folder represents your website. You can also supply some other key
details, such as the location of the web server where you want to upload your finished
site. The sites feature is the gateway to a few other Dreamweaver site-management
features, like link-checking (page 197).

Follow the next set of steps to tell Dreamweaver that a folder on your computer
represents a work-in-progress website, one that you plan to upload to the Internet
someday.

1. Click the Manage Sites link in the Files panel, or just select Site→New Site.

Dreamweaver fires up a Site Setup window, where you fill in information about
your new site.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn162

SETTING UP
SHOP WITH

EXPRESSION
WEB

2. Enter a descriptive name in the Site Name box.

The site name is just the one you use to keep track of your site, so use whatever
name you want. This example uses LeeParkSite. The site name also appears in
the Files panel.

3. In the Local Site Folder box, fill in the full file path for your website folder
(usually something like C:\Creating a Website\Chapter 1).

If you aren’t sure where your site folder is, you can click the folder icon next to
the text box to browse for it. Or you can enter a path to a folder that doesn’t
exist yet; Dreamweaver creates a new, empty folder so you can start building
your website.

Now that you’ve defined your site, you’re only a small step away from putting your
work online. You’ll learn how to do that soon enough, in Chapter 9 (page 303).

 TIP  This walkthrough has only scratched the surface of Dreamweaver’s many layers of web-building tools
and frills. For an in-depth exploration of nearly every Dreamweaver feature, check out Dreamweaver CC: The
Missing Manual (O’Reilly).

Setting Up Shop with Expression Web
Expression Web is a middle-of-the-road web editor—not quite as hefty and fea-
ture-laden as Dreamweaver, but certainly not as streamlined as Brackets. You can
download the straightforward setup program from http://tinyurl.com/freeEW and
get started immediately.

When you open Expression Web, you start out with a black-bordered, multipaned
window (Figure 5-8). Look past the clutter and focus on the large center region,
which holds a new, blank web page.

The web page that Expression Web starts you out with isn’t exactly right (it uses the
older XHTML doctype instead of the HTML5 doctype you really want). You’ll correct
that on page 165, but don’t worry about it just yet. For now, it’s more important to
try out the editor and figure out how it works.

Choosing Your View
Initially, Expression Web gives you a split-screen view that puts the HTML markup
on top and a live preview on the bottom. To see how this works, try typing some
content in the markup. For example, type, “This is my first day with Expression Web”
between the <body> start tag that begins the page and the </body> end tag that
finishes it off (Figure 5-9).

http://tinyurl.com/freeEW

CHAPteR 5: WORKING WITH A WEB EDITOR 163

SETTING UP
SHOP WITH

EXPRESSION
WEB

FiGURE 5-8
When you start Expression Web, it
creates a new, empty web page with
the working filename Untitled_1.html.
Although there’s no content in the
page yet, it already has a basic HTML
skeleton, consisting of the <html>,
<head>, and <body> elements.

FiGURE 5-9
When you type in the HTML window,
nothing changes in the preview pane. But
as soon as you click in the preview area
or press the F5 key (which is the Refresh
command), Expression Web updates the
page preview.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn164

SETTING UP
SHOP WITH

EXPRESSION
WEB

The preview isn’t just a preview—it’s also a fully editable WYSIWYG version of your
page. Try it out—click in the preview area and edit your sentence. As you type, the
changes appear in your markup above.

If you want more room to work, you don’t need to stick with the split screen. Click
one of the buttons in the bottom-left corner of the page to switch your view. Click
Design to focus on the WYSIWYG rendition of the page and hide the markup, or click
Code to fill the whole page with markup (Figure 5-10). Incidentally, this is exactly
the same way Dreamweaver works, except that it places the buttons at the top of
the editing window.

FiGURE 5-10
Split view is a great way to get an overview of your
page, but it’s often handy to switch to markup-only
Code view (like you get in the Notepad text editor) to
free up more working space.

 TIP  Do you want to stay in split view but see more of one view than the other? First, point to the bottom
edge of the bar that separates the markup area from the preview area. If you’re in the right spot, your mouse
cursor will change into a line with an arrow pointing up and an arrow pointing down. Now just click and drag the
dividing line up (to show a bigger preview area) or down (to show more markup).

Editing HTML in Code view is a breeze. Expression Web offers a number of useful
features that can help you out:

• It color-codes your tags so they stand out from your text.

• When you type the left angle bracket (<), Expression Web pops up a handy list
of elements that you can use.

• When you add a start tag (like for bold lettering), Expression Web automati-
cally adds the end tag (), saving you a few keystrokes.

• If you make an obvious mistake (like deleting a tag you need, or misspelling a
tag name), Expression Web points out the problem with a red squiggly underline
or a yellow highlight. To get a description of exactly what you did wrong, just
point to the mistake.

CHAPteR 5: WORKING WITH A WEB EDITOR 165

SETTING UP
SHOP WITH

EXPRESSION
WEB

Expression Web also has plenty of features that are less useful for serious HTML
writers. For example, you can drag an HTML tag from the Toolbox panel on the
right side of the window and drop it on your page, but it’s just as easy to type in
the element you want by hand.

Similarly, you’ll spot a fully stocked toolbar at the top of the Expression Web win-
dow. You might use the drop-down element-picker to create a heading or bulleted
list, but most of the buttons are more trouble than they’re worth. That’s because
they make a series of changes to your page that may not be exactly what you want.

For example, if you click the center-alignment button, Expression Web adds an
internal style sheet to your page, creates a class-based new style rule (to which it
assigns a rather useless name like auto-style1), and then adds the class attribute to
your element to apply the style. This is all well and good, but it’s even better if you
decide exactly what effect you want, create a style with the name you want, put it in
the place you want, and then give it the combination of style settings that you want.

Configuring Expression Web for HTML5
As you’ve already learned, Expression Web is a few years old, so its features set
might not reflect the very latest and greatest developments in web design. One
area where it shows its age is in the doctype it uses to adorn all new web pages.
Ordinarily, Expression Web specifies the XHTML doctype for your pages, which was
once the favorite of strict, standards-minded web developers. But now, every web
designer uses the all-purpose HTML5 doctype instead.

If you don’t want to edit the first line of every new web page you create, you need
to tell Expression Web to use the HTML5 doctype all the time. Fortunately, that’s
easy to do:

1. Choose Tools→Page Editor Options from the menu.

Expression Web opens a window with several tabs crammed full of options.

2. Click the Authoring tab (Figure 5-11).

3. In the middle section (“Doctype and Secondary Schema”), change the
“Document Type Declaration” setting to “HTML 5.”

4. Click OK.

From this point on, every new page you create gets the slimmed-down HTML5
doctype you’ve been using all along. To check, create a new page by choosing
File→New→Page.

Opening Multiple Pages
To get a feel for Expression Web, you can experiment with a sample page from a
previous chapter. For example, you can use one of the resumé pages from Chapter 1
or a style sheet from Chapter 3. Use the standard File→Open command to open the
page you want.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn166

SETTING UP
SHOP WITH

EXPRESSION
WEB

FiGURE 5-11
You need to tell Expression Web that you want
to create official HTML5 pages. Ignore the minor
mistake Expression Web makes by calling the
standard “HTML 5” instead of using its true and
official space-less name, “HTML5.”

Expression Web lets you open as many pages as you want at a time. You use tabs
to switch from one page to another (Figure 5-12), which is handy when you have
to make changes to several pages in your site. To close a file, click the tiny X next
to its name.

FiGURE 5-12
Here you have three documents open: the
tomato soup recipe example from Chapter 4,
the styled resumé from Chapter 3, and its linked
style sheet. Click a tab to switch files.

CHAPteR 5: WORKING WITH A WEB EDITOR 167

SETTING UP
SHOP WITH

EXPRESSION
WEB

Defining a Site in Expression Web
Like Dreamweaver, Expression Web provides a site feature that makes it easy to
work with an entire folder of files. It also lets you tap other, advanced features, like
link-checking and site-uploading (which you’ll consider on page 307).

The basic idea is that an Expression Web site is a collection of web pages and other
resources (like pictures and style sheets), stored in a folder on your computer (op-
tionally with subfolders inside it). To open a site in Expression Web, you simply need
to tell it where that website folder is. Here’s how:

1. Select Site→Open Site.

Expression Web opens the Open Site window, which lists all the sites you’ve
opened before (Figure 5-13).

FiGURE 5-13
Expression Web’s Open Site dialog box
lists all the websites it knows about.
When you open Expression Web for
the first time, this list is empty (except
for a nearly useless sample site that
Expression Web creates when you
install it). To hunt down one of your
own sites, click Browse.

2. Click Browse to search for your website folder.

Opening a website is just like browsing for a file, except that you’ll see only
folders listed, not filenames.

3. Browse to the folder you want to open, select it, and then click Open.

For this example, pick the Chapter 1 folder from the companion site at http://
prosetech.com/web.

Clicking Open returns you to the Open Site dialog box. If you want to store the
location of this website so you can open it more quickly next time, switch on
the “Add to managed list” option. That way, Expression Web will add the folder
to its Managed Sites list.

4. Click Open to open your website in Expression Web.

After you click Open, the editor displays a Site View tab listing all the files in
your site (see Figure 5-14).

http://prosetech.com/web
http://prosetech.com/web

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn168

SETTING UP
SHOP WITH

EXPRESSION
WEB

FiGURE 5-14
When you open a
website folder (here it’s a
folder named C:\Creating
a Website\Chapter 1),
Expression Web adds a tab
that displays all the files
in that folder. You can do
basic file management
here—for example, you
can right-click a file to pop
open a menu with options
to rename or delete the
file. You can also double-
click a page to open it for
editing.

5. Add the Expression Web metadata folders. To do so, choose Site→Site
Settings, choose “Maintain the website using hidden metadata files,” and
then click OK.

Many of Expression Web’s site-management features require tracking informa-
tion, which Expression Web stores in hidden subfolders. However, Expression
Web doesn’t create these folders automatically; you need to opt in to get the
program to produce them.

The word metadata means “data about data.” In other words, Expression Web’s
metadata folders store data about the data in your website. If you’re curious,
you can see these subfolders in Windows Explorer—they have names like _pri-
vate, _vti_cnf, and _vti_pvt. (Web trivia: The VTI acronym stands for Vermeer
Technologies Inc.—the company that originally created FrontPage and sold it
to Microsoft.)

These folders have several purposes. First, they keep track of what files you
uploaded to your web server. This tracking makes it incredibly easy for you
to update a website, because Expression Web transfers only changed files to
your server, not the entire site. The folders also track information about your
site’s pages and resources, which Expression Web uses for handy features like
reporting and link-checking (page 197).

CHAPteR 5: WORKING WITH A WEB EDITOR 169

TRYING OUT
BRACKETS

 TIP  Treat the metadata folders as a bit of behind-the-scenes plumbing. You need to have them for certain
features, but once you create the folders you don’t need to think about them again.

When you finish working with a site, you can either close Expression Web or choose
Site→Close to shut down the site view, close all the open web pages, and start
working on something else.

UP TO SPEED

Honing Your Expression Web Skills
Now that Microsoft has stopped developing Expression Web,
it’s difficult to find good help on the more complicated parts of
the program. If you search the Web for “Expression Web tutori-
als,” you’ll turn up a few ad-heavy but low-information sites
that may help you with some of the basics. But your best bet
is to steer away from the more advanced and less commonly

used features, some of which are linked to Microsoft-specific
extensions that your web host might not support.

Instead, rely on the useful Expression Web features covered in
this chapter, such as its HTML editing, its web page previews,
and its site management. You’ll round out your Expression Web
knowledge in Chapter 9 when you learn how you can use it to
upload your site to your web server (page 307).

Trying Out Brackets
Not interested in old software and not willing to part with the big bucks? If Expression
Web and Dreamweaver don’t fit your style, you might find happiness with Brackets,
the newest, slimmest, and most nerd-pleasing web development tool.

Getting Brackets onto your computer is easy. The setup program is just a download
away at http://brackets.io. Once you install Brackets on your computer, open the
program and keep reading.

Just like Dreamweaver and Expression Web, Brackets starts you out at its main
window, where all your web editing work takes place. However, the Brackets window
is simpler and more streamlined than what you get with those other web editors. In
Brackets, there are no fancy toolbars and only a single side panel, on the left, which
lists the files you’re working on. The rest of the window shows the markup for the
page you’re currently editing (Figure 5-15). You get the markup only—there’s no
built-in preview or WYSIWYG view.

 TIP  You’ll notice that Brackets helps you keep your spot in long files with line numbers in the left margin.
Another nice feature is the ability to highlight the active line—the one you’re currently working on—with a light-
gray background. To switch that feature on, choose View→Highlight Active Line. Similarly, you can turn off the
line numbers by choosing View→Line Numbers.

http://brackets.io

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn170

TRYING OUT
BRACKETS

FiGURE 5-15
The first time you start
Brackets, it displays a
sample file named index.
html that tells you a bit
about the program.

The first bit of magic you get with Brackets is its live web browser integration. At
the time of this writing, you need Google Chrome to use this feature. Assuming you
have the browser, just click the lightning bolt icon on the right side of the Brackets
window (or choose File→Live Preview) to open a new Chrome window with a preview
of the page in it (Figure 5-16).

So far, this doesn’t sound like anything special. But there’s more going on than first
meets the eye. When you start a live preview, Brackets wires itself into Chrome,
breaking you out of the tedious edit-save-refresh cycle. In fact, as soon as you
change a detail in the Brackets window, Chrome updates the linked window so
that it reflects your edit. So even though the source code and preview aren’t in the
same window (as they are in Dreamweaver and Expression Web), the Brackets and
Chrome windows work so well together that it’s hardly a problem.

 NOTE  You only need to launch a live preview once. The Chrome window remains linked to the page you’re
editing in Brackets, until you close Brackets or Chrome.

CHAPteR 5: WORKING WITH A WEB EDITOR 171

TRYING OUT
BRACKETS

FiGURE 5-16
Here’s the sample index.
html page in Brackets and
its linked Chrome preview.
Notice how Brackets out-
lines the first paragraph
in blue. It uses this subtle
effect to indicate the part
of the page you’re cur-
rently editing.

Working with a Set of Files
Brackets has a curious way of dealing with files. Every time you open a page (by
choosing File→Open) or create a new one (by choosing File→New), Brackets adds
this file to the list of working files, which appears on the left side of the Brackets
window. And there it stays. Brackets is so keen to keep your recent work at your
fingertips that even if you close and then reopen the program, you’ll see the same
set of working files in the list on the left.

If this seems a bit awkward, don’t worry—it all gets better when you take charge of
the working file list. Here’s how:

• To switch from one page to another, click the page’s name in the list. (In other
words, the working list replaces the tabs feature that you use to switch between
pages in web editors like Dreamweaver and Expression Web.)

• If you finish working with a file and don’t want it cluttering up your working
files list, point to the filename and then click the tiny X that appears on the left
(Figure 5-17).

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn172

TRYING OUT
BRACKETS

• To rearrange the list of working files, click the tiny gear icon to pop open a menu
of sorting options. You can order the list by filename (alphabetically), file type
(to separate web pages from style sheets, code files, and so on), or the time
you added it to the list (newest at the top).

FiGURE 5-17
Brackets keeps track of the web pages you’re editing in its working
files list. To open one of the files, click it. To banish it from the list, click
the X icon (shown here next to resume.htm).

The working files list is just one of two that appear in the Brackets window. Under-
neath it, Brackets displays the folder list; click a folder and you see all the files it
contains. Initially, the list holds the Getting Started folder, which includes an example
page that Brackets puts on your computer when you first install it. But it makes more
sense for you to pick your website folder here. That way, you can quickly open all
the web pages you need.

Start by choosing File→Open Folder. Then browse to your site folder, click it, and
then click the Select Folder button. For example, you could pick the Chapter 1 folder
from the companion site (http://prosetech.com/web), which holds all the examples
from Chapter 1 (Figure 5-18).

Here’s one more trick: Brackets remembers all the folders you open. So if tomor-
row you want to return to the Chapter 1 website, just click the heading at the top of
the folder list. You’ll see a list of all the recent folders you’ve worked with. Pick the
Chapter 1 folder, and you’re on your way.

Brackets is stuffed with quirky tricks like this. To learn more, check out the video
tutorials on the official Brackets YouTube channel at www.youtube.com/user/
CodeBrackets. You can also get the latest news from the official Brackets blog at
http://blog.brackets.io.

http://prosetech.com/web
www.youtube.com/user/CodeBrackets
www.youtube.com/user/CodeBrackets
http://blog.brackets.io

CHAPteR 5: WORKING WITH A WEB EDITOR 173

TRYING OUT
BRACKETS

FiGURE 5-18
When you open a folder, Brackets displays a list of the files it contains.
And when you open a file from the folder list, Brackets adds it to your
working files list.

 NOTE  If Brackets suits your style, you’re in luck. Unlike Expression Web and many other free web develop-
ment tools, Brackets is under active development and has a community of enthusiastic web developers using it.

GEM IN THE ROUGH

Creating Style Sheets with Web Page Editors
The best web editors (including the three covered in this
chapter: Dreamweaver, Expression Web, and Brackets) don’t
just help you write HTML; they also offer handy features for
writing style sheets.

To try them out, start by opening an existing style sheet or
creating a new one. To create a style sheet in Dreamweaver,
choose File→New, pick CSS in the Page Type list, and then
click Create. To create a style sheet in Expression Web, choose
File→New→CSS. And in Brackets, choose File→New, and

then File→Save. (It’s not until you save your file with the famil-
iar .css extension that Brackets recognizes it as a style sheet.)

At first, you won’t see anything to get excited about. But life
gets interesting when you start to edit your style sheet. As
you type, your web page editor pops up a list of possible style
properties and values (see Figure 5-19). If you dig deeper in
Dreamweaver or Expression Web, you’ll find that both web
editors have windows that let you build styles by pointing and
clicking, as well as convenient shortcuts for applying styles to
page elements.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn174

TRYING OUT
BRACKETS

FiGURE 5-19
As you edit a style sheet
in Dreamweaver, it pops
up lists of possible style
properties (left) and
property values. If you’re
dealing with colors, you
even get this handy
color picker (right), which
translates the color codes
in your style sheet into the
actual color and displays
the results. It’s a great
help for foggy memories
and saves more than a few
keystrokes.

175

CHAPTER

6

So far in this book, you’ve worked on individual web pages. While creating a
single page is a crucial first step in building a site, sooner or later you’ll want to
wire several pages together so a web trekker can easily jump from one page

to another. After all, linking is what the Web is all about.

It’s astoundingly easy to create links—officially called hyperlinks—between pages. In
fact, all it takes is a single element, called the anchor element. Once you master this
bit of HTML, you’re ready to start organizing your pages into separate folders and
transforming your humble collection of standalone documents into a full-fledged site.

Understanding the Anchor
In HTML, you use the anchor element, <a>, to create a link. When a visitor clicks the
link, her browser opens the associated page.

The anchor element is a straightforward container element. It looks like this:

<a>...

You put the text a visitor clicks inside the anchor element:

<a>Click Me

The problem with this link is that, as written above, it doesn’t point anywhere. To turn
it into a fully functioning link, you need to supply the address of the destination page
using the href attribute (which stands for hypertext reference). For example, if you
want a link to take a reader to a page named LinkedPage.htm, you create this link:

Click Me

 Linking Pages

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn176

UNDERSTANDING
THE ANCHOR

For this link to work, the LinkedPage.htm file has to reside in the same folder as the
web page that contains the Click Me link. (You’ll learn how to better organize your
site by sorting pages into subfolders in the tutorial that starts on page 179.)

The anchor tag is an inline element—it fits inside any block element. That means
that it’s completely acceptable to make a link out of just a few words in an otherwise
ordinary paragraph, like this:

<p>

 When you're alone and life is making you lonely

 You can always go downtown
</p>

Figure 6-1 shows this link in action.

FiGURE 6-1
If you don’t take any steps to customize an anchor
element, its text appears in a browser with the familiar
underline and blue lettering. When you point to a
hyperlink, your cursor turns into a hand. You can’t tell
by looking at a link whether or not it works—if the link
points to a non-existing page, you’ll get an error mes-
sage only after you click it.

It’s worth noting that the label you give a link—that’s the text inside the <a> element—
is important. As you’ll discover in Chapter 10, search engines pay extra attention
to this label. Getting it right increases the odds that your website will turn up in a
Web search and attract new visitors. Here are some examples of good, descriptive
link text: “Products,” “Register,” “Our Policies,” and “Contact Me.” By comparison,
unhelpful link labels usually consists of one or two vague words in a sentence, like
“click,” “here,” “more,” or “this link.”

Internal and External Links
Links can shuttle you from one page to another within the same website, or they
can transport you to a completely different site on a far-off web server. You use a
specific type of link in each case:

• Internal links point to other pages on your site. They can also point to other
types of resources on your site (like pictures or PDF files).

• External links point to pages (or resources) on other websites.

CHAPteR 6: LINKING PAGES 177

UNDERSTANDING
THE ANCHOR

UP TO SPEED

Linking to Other Types of Content
Most of the links you write will point to HTML web pages, but
that’s not your only option—you can link directly to other types
of files as well. The only catch is that it’s up to the browser to
decide what to do when someone clicks a link that points to a
different type of file.

Here are some common examples:

• You can link to a JPEG, GIF, or PNG image file. When visitors
click a link like this, their browser displays the image in a
new window without any other content. Websites often
use this approach to let visitors take a closeup look at
photos, like products in a catalog site. You’ll use an image
link in the tutorial on page 186.

• You can link to a specialized type of file, like a PDF file,
a Microsoft Office document, or an audio MP3 file. These
links rely on a browser having a plug-in (a mini-program

that handles specific tasks) that recognizes the file type
or on your visitor having a suitable program installed on
his computer. If you use a less common file type and the
computer doesn’t have the right plug-in, the only thing
your visitors will be able to do is download the file, where
it will sit like an inert binary blob. However, if a browser
has the right plug-in, a small miracle happens, and the
file opens up right inside the browser window.

• You can link to a file you want others to download. If a
link points to a file of a specialized type and the browser
doesn’t have the proper plug-in, visitors get a choice: They
can ignore the content altogether, open it using another
program on their computer, or save it on their computer.
This is a handy way to distribute large files (like a ZIP file
featuring your personal philosophy of planetary motion).

Say you have two files on your site, a biography page and an address page. If you
want visitors to go from your bio page (MyBio.htm) to your address page (ContactMe.
htm), you create an internal link. Whether you store both files in the same folder
or in different folders, they’re part of the same website on the same web server, so
you’d use an internal link.

On the other hand, if you want visitors to go from your Favorite Books page (Fav-
Books.htm) to a page on Amazon.com (www.amazon.com), you need an external
link. Clicking an external link transports your guest from your website to a new site,
located elsewhere on the Web.

So how do you create internal and external links? It’s all in the way you write the web
address, or URL. Internal links use something called relative URLs, while external links
use absolute URLs. The following sections break down the differences between them.

RELATIVE URLS
When you create an internal link, you use a relative URL, which tells browsers the
location of the target page relative to the current folder. In other words, it gives your
browser instructions on how to find the page by telling it to move down into or up
from the current folder. (Moving down into a folder means moving from the current
folder into a subfolder. Moving up from a folder is the reverse—you travel from a
subfolder up into the parent folder, the one that contains the current subfolder.) All
the examples you’ve seen so far use relative URLs.

www.amazon.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn178

UNDERSTANDING
THE ANCHOR

Imagine you visit a page named Products.htm, which has this address:

http://www.GothicGardenCenter.com/Sales/Products.htm

And say the text on the Products.htm page includes a sentence with this relative
link to Flowers.htm:

Would you like to learn more about our purple
hydrangeas?

If you click the word “hydrangeas,” your browser attempts to send you to the Flowers.
htm page. Because the <a> element in this example uses a relative link, your browser
assumes that Flowers.htm is in the same location as Products.htm, and it fills in the
rest of the URL. That means the browser actually requests this page:

http://www.GothicGardenCenter.com/Sales/Flowers.htm

One of the nicest parts about relative links is that you can test them on your own
computer and they’ll work exactly as they would online. For example, imagine you
develop the site www.GothicGardenCenter.com on your computer and store it in-
side the folder C:\MyWebsite (that’d be Macintosh HD/MyWebsite, in Mac-ese). If
you click the relative link that leads from Products.htm to Flowers.htm, the browser
looks for the target page in the C:\MyWebsite (Macintosh HD/MyWebsite) folder.

Once you polish your work to perfection, you upload the site to your web server,
which has the domain name www.GothicGardenCenter.com. Because you used rela-
tive links, you don’t need to rewrite any of the links when you move your pages to the
server. When a guest clicks a link, his browser requests the corresponding page from
www.GothicGardenCenter.com. If you decide to buy a new, shorter domain name
like www.GGC.com and move your website there, the links still work. For all these
reasons, relative links are the best way to connect the different pages in your site.

 NOTE  Relative links can also travel into (and out of) subfolders. You’ll learn how to write links that do that
in the tutorial on page 179.

ABSOLUTE URLS
HTML gives you another linking option, called an absolute URL, which is an address
that includes the target’s domain name, full path, and page name. If you convert
the previous relative URL to an absolute URL, it looks like this:

Would you like to learn more about our purple <a href=
"http://www.GothicGardenCenter.com/Sales/Flowers.htm">hydrangeas?

This absolute link works just as well as the relative link did, but here’s the catch: If
you move the page to a different website or folder, the link stops working. Instead,
when you click “hydrangeas,” your browser tries to find the Flowers.htm page in
the Sales folder, where it no longer exists.

CHAPteR 6: LINKING PAGES 179

TUTORIAL:
LINKING THE
PAGES IN A

SITE
For this reason, absolute URLs aren’t a great way to connect the pages within your
site. However, if you want to create an external link that travels to another site,
they’re essential. For example, imagine you want to link to the page home.html on
Amazon’s website. Here, a relative URL just won’t work, because a browser assumes
that home.html refers to a file of that name on your website.

FREQUENTLY ASKED QUESTION

Opening Pages in a New Window
How do I create a link that opens the requested page in a new
browser window?

When visitors click external links, you might not want to let
them leave your site. Web developers sometimes use a tech-
nique that opens external pages in separate browser windows
(or in a new tab, depending on the browser’s settings). This
way, your site remains open in the visitor’s original window,
ensuring that she won’t forget about you.

To make this work, you need to set another attribute in the
<a> element—the target attribute. Here’s how:

<a href="LinkedPage.htm"
target="_blank">Click Me

The target="_blank" syntax tells a browser to open the
link in a new window.

But before you start adding the target attribute to all your
anchors, it’s important to realize that it may not always work.
Some browsers’ vigilant pop-up blockers intercept this type of
link and prevent the new window from opening. (Pop-up block-
ers are standalone programs or browser features designed to
prevent annoying pop-up ads from appearing.)

Some people love the new-window feature, while others think
it’s an immensely annoying and disruptive act of website inter-
vention. If you use it, apply it sparingly on the occasional link.

Tutorial: Linking the Pages in a Site
Now that you’ve taken a good first look at the <a> element and learned the differ-
ence between relative and absolute URLs, you’re ready to put this knowledge into
practice. In the following tutorial, you’ll begin with a small assortment of web pages
that you’ll transform into a tiny, interconnected site, all through the magic of links.

 TIP  Like all the tutorials in this book, you can find the solution for this exercise on the companion site at
http://prosetech.com/web. Look inside the Tutorial-6-1 folder (which stands for “Chapter 6, first tutorial”). Inside
you’ll find two more folders: Start, which has the set of pages you begin the exercise with, and End, which holds
the finished page.

The Starter Site
This tutorial is a bit different from those you’ve seen in previous chapters, because
you start with a collection of pages that, taken together, represent a very small
website. The only things that are missing from these pages are the links that let
visitors jump from one page to another.

http://prosetech.com/web

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn180

TUTORIAL:
LINKING THE
PAGES IN A

SITE
Figure 6-2 shows the website you’re working with in its initial state. It holds four web
pages, spread out in several subfolders for better organization. Connecting these
pages requires internal links that use relative URLs.

FiGURE 6-2
This diagram maps the structure of a very small website featuring
photos taken on a trip. The root folder contains a style sheet used
across the entire site (styles.css), a picture (me.jpg), and two
HTML pages. Two subfolders, TripChina and TripArctic, contain an
additional page each. The TripArctic folder also contains several
thumbnail images of pictures taken on one of the trips. For each
thumbnail, there’s a corresponding full-size picture in the Photos
subfolder.

The root folder is the core of your website—it contains all your other site files and
folders. The root folder of this website is named Start, but this is the least important
detail. That’s because when you put your website online, you copy all the files and
subfolders from the root folder on your hard drive and transfer them to the root of
your website. So it makes no difference whether you call your root folder Start, Root,
TripSite, or Zingbobulous, because you don’t use that name on your web server (or,
by extension, in any of the links you write for your site).

If you’re feeling a bit hazy on the relationship between folders and websites, check
out the box on page 181. And if you’re wondering how to get your site online, hold
that thought—you’ll explore this operation in detail in Chapter 9.

 NOTE  Most sites include a page with the name index.htm or index.html in the root folder. This is known as
the default page. If a browser sends a request to your website without supplying a filename, the server sends
back the default page. For example, requesting www.TripToRemember.com automatically returns the default
page www.TripToRemember.com/index.htm. However, this feature only works once you put your website on the
Web. Until then, using index.htm for your website home page is just a smart bit of preparation.

CHAPteR 6: LINKING PAGES 181

TUTORIAL:
LINKING THE
PAGES IN A

SITE

UP TO SPEED

The Anatomy of a Site
A website is nothing more than a collection of pages and related
resources, like images, style sheets, and JavaScript files. You
can dump all these files into a single root folder, or you can
split them into different subfolders inside the root folder.

So far in this book, you’ve kept your pages in a single folder,
the root folder, with an optional subfolder for pictures. But now
that you’re creating a site with many pages, each of which may

have its own related resources, it’s time to consider adding
more subfolders to help keep your site organized.

There’s no ironclad rule about whether a website should use
subfolders (and, if it does, how many it should have). That’s
up to you to decide based on what you find easiest to man-
age. However, it’s important to standardize the organization
of your site now, because that arrangement determines how
you’ll write links.

Right now, everything works in the pages shown in Figure 6-2. They have some
content, they all link to the same style sheet, and the arctic.htm page includes one
 element for each thumbnail. But each page is a standalone creation—there’s
no way to get from one page to another without typing in the full page URL. You’re
about to fix that.

Linking to Pages Within the Same Folder
The easiest links to create are those where both the source page (the one that con-
tains the link) and the target page (the one that opens when you click the link) are
in the same folder. That’s the kind of link you’ll create to connect the index.htm page
to the about.htm page, both of which sit in the root folder (Figure 6-3).

FiGURE 6-3
Your first task in creating a link
is the easiest: Take this plain
text at the bottom of the index.
htm page and wrap it with a link
that, when clicked, opens the
about.htm page.

Here’s what you need to do:

1. Open index.htm in your editor.

You can use a garden-variety text editor or a professional tool like Dreamweaver;
it doesn’t matter.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn182

TUTORIAL:
LINKING THE
PAGES IN A

SITE
2. Find the paragraph that contains the text “About Me.”

It looks like this:

<p>About Me</p>

3. Add an anchor element around the words “About Me.”

All you need is an <a> tag at the beginning and an tag at the end.

4. Add and set the href attribute.

The href attribute uses a relative URL because both the source and target pages
are in the same folder. The relative URL is simply the name of the destination
page (that’s about.htm).

5. Save the page, open it in a browser, and try clicking your link.

You probably found this exercise pretty easy. (Don’t worry, you’re just warming
up.) But if you stumbled over an unexpected problem, here’s what your final link
should look like:

<p>About Me</p>

Moving Down into a Subfolder
The index.htm page also needs links that can take visitors to the two trip pages,
arctic.htm and china.htm. Each of them is in its own subfolder (TripArctic and Trip-
China, respectively).

To create a URL that leads into a subfolder, you simply add the name of the folder,
followed by a slash (/), followed by the page name. Here’s the link you need to add
to the text “The Arctic” to jump from index.htm to arctic.htm:

See pictures from The Arctic

This link gives a browser two instructions. First, it tells the browser to go into the
subfolder TripArctic, and then it directs it to open the page arctic.htm. Figure 6-4
shows both sides of this equation.

 NOTE  You may remember this syntax, because you used it with the element in Chapter 4 to grab
an image from a subfolder. It also turns up when you link to an external style sheet with the <style> element
and the element.

Once you add the link to the arctic.htm page, add a similar link from the word “China”
to the china.htm page.

There’s no limit to how many levels of subfolders you can traverse with a relative
URL. For example, imagine you want to add a link to the index.htm page that con-
nects to the picture arctic01.jpg. This picture is two subfolders away, in a folder
called Photos, which is inside the TripArctic folder. The URL you need looks like this:

Click to see a polar bear

CHAPteR 6: LINKING PAGES 183

TUTORIAL:
LINKING THE
PAGES IN A

SITE

FiGURE 6-4
Using a relative link, you
can jump from the main
index.htm page (top)
to a page with picture
thumbnails (bottom).

Using relative URLs, you can dig even deeper, into subfolders of subfolders of sub-
folders. All you need to do is add the folder name and a slash character for each
subfolder, in order.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn184

TUTORIAL:
LINKING THE
PAGES IN A

SITE
 TIP  Once you start specifying subfolders in relative links, you shouldn’t change any of the folder names or
move them around because you may break a link. That said, web editors like Dreamweaver and Expression Web
are crafty enough to adjust your relative links, provided you make any changes from within the program, and
you define your website first.

UP TO SPEED

The Rules for URLs
The rules for correctly writing URLs in anchor elements are
fairly strict, and a few common mistakes creep into even the
best web pages. Here are some pointers to help you avoid
these headaches:

• Don’t mix up the backslash (\) and the ordinary forward
slash (/). Windows uses the backslash in file paths (like
C:\Windows\win.ini), but in the web world, the forward
slash separates subfolders (as in http://www.ebay.com/
Help/index.html). Many web servers tolerate backslash
confusion, but if you’re unlucky, a stray slash can break
your link.

• Don’t use spaces or special characters in your file or
folder names, even if these special characters are
allowed. For example, it ’s perfectly acceptable to put
a space in a filename (like My Photos.htm), but in order
to request this page, the browser needs to translate
that space into a special character code (My%20 Photos.
htm). To prevent this confusion, steer clear of anything
that isn’t a number, letter, dash (-), or underscore (_).

• Don’t ever use file paths (like file:///C:/Temp/myPage.
htm) instead of a URL. It’s possible to create a URL that
points to a file on your computer using the file protocol,
but this link won’t work on anyone else’s computer,
because they won’t have the same file on their hard drive.
Sometimes, design tools like Dreamweaver or Expression
Web may insert one of these so-called local URLs (for
example, if you drag and drop a picture file into your
web page). Be vigilant—check all your links to make sure
this doesn’t happen.

• When you create an absolute URL, you have to start with
its protocol (usually http://). You don’t need to follow
this rule when typing a URL into a browser, however. For
example, if you type www.google.com, most browsers are
intelligent enough to assume the http:// part. However,
in an HTML document, it’s mandatory.

Moving Up into a Parent Folder
You’ve now added all the links you need to the index.htm page. Now you need to
add two links to the arctic.htm page.

The first link leads back to the index.htm page. To add it, put the <a> element around
the word “back” at the top of the page, as shown in Figure 6-4 (bottom image).

To go up a folder level, you use the character sequence ../ (two periods and a slash).
So to add a link in the arctic.htm page that brings the reader back to the index.htm
page, you type this:

Go back

If you like, you can add the same link to the china.htm page, so visitors can get back
to your home page at any time.

http://www.ebay.com/Help/index.html
http://www.ebay.com/Help/index.html
www.google.com

CHAPteR 6: LINKING PAGES 185

TUTORIAL:
LINKING THE
PAGES IN A

SITE
You can use the “go up” command twice in a row to jump up two levels. For example,
if you have a page in the Photos folder that leads to the home page, you’d use a link
like this to get back:

Go back

For a more interesting feat, you can write a relative link that travels up one or more
levels and then travels down a different path. That’s how you create the second
link in the arctic.htm page, which jumps straight to china.htm. To add this link, put
the <a> element around the word “China” in the final line of the page, as shown in
Figure 6-4 (bottom image):

See what happened in China

This link starts at the current folder (TripArctic), moves up one level to the root
folder, and then down one level to the TripChina folder.

Moving to the Root Folder
The only problem with the relative links you’ve seen so far is that they’re difficult to
maintain if you ever reorganize your site.

For example, imagine you have a web page in the root directory. Say you want to
feature an image on that page that’s stored in the Images subfolder. You use this URL:

But then, a little later on, you decide your page really belongs in another spot—a
subfolder named Plant—so you move it there. The problem is that this relative link
now points to Plant/Images/flower.jpg, which doesn’t exist—the Images folder isn’t a
subfolder in Plants; it’s a subfolder in your site’s root folder. As a result, your browser
displays a broken link icon.

There are a few workarounds. Programs like Dreamweaver and Expression Web au-
tomatically update all the relative links when you drag a file to a new location, saving
you the hassle. You can also try to keep related files in the same folder, so you always
move them as a unit. However, there’s a third approach, called root-relative links.

So far, the relative links you’ve seen have been document-relative, because you
specify the location of the target page relative to the current document. Root-relative
links point to a target page relative to your website’s root folder.

Root-relative links always start with the slash (/) character (which indicates the root
folder). Here’s the element for flower.jpg with a root-relative link:

The remarkable thing about this link is that it works no matter where you put the web
page that contains it. For example, if you copy this page to the Plant subfolder, the
link still works, because the first slash tells your browser to start at the root folder.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn186

TUTORIAL:
LINKING THE
PAGES IN A

SITE
The only catch to using root-relative folders is that you need to keep the real root of
your website in mind. When using a root-relative link, the browser follows a simple
procedure to figure out where to go. First, it strips all the path and filename infor-
mation out of the current page address, so that only the domain name is left. Then
it adds the root-relative link to the end of the domain name. So if the link to flower.
jpg appears on this page:

http://www.jumboplants.com/horticulture/plants/annuals.htm

The browser strips away the /horticulture/plants/annuals.htm portion, adds the
relative link you supplied in the src attribute (/Images/flower.jpg), and looks for
the picture here:

http://www.jumboplants.com/Images/flower.jpg

This makes perfect sense. But consider what happens if you don’t have your own
website domain name, and your web pages are stuck in some subfolder on a web
server. Here’s an example:

http://www.superISP.com/~user9212/horticulture/plants/annuals.htm

The domain name part of the URL is www.superISP.com, but for all practical purposes,
the root of your website is your personal folder, ~user9212. That means you need to
add this detail to all your root-relative links. So, to get the result you want with the
flower.jpg picture, you need to use this messier root-relative link:

As before, the browser keeps the domain name part of the URL (www.superISP.
com) and adds the relative part of the path. But in this case, the path starts with
your personal folder (/~user9212).

Making Image Links
The links you’ve seen so far have acted on small bits of text, but you can turn images
into links, too. This is a useful trick for the current website. You can use it to link
each thumbnail on the arctic.htm page to the corresponding image file. That way,
when a visitor clicks a thumbnail, his browser opens the full-size photo (Figure 6-5).

There’s no secret to creating an image link. You just put an element inside an
anchor element (<a>). To try this out, take the that holds the first thumbnail
in the arctic.htm page:

Now, wrap the entire thing in an anchor element:

When you point to a linked picture, the cursor changes to a hand, just like when
you point to a text link.

CHAPteR 6: LINKING PAGES 187

TUTORIAL:
LINKING THE
PAGES IN A

SITE

FiGURE 6-5
Click a thumbnail in the
arctic.htm page (top) and
you get a closer look at the
matching full-size photo
(bottom). If you want to
get even fancier, you can
create a separate page for
each picture and include
some descriptive details.

There’s one quirk with linked images. If you view a page that has a linked image in it
using Internet Explorer, you’ll see an unsightly blue border around the picture, which
is meant to indicate that visitors can click it. Usually, you want to turn this clunky-
looking border off using the style sheet border properties (page 108). For example,
here’s a style rule that removes the border from all images, including linked ones:

img {
 border: none;
}

If you want to get a bit more sophisticated and remove the border from linked im-
ages only, you have two choices. You can use a class selector (page 84), and then
apply that class to all the thumbnail elements. Or you can create a contextual
selector that acts only on elements inside <a> elements (page 217).

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn188

MORE TRICKS
WITH LINKS

Text and images aren’t the only thing you can use as links. In fact, you can link any
HTML, including entire paragraphs of text, bulleted lists, and so on. If you try this,
you’ll see that all the text inside becomes blue and underlined, and all the images
sport blue borders. Web browsers have supported this bizarre behavior for years,
but it’s only HTML5 that makes it an official part of the HTML standard.

 NOTE  Once you finish adding the four image links to the arctic.htm page, you’ve finished this tutorial.
Congratulations—you should now be able to craft URLs that can walk up and down the folders of your site. To see
the final site, with all these different types of links in place, check out the Tutorial-6-1\End folder.

More Tricks with Links
Using the knowledge you’ve picked up so far, you can get links to do 90% of every-
thing you’ll ever need them to do. But sometimes it’s nice to have a few more tricks
in your bag. In the following sections, you’ll meet two unusual types of links, and
you’ll learn the easiest way to style the color of linked text.

“Mailto” Links
A mailto link is a special type of link that helps visitors send a message to you. When
you click a mailto link, your browser opens your email program and begins creating
a message. It’s still up to you to actually send the message, but the mailto link can
get the process started with a boilerplate subject line and body text.

To create a mailto link, specify a path that starts with the word “mailto,” followed
by a colon (:) and your email address. Here’s an example:

Email Me

 NOTE  The mailto link doesn’t work for every visitor, especially ones who use web-based email services
(like Hotmail and Gmail). Clicking a mailto link in a message may open a desktop email program they never use
or even give them an error message (depending on their browser and computer settings). To solve the problem
or find a workaround on your computer, do a Google search for “mailto link” and your browser name.

Most browsers also let you supply text for the message’s subject line and body.
When someone clicks the mailto link, the new message includes this information,
ready for sending (or editing).

To supply the subject line and body text, you have to use a slightly wonky syntax
that follows these rules:

• Put a question mark after the email address.

• To include a subject line, add subject= followed by the subject text.

• To include body text, add the character sequence & after your subject text,
and then type body= followed by the body text.

CHAPteR 6: LINKING PAGES 189

MORE TRICKS
WITH LINKS

• Replace characters that could cause problems with specialized codes. Letters,
numbers, and the period are all fine, but most other punctuation isn’t. For ex-
ample, you have to replace every space in the subject and body text with the
character sequence %20. This gets quite tedious and makes your message hard
to read after you compose it, but it ensures that the mailto link works in every
browser. The easiest way to prepare your message text is to visit a page like
http://meyerweb.com/eric/tools/dencoder, which adds the code sequences for
you. Simply type your message text in the provided box, and then click Encode
to replace potentially problematic characters with the appropriate codes.

Confused? The easiest way to grasp these rules is to take a look at a couple of ex-
amples. First, here’s a mailto link that includes the subject text “Automatic Email”:

Email Me

And here’s a link that includes both subject text and body text:

<a href="mailto:me@myplace.com?subject=Automatic%20Email&body=
 I%20love%20your%20site.">Email Me

When a guest clicks this link, she’ll probably see some sort of warning message
informing her that the web page is about to open her email program and asking her
permission (the exact message depends on her browser and operating system). If
she agrees, she’ll see an email form like the one in Figure 6-6 pop up.

FiGURE 6-6
When you click a mailto link, your browser cre-
ates an email message (as shown here). It fills
in the recipient, subject, and body text accord-
ing to information in the link, although who-
ever clicked the link can change these details
(or close the window without clicking Send).
This example shows the message window from
Microsoft Outlook, though the window your
visitor sees may differ, depending on the email
program installed on her computer.

Image Maps: Links Inside Pictures
You’ve already learned how to turn an ordinary picture into a clickable link (page
186). That’s the most common way to link an image, but web developers who want
to get fancier have other ways to turn a portion of a picture into a link. For example,

http://meyerweb.com/eric/tools/dencoder

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn190

MORE TRICKS
WITH LINKS

they may use JavaScript code to intercept picture clicks and examine the coordinates.
(This is the most popular approach for power users who aren’t intimidated by the
prospect of writing—and debugging—some code.) But HTML provides another op-
tion with its often-overlooked image map feature.

An image map lets you create distinct clickable regions, called hotspots, inside a
picture. For example, consider Figure 6-7.

FiGURE 6-7
Left: An ordinary picture,
courtesy of the
element.

Right: An irregularly shaped
region inside the mouth
becomes a hotspot—a click-
able region that takes visi-
tors to another page. In this
example, you can see the
hotspot because it’s being
edited in Expression Web.
Ordinarily, visitors can’t see
hotspots when they look at
a picture in a browser.

To add a hotspot to a picture, you start by creating an image map using HTML’s
<map> element. This part’s easy—all you do is choose a unique name for your image
map so you can refer to it later on:

<map id="FaceMap" name="FaceMap">
</map>

 NOTE  If you noticed that the <map> element uses two attributes that duplicate the same information (id
and name), you’re correct. Although in theory just the id attribute should do the trick, you need to keep the
name attribute there to ensure compatibility with a wide range of browsers.

Then you need to define each hotspot, which you do between the start and end tags
of the <map> element. You can add as many hotspots as you want, although they
shouldn’t overlap. (If they do, the one defined first takes precedence.)

CHAPteR 6: LINKING PAGES 191

MORE TRICKS
WITH LINKS

To define each hotspot in an image, you add an <area> element, which identifies three
important details: the target page a visitor goes to after clicking the hotspot (which
you specify in the href attribute), the shape of the hotspot (the shape attribute), and
the exact dimensions of the shape (the coords attribute, for “coordinates”). Much
like an image element, the <area> element requires an alt attribute with alternate
text that describes the image map to search engines, reader programs, and ancient
text-only browsers.

Here’s a sample <area> element:

<area href="Mouth.htm" shape="rect" coords="5,5,95,195"
alt="A clickable rectangle" />

This hotspot defines a rectangular region. When visitors click it, they go to Mouth.htm.

The shape attribute lets you define three types of shapes, each of which requires a
different set of values for the attribute. You can specify a circle (circle), a rectangle
(rect), or a multi-edged shape (poly). Once you choose your shape, you need to
supply the coordinates for it. But to understand hotspot coordinates, you first need
to understand how browsers measure pictures, as outlined in Figure 6-8.

FiGURE 6-8
Browsers designate the top-left corner of a picture as point (0, 0). As
you move down the picture, the y-coordinate (the second number)
gets bigger. For example, the point (0, 100) is at the left edge of
the picture, 100 pixels from the top. As you move to the right, the
x-coordinate gets bigger. That means the point (100, 0) is at the top of
a picture, 100 pixels from the left edge.

You indicate image map coordinates as a list of numbers separated by commas. For
a circle, list the coordinates in this order: center point for the x-coordinate, center
point for the y-coordinate, and radius. For any other shape, identify the corners, in
order, as a series of x-y coordinates, like this: x1, y1, x2, y2, and so on. For a polygon,
you supply every point. For a rectangle, you need only two points: the top-left corner
and the bottom-right corner.

For example, you define the rectangle in the <area> element above by these two
points: (5, 5) at the top left and (95, 195) at the bottom right. You define the more
complex polygon that represents the mouth region in Figure 6-7 like this:

<area href="Mouth.htm" shape="poly" title="Smiling Mouth" alt="Mouth"
coords="38, 122, 76, 132, 116, 110, 102, 198, 65, 197" />

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn192

MORE TRICKS
WITH LINKS

In other words, your browser creates this shape by drawing lines between these five
points: (38, 122), (76, 132), (116, 110), (102, 198), and (65, 197).

 NOTE  Getting your coordinates right can be difficult. Many web page editors, like Dreamweaver and Expres-
sion Web, have built-in hotspot editors that let you create an image map by dragging shapes over your picture,
which is a lot easier than trying to guess the correct coordinates. To use this tool in Dreamweaver, select a picture,
and then look for the three hotspot icons (circle, square, and polygon) in the Properties panel. Expression Web
offers similar icons in the Picture toolbar. (If you can’t see the Picture toolbar, right-click the picture, and then
select Show Picture Toolbar.)

Once you perfect all your hotspots, you need to apply them to the image by adding
a usemap attribute to your element. Use the same name for this attribute as
you did for the image map itself, but precede it with the number-sign character (#),
which tells browsers that you defined an image map for the picture:

Here’s the complete HTML for the mouth hotspot example:

<!DOCTYPE html>
<html>
<head>
 <title>Image Map</title>
 <style type="text/css">
 img {
 border-style: none;
 }
 </style>
</head>
<body>
 <p>Click inside his mouth...</p>
 <p>
 <map id="FaceMap" name="FaceMap">
 <area href="Mouth.htm" shape="poly"
 coords="38, 122, 76, 132, 116, 110, 102, 198, 65, 197"
 alt="Smiling Mouth" />
 </map>

 </p>
</body>
</html>

The hotspots you create are invisible (unless you draw lines on the picture to indi-
cate where they are). When a visitor points to one, his cursor changes to a hand.
Clicking a hotspot has the same effect as clicking an ordinary <a> link: Your visitor
gets transported to a new page.

CHAPteR 6: LINKING PAGES 193

MORE TRICKS
WITH LINKS TIP  It’s tempting to use image maps to create links in all kinds of graphics, including buttons you may

custom-design in an image editor, but hold off for a bit. You can create fancier menus and buttons with the
JavaScript know-how you’ll learn in Chapter 14.

Changing Link Colors and Underlining
Virtually everyone born since 1900 instinctively understands that blue underlined
text is there to be clicked. But what if blue links are at odds with the overall look
of your site? Thanks to style sheets, you don’t need to play by the link-color rules.

Using CSS, you can quickly build a style sheet rule that changes the text color of all
the link-producing anchor tags on your site. Here’s an example:

a {
 color: fuchsia;
}

But watch out: custom link colors change the way the links behave. Ordinarily, when
you click a link, it turns purplish red to show that you visited the page. Custom links,
however, never change color—they retain their hue even after you click them.

A better way to create colorful links is to use another style sheet technique: pseudo-
classes. Pseudo-classes are specialized versions of the CSS classes you learned about
earlier (see page 84). They rely on details that a browser tracks behind the scenes.
For example, ordinary classes apply rules indiscriminately to a given element, like
an anchor. But pseudo-classes apply rules to elements that meet certain criteria, in
this case links that are either clicked or unclicked.

Four pseudo-classes help you format links. They are :link for links that point to
virgin ground; :visited for links a reader has already visited; :active for the color
a link turns as a reader clicks it, before releasing the mouse button; and :hover, the
color a link turns when a visitor points to it. As you can see, pseudo-classes always
start with a colon (:).

Here’s a style rule that uses pseudo-classes to create a misleading page—one where
visited links are blue and unvisited links are red:

a:link {
 color: red;
}
a:visited {
 color: blue;
}

If you want to apply these rules to some, but not all, of your links, add a class name
to your rule:

a.BackwardLink:link {
 color: red;
}

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn194

LINKS THAT
LEAD TO

BOOKMARKS
a.BackwardLink:visited {
 color: blue;
}

Now an anchor element needs to specify the class name to display your new style,
as shown here:

...

Finally, it’s worth noting that you can use this technique with the text-decoration
style sheet property to change whether browsers automatically underline links.
Here’s an example that removes the standard underlining:

a {
 text-decoration: none;
}

This technique is generally a bad idea with links you embed in the main content of
a page, because it can make them hard to spot. However, it’s useful if you have a
panel that consists of nothing but links (like a menu sidebar) and you want to give
it a cleaner look.

Links That Lead to Bookmarks
Most links lead from one page to another. When you make the jump to a new page,
your browser plunks you down at the very top of the page. But you can also create
links that lead to specific parts of a page, whether that’s the current page (see Figure
6-9) or a newly opened one. This is particularly useful if you create long, scrolling
pages and you want to direct your visitors’ attention to a particular passage. The
place you send your reader is technically called a fragment.

Creating a link that points to a fragment is a two-step process. First, you need to
identify the fragment. You do this with the id attribute, which assigns a unique name
to any HTML element on a page.

For example, imagine you want to send a visitor to the third level-3 heading in a web
page named sales.htm. Initially, the markup looks like this:

...
<h3>Pet Canaries</h3>
<p>Pet canary sales have plummeted in the developed world, due in large part
to currency fluctuations and other macroeconomic forces.</p>
...

CHAPteR 6: LINKING PAGES 195

LINKS THAT
LEAD TO

BOOKMARKS

FiGURE 6-9
This FAQ (frequently asked
questions) page is an
example of bookmarks
at work. Here, the entire
FAQ consists of a single
long page, with a series of
bookmark links at the top
that let you jump to just
the topic you’re interested
in. You could break an
FAQ into separate pages,
but readers wouldn’t be
able to scan through the
whole list of questions, nor
would they have a way to
print the entire document
at once.

And here’s the change that gives the Pet Canaries heading a unique name (in this
case, the name is Canaries):

...
<h3 id="Canaries">Pet Canaries</h3>
<p>Pet canary sales have plummeted in the developed world, due in large part
to currency fluctuations and other macroeconomic forces.</p>
...

This doesn’t affect the way the page looks; visitors never see the id attribute. How-
ever, it gives you a convenient way to drop visitors at the Pet Canaries heading.
Essentially, you’ve created a bookmark that’s locked onto this heading.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn196

WHEN GOOD
LINKS GO BAD

Once you create your bookmark, you can write a URL that points to it. The trick is
to add the bookmark information to the end of the URL. To do this, you add the
number-sign symbol (#) followed by the bookmark name.

For example, here’s the link to send a reader to a bookmark named Canaries in the
sales.htm page:

Learn about recent developments in
canary sales.

When you click this link, the browser heads to the sales.htm page and scrolls down
until it encounters the Canaries bookmark. The browser then displays, at the very
top of the browser window, the text that starts with the heading Pet Canaries.

 TIP  If your bookmark is near the bottom of a page, a browser might not be able to scroll the bookmarked
section all the way to the top of the browser window. Instead, it appears somewhere in the middle of it. This
happens because the browser hits the bottom of the page and can’t scroll down any farther. If you suspect some
potential for confusion (perhaps because you have several bookmarked sections close to one another at the
bottom of a page), you can add a few
 elements at the end of your document, which lets the browser scroll
down.

Sometimes you want to create a link that points to a bookmark in your current page.
In this case, you don’t need to specify a page name at all. Just start with the number
sign, followed by the bookmark name:

Jump to the canary section.

Using bookmarks effectively is an art. Resist the urge to overcrowd your pages with
links that direct readers to relatively small sections of content. Only use bookmarks
to tame large pages that would otherwise take visitors a long time to scroll through.

When Good Links Go Bad
Now that you’ve learned all the ways to build links, it’s a good time to consider what
can go wrong. Links that go to pages on the same site can break when you rename
or move files or folders. Links to other websites are particularly fragile; they can
break at any time, without warning. You won’t know that anything has gone wrong
until you click the link and get a “Page Not Found” error message.

Broken links are so common that web developers have coined a term to describe
how websites gradually lose their linking abilities: link rot. Sadly, you can upload a
perfectly working website today and return a few months later to find that many
of its external links have died off. They point to websites that no longer exist, have
moved, or have been rearranged.

CHAPteR 6: LINKING PAGES 197

WHEN GOOD
LINKS GO BAD

Link rot is an insidious problem because it reduces visitor confidence in your site.
They see a link in a page that promises to lead to other interesting resources, but
when they click it, they’re disappointed. Experienced visitors won’t stay long at a
site that’s suffering from an advanced case of link rot—they’ll assume you haven’t
updated your site in a while and move on to a snazzier site somewhere else.

So how can you reduce the problem of broken links? First you should rigorously
test your internal links—the ones that point to pages within your own site. Check
for minor errors that can stop a link from working, and travel every path at least
once. You can do this by hand, but leading web page editors include built-in tools
that automate this drudgery. The next section explains how to use the link-checking
features in Dreamweaver and Expression Web.

External links pose a different challenge. You can’t create iron-clad external links,
because link destinations are beyond your control and can change at any time. You
could reduce the number of external links you include in your website to minimize
the problem, but that isn’t a very satisfying solution. Part of the beauty of the Web
is the way a single click can take you from a comprehensive rock discography to
a memorabilia site with hand-painted Elvis office supplies. As long as you want to
connect your website to the rest of the world, you need to include external links. A
better solution is to test your site regularly with an online link checker, which walks
through every one of your pages and checks each link to make sure it still leads
somewhere. Unlike the link checkers that you find in web-editing tools like Dream-
weaver, online link checkers test both internal and external links. You’ll learn how
to use the most popular online link checker on page 198.

Checking Your Links in a Web Editor
Dreamweaver and Expression Web include their own tools to make sure internal
links actually lead to a real page. They ignore external links, however.

 NOTE  To use the link-checking features in Dreamweaver and Expression Web, you must first define your
folder as an official website (a process described on page 161 for Dreamweaver and page 167 for Expression Web).

In Dreamweaver, you scan links using the command Site→Check Links Sitewide.
Dreamweaver pops open its Link Checker panel and reports any broken links as it
works through your pages.

In Expression Web, you use a similar feature by following a three-step process. First,
click the Site View tab. Then, click the Reports button at the bottom to see a list of
all the reports you can run on your site. Finally, click Hyperlinks to investigate your
links (Figure 6-10). Expression Web lists all the links in your site and puts a handy
broken-link icon next to any that are problematic. You can also use the “Unlinked
Files” link to find pages that don’t have any links leading to them, and so can’t be
reached unless your visitors type the page name into their browsers.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn198

WHEN GOOD
LINKS GO BAD

FiGURE 6-10
A quick scroll down the list
of links reveals some good
news: all this site’s links
are intact.

Checking Your Links Online
The link checkers built into these web page editors work on the copy of your web-
site stored on your computer. That’s the best way to keep watch for errors as you
develop your site, but it’s no help once your site is out in the wild. For example, it
won’t catch mistakes like a link to a file on your hard drive or to a file you forgot to
upload to the web server.

To get the final word on your website’s links, you might want to try a free online link
checker. The World Wide Web Consortium provides a solid choice at http://valida-
tor.w3.org/checklink. Its link checker can scan any website that’s currently online.

To start checking links, follow these steps:

1. Go to http://validator.w3.org/checklink.

This takes you to the W3C Link Checker utility.

2. In the text box, type in the full URL of the page you want to check.

It should point to the home page of your site on the Web (like http://Po-
niesAreMagic.org/Ponies.htm). If your website has a default page like index.

http://validator.w3.org/checklink
http://validator.w3.org/checklink
http://validator.w3.org/checklink

CHAPteR 6: LINKING PAGES 199

WHEN GOOD
LINKS GO BAD

htm (see the note on page 180), you don’t need to supply the filename, you can
type in just the domain name (like http://PoniesAreMagic.org).

3. Choose the options you want to apply (Figure 6-11).

Select “Summary only” if you want the checker to omit the detailed list of steps
it takes as it examines each page. It’s best to leave this option turned off so you
can better understand exactly what pages the link checker examines.

Select “Hide redirects” if you want the checker to ignore instructions that would
redirect it to a web page other than the target page specified in the link (see
page 200 for more). Usually, redirects indicate that your link still works, but also
that you should update it to point to a new destination page.

The “Don’t send the Accept-header” option prevents a link checker from telling
a website its language preferences. This setting matters only if you’re creating
a multilingual website, which is beyond the scope of this book.

The “Check linked documents recursively” option validates links using recur-
sion. If you don’t use this option, the validator simply checks every link in the
page you specify and makes sure it points to a live web page. If you use recur-
sion, the validator checks all the links in the current page, and then follows
each internal link on your site. For example, if a link points to a page named
info.htm, the link checker first verifies that info.htm exists. Then it finds all the
internal links in info.htm and starts testing them. In fact, if info.htm links to yet
another internal page (like contact.htm), the link checker branches out to that
page and starts checking its links as well. The link checker is smart enough to
avoid checking the same page twice, so it doesn’t waste time checking links it
has already validated.

 NOTE  Link checkers don’t use recursion on external links. That means that if you start your link checker
on the home page of your website, it follows the links to get to every other page on your site but won’t go any
further. Still, recursion is a great way to drill through all the links in your site in one go.

If you want to limit recursion (perhaps because you have a lot of pages and
don’t need to check them all), you can supply a “recursion depth,” which speci-
fies the maximum number of levels the checker digs down. For example, with a
recursion depth of 1, the checker follows only the first set of links it encounters.
If you don’t supply a recursion depth, the checker checks everything.

4. Select “Save options in a cookie” if you want your browser to remember
your link-checker settings.

If you use this option, the next time you use the link checker, your browser fills
in the checkboxes using your previous settings.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn200

WHEN GOOD
LINKS GO BAD

FiGURE 6-11
When you use a link checker,
specify the web page you
want to check and whether or
not you want to use recursion,
as in this example. (For the
inside scoop on recursion and
how it works, see the descrip-
tion in step 3 on the previous
page.) Then click Check to get
started.

5. Click the Check button to start checking links.

The link checker lists each link it checks (Figure 6-12), updating the list as it goes
along. If you use recursion, you’ll see the link checker branch out from one page
to another. The report adds a separate section for each page.

Using Redirects
To be a good web citizen, you need to respect people who link to your site. That
means that once you create your site and it becomes popular, try to avoid tinkering
with page and folder names. Making a minor change could disrupt someone else’s
link, making it difficult for return visitors to get back to your site.

CHAPteR 6: LINKING PAGES 201

WHEN GOOD
LINKS GO BAD

FiGURE 6-12
The link checker’s final
report shows a list of
links found in anchors
and images. The checker
highlights links that lead
to dead ends in red and
flags those that may need
attention in yellow. One
example of potential prob-
lem links are redirected
links. Although they still
work, they may be out of
date and might not last
for long.

Some web experts handle this problem using redirects. When they rearrange their
sites, they keep all the old files, removing the content from them and replacing the
old pages with a redirect—a special instruction that tells browsers to automatically
navigate to a new page. The advantages of redirects are twofold: they prevent bro-
ken links, and they don’t lock you into the old structure of your site if you decide
to make a change.

To create a redirect, you add a special <meta> element to the <head> portion of your
web page. This element indicates the new destination using an absolute URL and
lists the number of seconds a browser should wait before performing the redirect.
Here’s an example:

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="REFRESH"
 content="10; URL=http://www.mysite.com/homepage.htm" />
 <title>Redirect</title>
</head>
<body>
 <h1>The page you want has moved</h1>

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn202

WHEN GOOD
LINKS GO BAD

 <p>
 Please update your bookmarks. The new home page is

 http://www.mysite.com/homepage.htm.
 </p>
 <p>
 You should be redirected to the new site in 10 seconds. Click

 here to visit the new page immediately.
 </p>
</body>
</html>

To adapt this page for your own purposes, change the number of seconds (cur-
rently at 10) and the redirect URL. When a browser tries to open this page, it shows
the temporary page for the indicated number of seconds and then automatically
requests the new page.

 NOTE  Although redirects are designed for live pages on the Web, you can test them on your own computer.
For example, if you put the page shown above on your hard drive and open it, your browser will wait 10 seconds
and then follow the URL to the new location.

Redirected pages really serve two purposes: They keep your pages working when
you change your site’s structure, and they inform visitors that the link is obsolete.
That’s where the time delay comes in—it provides a few seconds to notify visitors
that they’re entering the site the wrong way. Many sites keep their redirect pages
around for a relatively short amount of time (for example, a year), after which they
remove the page altogether.

203

CHAPTER

7

You’ve covered a lot of ground with CSS. You’ve used it to set colors, fonts,
borders, and more, and you’ve applied your settings with carefully targeted
class rules. But CSS isn’t just a way to make stylish web pages; it’s also a way

to apply a consistent design to your entire site.

In this chapter, you’ll lay the groundwork you need to build a modern, CSS-powered
website. You’ll deepen your understanding of style selectors, and create a prop-
erly organized style sheet that suits a whole site’s worth of pages, not just a single
document.

All this hard work has significant rewards. If you structure your pages and organize
your styles with care, you can create a flexible, adaptable site. You won’t break a
sweat when it comes time to change something—whether you need to move a side-
bar, change the size of a heading, or revamp everything, extreme-makeover style.

Planning a Style Sheet
You’ve already picked up the basic skills of style-sheet writing. You know how to
create an external style sheet and attach it to as many web pages as you want with
the <style> element. You’ve also had plenty of practice writing style rules—the
formatting instructions that make things happen. But even though you know what
style sheets can do, you’re probably less sure about building a practical one—one
that condenses complex formatting down to a simple set of rules but remains flex-
ible enough to grow with your website.

 Designing Better
Style Sheets

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn204

PLANNING A
STYLE SHEET

That’s OK. Creating style sheets is an art and takes a fair bit of practice. The examples
in this chapter will help get your mind in gear. You begin with a single unformatted
page in a simple site. First you’ll learn how to pick out the elements in this page and
write logical, well-organized rules to format them. Then you’ll expand your rules to
cover your entire site.

Figure 7-1 shows your starting canvas—a properly structured HTML page without any
style-sheet formatting. Right now, it doesn’t look like much, but it’s always better to
start with an ugly but properly designed page than a half-decent-looking page that
uses inconsistent markup. (That’s because you can always fix the ugly page with a
new style sheet, but you’d need to rewrite its markup before you can give it a face-lift.)

FiGURE 7-1
This page is pretty straightforward: it holds
a general introduction followed by a list of
book review summaries, with a link after
each one to a full review on a separate page.
Right now, the only formatting in the page
is the built-in styling that HTML applies to
headings, which sets the text in large, bold
letters.

CHAPteR 7: DESIGNING BETTER STYLE SHEETS 205

PLANNING A
STYLE SHEET

Before you get going, it’s a good idea to look at the markup for this page. You
can find it on the companion site (http://prosetech.com/web)—look for the file
PessimistReviews_Unstyled.htm. Here’s the markup, slightly condensed by leav-
ing out some of the text:

<!DOCTYPE html>
<html>
<head>

 <title>The Pessimist</title>
</head>
<body>
 <h1>The Pessimist's Review Site</h1>
 <p>Here you'll learn about the greatest unpublished books ever ...</p>
 <p>The reviews on this Web site do not correspond to reality. Any ... </p>

 <h2>How To Lose Friends and Fail in Life</h2>
 <p>Chris Chu</p>

 <p>Tired of sabotaging yourself endlessly? With this book, the author ...
 </p>
 <p>Read more ...</p>

 <h2>Europe: Great Places to Miss</h2>
 <p>Antonio Cervantes</p>

 <p>Europe is brimming with world class attractions: glorious art ... </p>
 <p>Read more ...</p>
</body>
</html>

Identifying the Main Ingredients
Before you can write any style sheet rules, you need to think hard about your web
page and how it’s structured. Here’s a good exercise: make a printout of your page,
and then highlight each design element with a pen or marker (Figure 7-2). Your goal
is to divide the page into its logical components and then format those different
types of content in distinct ways.

For example, your style sheet should distinguish between the paragraph of text in
the introduction and the paragraphs of text in the book reviews. And these differ-
ences should be clear and obvious, so you (or someone else) can look at the style
sheet 12 months from now and still understand what’s going on—and what rules to
edit when you want to change the formatting.

http://prosetech.com/web

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn206

BUILDING A
COMPLETE

STYLE SHEET

FiGURE 7-2
In the average HTML
document, you have a sea
of similar elements—even
a complex page often boils
down to just headings
and paragraph elements.
In this example, the
general introduction, the
author byline, and the book
summaries all use <p> ele-
ments. However, you should
format these elements
differently, because they
represent different types of
content. You’ll tackle that
task below.

Building a Complete Style Sheet
When crafting a style sheet, you should begin by writing the most general, wide-
reaching style rules first. These include instructions that set the background and
typeface for the entire page and rules that target certain types of elements (like
paragraphs and headings). Once you finish this job, you can target smaller and more
specific design elements using rules that act on specific classes (for example, the
author byline and the “Read more” link in Figure 7-1).

CHAPteR 7: DESIGNING BETTER STYLE SHEETS 207

BUILDING A
COMPLETE

STYLE SHEET
Figure 7-3 shows the first version of the review site style sheet. It’s not the finished
product—you’ll improve on it as you work through this chapter—but it’s a decent
first step on the journey.

FiGURE 7-3
The revised style sheet
changes the page’s colors,
font, and text alignment.
It also makes the different
parts of the page obvious
and unifies repeating
sections (like the review
titles) with consistent
formatting.

Setting the Ground Rules
Your first step is to lock down the basic design for your page, and the best way to
do that is by applying a style rule to the most general of HTML elements: <body>.

As you know, the <body> element wraps the rest of your HTML markup. That means
that any formatting you apply to it becomes the norm for the entire page. That makes
the <body> element a good place to set the following styles:

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn208

BUILDING A
COMPLETE

STYLE SHEET
• Font. Set the typeface and initial type size here.

• Margins. Every web page starts with a thin margin along the edges. This space
interferes with certain style effects, like positioning a header that fits snugly
against the top and sides of the page (an effect you’ll try out on page 214).
Set the margin to 0 if you want your content to stretch out and fill the whole
display area, with no space between the edge of the page and the frame of the
browser window.

• Background. If you want a background color (page 87) or a background picture
(page 138) for the entire page, here’s the spot to set it.

In the first version of the review site, the style rule for the <body> element is pretty
simple. It sets the Georgia font as the standard typeface for the page:

body {
 font-family: Georgia,serif;
 font-size: 18px;
}

Formatting Elements with Type Selectors
Your next job is to write style rules that target specific elements. You use these
rules to establish the overall formatting of your site, by specifying some of the basic
details that apply everywhere in your page.

For example, the review site uses justified text that fills the space between the left
and right margins (page 92), rather than the standard left-aligned, ragged-right text.
It makes sense to apply this alignment to all the paragraphs in the page, but not to
other elements, like headings or lists. You can do that easily by creating a rule that
targets all paragraphs, like this:

p {
 text-align: justify;
}

It also makes sense to apply consistent formatting to all the images in the site. In
the review site, every image is floated on the left (page 127), given a wider right
margin, and outlined with a thin white border. Here’s the style rule that does all that:

img {
 float: left;
 margin-top: 3px;
 margin-right: 15px;
 margin-bottom: 7px;
 border-style: solid;
 border-color: white;
 border-width: 1px;
}

CHAPteR 7: DESIGNING BETTER STYLE SHEETS 209

BUILDING A
COMPLETE

STYLE SHEET NOTE  You don’t need any black magic to figure out the dimensions you should use to put margins around
your elements. Instead, it’s a matter of trial and error. Because the review site floats images to the left, you know
you’ll probably need to add extra margin space on the right side of the picture to leave some breathing room
between the picture and the surrounding text. However, it takes a few edit-save-refresh cycles before you find
the settings that look just right.

When you start building a style sheet for your site, you’ll find that it fills up fast.
If you can keep your rules lean and concise, your style sheet becomes a bit more
manageable and a bit more readable. One way to do that is to use CSS shorthand
syntax wherever you can. That means that instead of using style sheet properties
like border-style, border-color, and border-width, consider the all-in-one border
property that lets you set these three details in a single line of HTML.

You can also condense the margin and padding properties. If you supply a single
number, the browser uses that value for all sides of an element. If you supply two
numbers, the first one sets the top and bottom margins (or padding), while the
second one sets the margins on the side. And if you supply four numbers, they set
the margins in this order: top, right, bottom, left.

Here’s a revised version of the rule that applies the same formatting as earlier
but uses the CSS shorthand syntax:

img {
 float: left;
 margin: 3px 15px 7px 0px;
 border: solid white 1px;
}

Now you face a few decisions. You have a page filled with content you need to format,
but element-based style rules aren’t always the right choice.

For example, most of the page’s content lives inside <p> elements, but you want
to format these paragraphs differently, depending on their logical role. This makes
them a good candidate for the class-based rules you’ll apply in the next section.
However, the two types of headings are consistent. The <h1> heading announces
the title of the site, while each <h2> heading represents a review title.

Here’s the style rule that formats the <h1> heading. It sets a background color, so
the heading becomes a shaded red banner. The style rule also changes the text to
white lettering and centers it:

h1 {
 background-color: #761C00;
 margin: 0px;
 padding: 20px;
 color: white;
 text-align: center;
}

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn210

BUILDING A
COMPLETE

STYLE SHEET
You don’t need to set the font, because the headline inherits it from the style you
applied to the <body> element. However, you can set the font-size property if the
standard <h1> size is too big or too small.

GEM IN THE ROUGH

Choosing Harmonious Colors
Picking the right colors for your site can take time. If you have
a logo or graphic prominently featured in your site, you can
use a graphics tool (for example, one of the paint programs
described on page 128) to pick out the most important colors.
You can then use those colors in your style sheet. But if you
aren’t trying to match an already established color scheme,
you can benefit from an online color-picking tool.

For example, visit http://paletton.com for a graphical color
picker that’s both highly advanced and surprisingly easy to

use. You choose the type of color scheme you want (mono-
chromatic, adjacent three-color, coordinated four-color, and
so on) and then spend some time clicking and dragging dots
on an interactive color wheel. As you do, Paletton updates a
carefully shaded palette of harmonious color choices. Once
you see what you like, copy the color codes so you can use
them in your style sheet—just as we did when building the
red-and-gray color scheme for the review site.

The last element you might decide to target with a type selector is the <h2> element,
which holds the review headings.

Here’s where good web developers can disagree. Although every <h2> element in
the page is a review title, this design might not hold true forever. It’s easy to imagine
adding <h2> elements that aren’t review titles, either for other sections of this page
or in other pages. For that reason, it’s probably better to distinguish the review
headings with their own dedicated class, as you’ll do in the next section.

Creating Classes
With the basic rules out of the way, it’s time to move on to the real work of style
sheet creation—writing class rules. As you learned on page 84, class rules let you
apply style sheet formatting to a single, specific element or group of elements. They
also help you think in a more logical, structured way about your web pages. Instead
of focusing on the HTML tags you’re using, classes help you focus on styling the
different types of information you present.

For example, the review site includes plenty of paragraphs, but they don’t share the
same formatting. With class rules, you can format the same element (in this case,
<p>) in different ways, depending on whether that paragraph represents a review
heading, a review byline, or the actual review text.

Once you mentally divide your page into sections (see Figure 7-2), you’re ready to
add the class rules that format them. For example, you can format the review head-
ing with a class selector like this:

http://paletton.com

CHAPteR 7: DESIGNING BETTER STYLE SHEETS 211

BUILDING A
COMPLETE

STYLE SHEET
h2.reviewTitle {
 margin-top: 0px;
 font-size: 16px;
 color: #761C00;
 margin-bottom: 0px;
}

This rule applies to <h2> elements only, and only <h2> elements with the class name
reviewTitle. You need to edit the page to put it into effect:

<h2 class="reviewTitle">How To Lose Friends and Fail in Life</h2>

This technique makes sense because at some point the website may include other
level-2 headings that don’t correspond to review titles, and so need different for-
matting.

 TIP  Remember, the best class names provide a succinct description of the type of content you want to format.
In this example, the class name is reviewTitle, because you’re going to apply this style to the book-review head-
ings. Good class names describe the function of the class rather than its appearance. For example, WarningNote
is a good class name, while BoldRedArialBox isn’t. The problem with the latter is that it won’t make sense if you
decide to change the formatting of your warning note box (for example, by giving it red lettering). And two years
from now, when you edit your style sheet, you may not remember what element BoldRedArialBox is supposed
to format.

Class selectors really show their value when you start formatting the paragraphs
in your page. The review site uses <p> elements to hold several different types of
content, and each one needs its own class with distinct formatting.

/* The introduction text */
p.intro {
 color: #9C9C9C;

}

/* The review byline */
p.byline {
 font-size: 12px;
 font-style: italic;
 border-style: outset;
 border-width: 0 0 1px 0;
 margin: 5px 0 5px 0;
}

/* The review summary text */
p.review {
 font-size: 16px;
 margin: 15px;
}

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn212

BUILDING A
COMPLETE

STYLE SHEET
/* The link at the end of the review summary */
p.reviewEnd {
 font-size: 16px;
 font-style: italic;
 text-align: right;
 margin-bottom: 0px;
 clear: both;
}

 NOTE  This example introduces another feature—CSS comments. CSS comments look a little different from
HTML comments. They always start with the characters /* and end with the characters */. Comments let you
document what each class selector does. Without them, it’s all too easy to forget what each style rule does in a
complicated style sheet, particularly when you use class selectors.

Practice your style-decoding skills by figuring out what these styles do. Most of the
properties apply the usual tweaks to font size and margin space. However, there
are a couple of interesting tricks. The byline class, for example, puts a thin border
under the author’s name to separate it from the review text. And the reviewEnd class
uses the clear property to turn off text wrapping and skip to the bottom of the
floated image. This ensures that the next review doesn’t end up beside the floating
image from the previous review, which can happen when you have floating images
displayed in wide browser windows. (Page 136 shows what this blunder looks like.)

To put these styles into action, you need to add your newly chosen class names
to various parts of your page. Here’s the modified markup for the review page, in-
corporating these class names. (To save space, most of the text is left out, but the
essential structure is here.)

<h1>The Pessimist's Review Site</h1>
<p class="intro">Here you'll learn about the greatest unpublished books ever
...</p>
<p class="intro">The reviews on this Web site do not correspond to reality.
Any ... </p>

<h2 class="reviewTitle">How To Lose Friends and Fail in Life</h2>
<p class="byline">Chris Chu</p>

<p class="review">Tired of sabotaging yourself endlessly? With this book, the
...</p>
<p class="reviewEnd">Read more ...</p>

<h2 class="reviewTitle">Europe: Great Places to Miss</h2>
<p class="byline">Antonio Cervantes</p>

<p class="review">Europe is brimming with world class attractions: glorious
...</p>
<p class="reviewEnd">Read more ...</p>

CHAPteR 7: DESIGNING BETTER STYLE SHEETS 213

IMPROVING
YOUR STYLE

SHEET
This isn’t too shabby, but you can streamline your markup with smarter selectors,
as you’ll see shortly. But for now, this completes the first version of your style sheet.
Fire the page up in your browser, and you’ll get the cleaned-up appearance shown
in Figure 7-3. You can see the complete style sheet on the companion site (http://
prosetech.com/web), in the PessimistReviews_Styled1 folder.

UP TO SPEED

Keeping Your Style Sheet Organized
To make your style sheet’s rules hierarchy as clear as possible,
add the styles that use type selectors (those that target a
specific type of element) first. In this example, those are the
rules that format the <body> and <p> elements. Then add
the class rules, putting related rules together (for example,
grouping the styles for the different parts of a review).

Remember, your elements can (and often will) inherit style
properties from more than one rule. For example, in the
review site, the review text gets its justification setting from

the <p> rule. The review class can then extend this style with
additional style properties or override the style (for example,
change the alignment) if necessary. Of course, extending is
better than overriding, because life gets confusing when you
have overlapping rules. (In the situation described here, the
class selector wins over the type selector, because CSS deems
it to be more specific. However, figuring out which rule is the
most specific isn’t as straightforward in every situation, as
you’ll see on page 219.)

Improving Your Style Sheet
The missing ingredient in the previous style sheet is the always-useful <div>.

You probably remember the <div> element from previous chapters. It’s an all-purpose
container that lets you group various sections of your web page. You can corral as
many elements with the <div> tag as you want, including headings, paragraphs,
and lists.

The <div> element plays several important roles in a well-designed style sheet:

• It groups logically related sections. For example, you can wrap the review
title, review byline, and review text in a <div>, making it clear that these com-
ponents belong together.

• It adds boxes where you need them. Wouldn’t it be nice to wrap each review
in a shaded and bordered box? With a <div>, that’s easy (Figure 7-4).

• It simplifies your markup. Thanks to style sheet inheritance, the styles you
apply to a <div> trickle down to the elements inside. You’re about to see how
that can help you trim the number of style rules in your style sheet.

Grouping Content with the <div> Element
A properly applied <div> element can do wonders for your page. It’s the secret
weapon that transforms a page from merely functional to flexible.

http://prosetech.com/web
http://prosetech.com/web

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn214

IMPROVING
YOUR STYLE

SHEET

FiGURE 7-4
This version of the review
site adds a number of re-
finements. Most obviously,
the site’s header now sits
flush against the top and
sides of the page, and
each review has its own
bordered, shaded box.

You’ll first use a <div> to create the boxes that wrap the reviews. To do that, you
need to add a separate <div> element around each review:

<div class="review">
 <h2 class="reviewTitle">How To Lose Friends and Fail in Life</h2>
 <p class="byline">Chris Chu</p>

 <p class="review">Tired of sabotaging yourself endlessly? With this book,
 the ...</p>
 <p class="reviewEnd">Read more ...</p>
</div>

CHAPteR 7: DESIGNING BETTER STYLE SHEETS 215

IMPROVING
YOUR STYLE

SHEET
<div class="review">
 <h2 class="reviewTitle">Europe: Great Places to Miss</h2>
 <p class="byline">Antonio Cervantes</p>

 <p class="review">Europe is brimming with world class attractions: glorious
 ...</p>
 <p class="reviewEnd">Read more ...</p>
</div>

Then you simply add a rule that styles the review <div>s:

/* The review box. */
div.review {
 background-color: #E4E4E4;
 margin: 20px 0 20px 0;
 padding: 10px;

 border: 1px #8A2700 solid;
 border-bottom-left-radius: 28px 26px;
 border-bottom-right-radius: 7px 14px;
}

These properties shade the review’s background, add a border, and set the margin
(the space between the border and the surrounding content), and padding (the
space between the border and the inside content, which is the review text in this
example). The style gets a little bit fancy with the border-bottom-left-radius and
border-bottom-right-radius properties, which use slightly different curves to
smooth out the bottom-left and bottom-right corners of the box.

But the review copy isn’t the only place the revised review site uses a <div>. You
also need a <div> for the header bar shown in Figure 7-4. Creating this bar takes
two steps. First, you strip out the standard margin around the page using a style
for the <body> element:

body {
 margin: 0px;
 padding: 0px;
 font-family: Georgia,serif;
 font-size: 18px;
}

Second, you add another <div> to hold all the content of the page except the header.
This <div>’s job is to add the margin space back to the page, so your pictures and
text don’t end up scrunched along the side.

/* The page content, not including the header */
div.main {
 margin: 30px 70px 0 60px;
}

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn216

IMPROVING
YOUR STYLE

SHEET
You put the start tag for this <div> just after the header, and the closing </div> tag
at the end of the page, just before the footer (or in this case, just before the </body>
tag that ends the page, because there is no footer). Here’s the basic structure:

<!DOCTYPE html>
<html>
<head>
 ...

</head>
<body>
<h1>The Pessimist's Review Site</h1>
<div class="main">
 <!-- The rest of the page goes here, including everything. -->
</div>
</body>
</html>

 NOTE  There’s no shame in having a <div> hold other <div> elements. In fact, it’s a rare page that doesn’t
have <div> elements nested this way. For example, in the review site, the main <div> holds all the <div>
elements for the reviews.

Figure 7-5 dissects the second version of the review site, showing you where the
hidden <div> elements lie.

FiGURE 7-5
In this example, the HTML
markup wraps each review in a
<div> element, which applies
a background color and borders
to visually set off the reviews
from the rest of the page.
Techniques like these can help
organize dense pages that have
lots of information.

 NOTE  The <div> element is also the key to page layout. Once you put a distinct chunk of content into a
<div>, not only can you style it as a single unit, but you can also place the whole block wherever you need it
on your page. This makes the <div> a perfect container for things like headers, menus, footers, ad bars, and
any sort of panel or box. You’ll learn more about <div>-powered layouts in the next chapter.

CHAPteR 7: DESIGNING BETTER STYLE SHEETS 217

IMPROVING
YOUR STYLE

SHEET
Saving Work with the <div> Element
Thanks to style sheet inheritance (page 82), elements within a <div> inherit many of
their properties from the parent <div>. Font size and margin settings are two good
examples. If you set the font-size property in a <div> that contains paragraphs of
review text, all those paragraphs get that formatting for free.

 NOTE  Although there are some style properties (like margin and padding) that don’t support inheritance,
most do. The style property tables in Chapter 3 indicate which properties use inheritance.

Once you add review boxes to your page, you can use inheritance to your advantage.
For example, instead of assigning a 16-pixel font size to the p.review and p.reviewEnd
classes, you can set the type size once in the div.review class (and still override it
in the p.byline class).

You can save even more markup by adding a div.intro class to hold the two intro-
ductory paragraphs at the beginning of the page. There you can set the text color:

/* The introduction section. */
div.intro {
 color: #9C9C9C;
 margin-bottom: 40px;
}

Now you don’t need the p.intro class at all. You can delete it from your style sheet
and remove the class attribute from the two introductory paragraphs.

If these changes seem small, remember that a typical style sheet is stuffed with
dozens or hundreds of rules. A few modest savings like these can reduce the com-
plexity of your style sheet quite a bit.

The <div> element is a great way to save loads of time, and web experts use it
regularly. But the next technique can help you improve your markup even more.

Saving Work with Contextual Selectors
Applying a class attribute to every element you want to format can get tedious
fast. In the example above, you need to add the class="review" attribute to every
paragraph after the byline. Fortunately, you can use another great shortcut, cour-
tesy of the <div> element and a new type of selector, called a contextual selector.

A contextual selector targets an element inside another element. To understand
what that means, take a look at this type selector:

b {
 color: red;
}

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn218

IMPROVING
YOUR STYLE

SHEET
It formats all bold text in red. But what if you want it to work only on bold text that
appears inside a bulleted list? You can do that using the following contextual type
selector, which finds unordered list elements () and then hunts for bold elements
inside them. If it finds any, it makes the bold text red:

ul b {
 color: red;
}

To create a contextual type selector, you simply put a space between the two ele-
ments.

Contextual selectors are useful, but figuring out how to write one in a style sheet full
of nested elements can get a little dizzying. You’ll see the real benefit of a contex-
tual selector when you use one to target a specific type of element inside a specific
type of class. For example, consider what happens if you take this style sheet rule:

h2.review {

and change the selector to this:

div.review h2 {

The first part of this selector finds all the <div> elements in your page. The second
part limits those matches to <div> elements that have the class name review applied
to them. The third and final part of the selector locates the <h2> elements inside
the <div>. The end result is that every level-2 review heading gets the appropriate
formatting, while headings in the rest of the page are left alone.

Best of all, you can remove the class attribute from the <h2> element, leaving the
following, simpler markup:

<div class="review">
 <h2>...</h2>

You can repeat this trick to format the or <a> elements in a review without
using class names.

You can even target the ordinary paragraphs inside your <div>, but here you have
to be careful. That’s because CSS considers contextual selectors to be more spe-
cific than type or class selectors. For example, imagine that you want to create a
paragraph-formatting rule that uses a contextual selector like this:

div.review p {

You want this rule to apply to all the review paragraphs except the byline at the
beginning and the link at the end. Ideally, you want to use just three classes in the
review markup, like this:

CHAPteR 7: DESIGNING BETTER STYLE SHEETS 219

IMPROVING
YOUR STYLE

SHEET
<div class="review">
 <h2>...</h2>
 <p class="byline">...</p>
 <p>...</p>
 <p>...</p>
 <p>...</p>
 <p class="reviewEnd">...</p>
</div>

Here’s where you run into a problem, because the browser ignores the formatting in
the byline and reviewEnd classes. That’s because the browser decides that these class
rules are less specific than the new paragraph rule that uses the contextual selector.

 NOTE  Confused? CSS has a quirky and often overlooked system of precedence, which decides which rules are
more specific than others (and so win out in a formatting clash). The rule of thumb is that a contextual selector
always beats a class selector. But if you want the full, gory details, which spell out the winners when different
types of style rules conflict, check out the Smashing Magazine article at http://tinyurl.com/css-specific.

To correct this problem, you need to change the byline and reviewEnd classes. The
easiest way to make them more specific is to modify them to use a contextual selec-
tor as well. In other words, instead of creating a rule that applies to any paragraph
that uses the byline class, you need to create a rule that applies to any paragraph
that uses the byline class and is located inside a review:

div.review p.byline {

This corrects the problem. Best of all, it lets you simplify your markup. Now you
need to apply classes to each review in just three places: in the <div> container for
the review itself, in the byline, and in the link at the end. You no longer need to add
a class to the regular paragraphs or the heading.

 NOTE  When using classes and contextual selectors, most web designers don’t bother specifying the element
names. That’s because this selector is a bit clunky:

div.review p.byline

Instead, this works just as well and is more readable: .review .byline

This selector grabs the elements that use the byline class, provided they’re inside an element the uses the review
class. The end result is the same.

Contextual selectors are a wildly popular way to define formatting rules for differ-
ent sections of a page. If you look at other people’s style sheets (and you should,
to learn new tricks and practice your CSS skills), you’ll see plenty of <div> elements
and contextual selectors at work.

http://tinyurl.com/css-specific

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn220

IMPROVING
YOUR STYLE

SHEET
If you’ve lost track of what style rules are still in the style sheet and which ones you
don’t need anymore, check out the following outline, which lists all the rules in the
revised version of review-site style sheet.

/* Remove the margin and set the font for the whole page */
body { ... }

/* Set the justification for all paragraphs */

p { ... }

/* Float and style all images */
img { ... }

/* The shaded site header */
h1 { ... }

/* The page content, not including the header */
div.main { ... }

/* The introduction section. */
div.intro { ... }

/* The entire review box. */
div.review { ... }

/* The review title */
.review h2 { ... }

/* The review summary text */
.review p { ... }

/* The review byline */
.review .byline { ... }

/* The link at the end of the review summary */
.review .reviewEnd { ... }

You can see this style sheet, complete with all its formatting glory, on the companion
site (http://prosetech.com/web) in the PessimistReviews_Styled2 folder.

http://prosetech.com/web

CHAPteR 7: DESIGNING BETTER STYLE SHEETS 221

IMPROVING
YOUR STYLE

SHEET

SHARPEN UP

Practice Styling a Page
You may understand the style sheet techniques covered in
this chapter, but there’s no substitute for trying them out
yourself. If you’re ready to apply some CSS mojo, here’s a
good exercise: First, get the PessimistReviews_Unstyled.htm
page from the companion site. That’s the unformatted version
of the review page you saw back in Figure 7-1. Next, grab the
latest and greatest style sheet, PessimistReviews.css, from the
PessimistReviews_Styled2 folder.

Your challenge is to apply the styles from the PessimistReviews.
css style sheet to the PessimistReviews_Unstyled.htm page.
To do that, you first need to add the missing <div> elements.
You need one that wraps all the content in the page (the main
content), one for the introduction, and one for each review.
Then you must add the class attributes to the elements that
need them. If you rework the page correctly, you’ll see the
page shown in Figure 7-4. If you run into trouble, check out
the correct solution—the PessimistReviews.htm page in the
PessimistReviews_Styled2 folder.

Creating a Style Sheet for an Entire Site
Class rules aren’t just useful for separating different types of content. They’re also
handy if you want to define rules for your whole site in a single style sheet.

Consider the review site you’ve been working on. As you add more pages to it, it’s
reasonable to assume that you’ll use some of the same formatting rules on the new
pages. For example, you’re likely to keep the site header, the Georgia font, and the
text-justification settings for other pages in your site. But you’ll probably need to
supplement the style sheet you’ve built so far with additional rules that deal with
different types of content.

Figure 7-6 shows an example of a new page that could benefit from some extra
fine-tuning. It displays the full text of a single review. This is the page visitors see if
they click the “Read more” link in the review summary on the main page.

You can adapt the existing style sheet to suit this new page several ways. One is to
create a whole new set of rules for full-review pages. For example, you could wrap
the review summaries in a <div> and apply a class named reviewSummary to them,
and you could wrap the full reviews in a <div> and use the class name reviewFull for
them. The reviewSummary class would get the border and smaller heading, while
the reviewFull class would get a similar page, but with no border and larger text.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn222

IMPROVING
YOUR STYLE

SHEET

FiGURE 7-6
The full review gets the
same formatting as the
review summary on the
main page. However, some
of the styling doesn’t
seem to fit as well here,
including the bordered box
that surrounds the entire
review and the small-
seeming review title.

Here’s an outline of the style rules you need:

/* ** */
/* Styles for the review summaries on the main page. */
/* ** */

/* The entire review box. */
div.reviewSummary { ... }

/* The review title */
.reviewSummary h2 { ... }

/* The review summary text */
.reviewSummary p { ... }

CHAPteR 7: DESIGNING BETTER STYLE SHEETS 223

IMPROVING
YOUR STYLE

SHEET
/* The review byline */
.reviewSummary .byline { ... }

/* The link at the end of the review summary */
.reviewSummary .reviewEnd { ... }

/* ** */
/* Styles for the full review on the single-review page. */
/* ** */

/* The whole review section. */
div.reviewFull { ... }

/* The review title */
.reviewFull h2 { ... }

/* The review text */
.reviewFull p { ... }

/* The review byline */
.reviewFull .byline { ... }

Another approach is to continue using the same class names. After all, in both cases
you’re formatting a review. The only difference is the context of that review—the
fact that it now has the whole page to itself. To capture the change in this context,
you can add another <div> container around the <div> that holds the review. For
example, on the single review page you could use markup like this:

<div class="singlePageReview">

<div class="review">
<h2>How To Lose Friends and Fail in Life</h2>
<p class="byline">Chris Chu</p>

<p>Tired of sabotaging yourself endlessly? With this book, the author Chris
Chu explains how to level the ...

Now you need to write contextual selectors that alter a few details for reviews on
the single-review page. For this task, you’ll need more elaborate contextual selec-
tors. Instead of simply specifying the byline class (the author byline) in the review
class (the <div> container that holds the review), as you did earlier, now you need
to target the byline class in the review class in the singlePageReview class. Here’s
the selector that does the job:

.singlePageReview .review .byline {

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn224

TUTORIAL:
BECOMING

A STYLE
DETECTIVE

If you’re making just a few changes, this add-on approach is surprisingly elegant.
For example, by adding the three rules shown below, you can give the single-review
page a more suitable appearance (Figure 7-7).

FiGURE 7-7
Using contextual selectors,
full-page reviews like this
one look different from
review summaries. But
thanks to the many shared
details in coloring, type,
and alignment, both pages
stay consistent and look
like they belong in the
same site.

.singlePageReview .review {
 border: none;
 background: transparent;
}

.singlePageReview .review .byline {
 font-size: 14px;
 text-align:right;
 margin-right: 15px;
}

CHAPteR 7: DESIGNING BETTER STYLE SHEETS 225

TUTORIAL:
BECOMING

A STYLE
DETECTIVE

.singlePageReview .review h2 {
 font-size: 24px;
 text-align:right;
 color: #E4E4E4;
 background: #D46A6A;
 border-radius: 30px 0;
 padding: 20px;
}

Tutorial: Becoming a Style Detective
In this chapter, you accomplished some serious styling work. But no matter how
carefully you organize your styles, something will eventually go wrong. You’ll tweak
the properties in a rule, refresh the page, and find that the element you’re attempting
to change has stubbornly ignored your commands.

You could have altered the wrong rule. Or mistyped a class name. Or added a rule that
another setting in a different rule canceled out. Finding the root of a style problem
isn’t always easy, because the more complex your style sheet, the more difficult it
is to identify the rules that format a specific part of your page.

Consider one of the review paragraphs in the previous example. It acquires a com-
bination of styles from no fewer than four places:

• It inherits <body> element settings, like the font family.

• It gets the paragraph-specific formatting you set in the <p> style rule.

• It inherits the settings from the <div> that holds the review.

• It gets the formatting you specified for all review paragraphs through the con-
textual .review .p selector.

So what do you do if an element on your page doesn’t have the formatting you think
it should, based on the styles you set? You could fumble around in the dark, making
random changes to the style sheet in an attempt to fix the problem. But a better
idea is to call in the reinforcements and use a CSS inspection tool.

A CSS inspection tool is a browser feature or plug-in that analyzes what’s happening
in your web page. It tells you what style properties are in effect on every element,
and where the element gets these settings from. Using a CSS inspection tool is like
performing an x-ray on your page to see the CSS logic hiding underneath.

In the not-so-distant past, you needed to install (and maybe even buy) some sort of
specialized tool to get this CSS wizardry. But today, every modern browser provides
this feature—and, surprisingly, each browser implements it in pretty much the same
way. The following steps walk you through the process of using CSS inspection:

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn226

TUTORIAL:
BECOMING

A STYLE
DETECTIVE

1. First, grab yourself a page you want to analyze.

A good starting point is the final review in the PessimistReviews.htm page,
which you can find in the PessimistReviews_Styled2 folder on the companion
site (http://prosetech.com/web).

2. Open the page in your favorite browser.

Google Chrome is a superb choice for CSS inspection, but Firefox and Opera
offer CSS tools that are nearly as good. Internet Explorer can perform the same
magic, but it works best in IE 11 or later.

If you’re using Safari, you need to make a quick trip to the menu to turn on the de-
veloper tools before you go any further. Choose Safari→Preferences→Advanced
and make sure the “Show Develop menu in menu bar” checkbox is turned on.

3. Choose an element you want to study.

For example, in the PessimistReview.htm page, you might decide to zero in on
one of the review bylines.

4. On the web page, right-click the element you want to examine, and then
choose Inspect Element.

A multi-tabbed panel of web developer tools appears at the bottom of your
web page (Figure 7-8).

FiGURE 7-8
There are plenty of goodies
packed into the inspection-
tool tabs you see here. On
the left, you’ll see the HTML
markup for the page, nicely
formatted and color coded.
You can collapse or expand
parts of the listing to focus
on the part that interests you
(just click the tiny arrows in
the left margin). On the right
side is something even more
interesting—a list of all the
styles that affect the element
you picked.

http://prosetech.com/web

CHAPteR 7: DESIGNING BETTER STYLE SHEETS 227

TUTORIAL:
BECOMING

A STYLE
DETECTIVE

5. Expand the developer panel so you can see most of the CSS styles listed.

The developer panel starts out small, but you can make it bigger by dragging
the bar that separates the developer panel from the web page up.

Figure 7-9 shows a closeup view of the style list in Chrome.

FiGURE 7-9
The browser’s CSS inspec-
tor arranges styles in
order, putting the most
specific ones (the ones
that are applied last, and
that have last say) on
top. In this example, that
means the properties in
the .review .byline
style override those in the
more general .review
p style. The crossed-out
properties (like the
margin property in the
.review p style and the
font-size property in
the div.review style)
are properties that have
been overridden for the
current element.

6. When you finish, pick a new element to study.

You can choose an element two ways. You can right-click something on the
page and choose Inspect Element again, or you can click the element you want
in the HTML outline on the left side of the developer panel.

If you’re prepared to dig deeper, most browsers add a few more CSS analyzing
goodies. You can do any of the following:

• See the computed style settings. You may see a Computed button or tab
above the style list. Click it to see the combined effect of your styles—in
other words, to see a single list that shows all the properties in effect on
the chosen element.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn228

TUTORIAL:
BECOMING

A STYLE
DETECTIVE

• Turn off a style property. Most browsers also let you turn off specific style
settings to better understand how they affect the page. To do this, clear
the checkbox next to the property you want to turn off. (In some browsers,
including Chrome and Firefox, you need to point to the property before the
checkbox appears.) Keep in mind that this style-switching is just a tempo-
rary testing tool—it doesn’t change your style sheet, nor does it affect what
your page looks like the next time you open it in a browser.

• Edit a style property. Want to quickly test a change? Double-click one of
the style properties in the list and then type in a new value. Your browser
applies the new style setting immediately (Figure 7-10). If this solves the
problem or improves the page, you can make the same edit to your style
sheet.

FiGURE 7-10
Curious about what would happen if you gave the byline class a
28-pixel font? You can find out by double-clicking the font-size
property and making this quick edit. You can clear the checkmark next
to any property to temporarily turn that setting off.

From Web Page
to Website

PART

2

CHAPTER 6:

 Linking Pages

CHAPTER 7:

 Designing Better Style Sheets

CHAPTER 8:

 Page Layout

CHAPTER 9:

 Getting Your Site Online

231

CHAPTER

8

In this book, you’ve covered some serious ground with CSS. In Chapter 3, you used
styles to polish up drab web pages. And in Chapter 7, you learned to build larger,
more ambitious style sheets to standardize the design of an entire website. In this

chapter, you’ll extend your style sheet skills to deal with page layout.

Up to now, your pages have been locked into fixed layouts based on the order of
their HTML elements. So if you put a heading at the beginning of your markup, that
heading shows up at the top of your page. This behavior makes perfect sense, but it
doesn’t suit more complicated layouts. For example, a typical modern website uses
headers, fat footers, and sidebars (often on both sides of a page) to place major
elements like headers, menus, advertisements, links, galleries, social media plug-ins,
and more. If you lock each ingredient to a specific spot in your page, you’ll have a
hard time replicating the layout on every page and a heck of a time changing your
site’s layout in the future.

Once again, you’ve met a problem that styles can solve. With a well-organized style
sheet—like the kind you built in the previous chapter—you can carve your page into
logical sections, and then use CSS to slip those sections into the right arrangement.

In this chapter, you’ll see exactly how CSS-based layouts work. You’ll learn to use
modern layout techniques like floating boxes, side-by-side columns, and overlapping
pictures and text. But first, you’ll consider the challenges of layout on the Web and
learn why online viewing isn’t as straightforward as it seems.

 Page Layout

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn232

UNDERSTANDING
STYLE-BASED

LAYOUT Understanding Style-Based Layout
In the early, lawless days of the Web, designers had to improvise their layout tools.
One of their favorites was the invisible table, which uses the <table> element you
learned about in Chapter 2 to position rows and columns of content. Although ghost
tables worked well enough, they left a tangled mess of markup in their wake. Today,
web developers have given up on table-based layouts in favor of a cleaner, more
powerful approach: style-based layout.

You’ve already taken your first tentative steps toward style-sheet nirvana by learn-
ing about borders and boxes (Chapter 3), floating images (Chapter 4), and logical
containers (Chapter 7). With these tools, you have almost everything you need to lay
out a full page. So before you go any further, it’s a good idea to review these basics.

Structuring Pages with the <div> Element
Before you start placing elements in specific positions on a page, you need a way
to bundle related content together, into a single, neat package. In an old-fashioned
table-based layout, that package was the table cell. When you use style-based
layout, that package is the <div> element—the all-purpose container you learned
about on page 47.

Imagine you want to create a box with several links in it on the left side of your page.
Positioning each link in that column is as much fun as peeling grapes. By using the
<div> element, you can group all those links together and manipulate them as a
single unit:

<div class="Menu">
 Home Page
 Buy Our Products
 File a Lawsuit
 ...
</div>

Whenever you create a <div> element, you should choose a class name that de-
scribes the type of content it contains (like Menu, Header, AdBar, and so on). Using
that class name, you can create a style rule that positions this <div> element and
sets its font, colors, and borders.

Remember, a <div> element doesn’t have any built-in formatting. In fact, on its
own, it doesn’t do anything at all. The magic happens when you combine a <div>
element with a style sheet rule.

Floating Boxes
Ordinarily, HTML pages use a “flow” layout model. The elements in your web page
flow from the top of the browser window to the bottom, appearing in the same order
as they appear in your HTML markup. But when you use CSS layout properties, you
take selected elements out of this system and arrange them according to different
rules—the rules that you define in your style sheet.

CHAPteR 8: PAGE LAYOUT 233

UNDERSTANDING
STYLE-BASED

LAYOUT
One of the simplest ways to lay out a web page is to take a small portion of content
and float it outside of the main layout of your page (see Figure 8-1). That way, the
floating box sits wherever you place it, and the rest of the content flows around that
box. In fact, you already used this technique in Chapter 4, to make pictures float
using the style sheet property, float. A floating layout works just as readily with
<div> elements as it did with those elements, with one exception: You need
to supply a width for the <div> element.

 NOTE  When you float an image, browsers automatically make the floating box as wide as the image. When
you float a <div> element with text inside, you must specify how wide it should be.

FiGURE 8-1
Here are three examples of
floating layouts.

Top: A standard floating
box.

Bottom left: You can stack
place more than one float-
ing box at a time. Your
browser adds each new
box to the left of the one
before it.

Bottom right: To stack the
boxes, add the clear: both
style sheet property (page
136) to force the second
floating box to appear
under the first.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn234

UNDERSTANDING
STYLE-BASED

LAYOUT
Here’s a style that defines a class and floats an element on the right side of some text:

.FloatingBox {
 float: right;
 width: 150px;
 background-color: red;
 border-width: 2px;
 border-style: solid;

 border-color: black;
 padding: 10px;
 margin: 8px;
 font-weight: bold;
 color: white;
}

And here’s the <div> that uses that style:

<div class="FloatingBox">
 <h1>Buy now!</h1>
 <p>...</p>
</div>

You’ll notice that the FloatingBox class sets the width of the box but not its height.
Browsers handle the latter task, making the box just tall enough to fit the content
inside. You could specify a fixed height using the height property, but you might
truncate the end of your text (if you make the box too small) or leave extra white
space at the bottom (if it’s too big).

Fixed Boxes
The examples in Figure 8-1 are called floating boxes because they “float” around the
page to different positions. When a browser encounters a <div> element that uses
the float property, it positions that element on the side of the page (left or right) you
specify in your style sheet. It positions the top of the <div> at the point in the page
where it encounters the <div> element in the HTML. So if a browser finds a <div>
halfway down the HTML for a page, it puts the floating box halfway down that page.

Style sheets give you another option: You can place an element in a set, unchanging
position. To do that, you use the position property (set to absolute in this case)
in conjunction with the properties top, left, bottom, and right. Here’s an example:

CHAPteR 8: PAGE LAYOUT 235

UNDERSTANDING
STYLE-BASED

LAYOUT
.FixedBox {
 position: absolute;
 top: 20px;
 left: 0px;
 width: 150px;
 background-color: orange;
 border-width: 2px;
 border-style: solid;
 border-color: black;
 padding: 10px;
 margin: 8px;
 font-weight: bold;
 color: white;
}

Unlike floating boxes (which float at the sides of a page), fixed boxes can go any-
where. When you specify the location of an element using absolute positioning,
you remove that element from the normal “flow” of the page. As a result, the rest
of your content won’t wrap around a fixed box. Instead, the box sits on top of the
content, as you can see in Figure 8-2.

FiGURE 8-2
HTML positions a fixed box at the coordinates you specify. The box
never moves, nor does it wrap the content that runs underneath it.

At first glance, fixed boxes seem like a problem. After all, who wants to deal with
a jumble of overlapping content? But if you’re careful, you can carve the page into
distinct sections that don’t clash. The most common way to do this is by creating
columns, as you’ll see shortly.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn236

CHOOSING
YOUR LAYOUT Choosing Your Layout

When you design a page for print, you take into account the physical size of your
final document. You’d use much larger text on a poster than you would on a business
card, for example. But in the world of the Web, this system breaks down, because
your website visitors can resize their browser windows (as well as the text itself)
to all sorts of different dimensions, and they may view your site with tablets and
smartphones that have small screens. These details affect how much display space
your web pages have. The higher the resolution and the bigger the browser window,
the more of your content fits onscreen. This raises a dilemma—how do you make
sure your pages look their best when you don’t know your visitors’ screen settings?

You deal with variable screen sizes using one of two basic layout strategies:

• Go for flexibility with proportional sizing. With proportional sizing, your
layout expands or shrinks to fit the available space in a browser window. For
example, if you create a proportionally sized web page with a fixed-size menu
panel (on the left) and a variable content area (on the right), the menu section
always stays at the same width, while the content area grows or contracts to fit
the browser window, no matter how big or small your guest makes that window.
If you’re in doubt, proportional sizing is the way to go, because it ensures that
your web pages will conform to any size browser window. However, you might
want to impose a maximum or minimum width to prevent your pages from be-
ing scrambled beyond recognition. You’ll learn how to do that in this chapter.

• Pick a reasonable fixed width. Sometimes, too much flexibility can cause
its own problems. For example, if you shrink a proportionally sized page to
extremely small dimensions, some page elements might get bumped into odd
positions. If you have a complex layout with lots of graphics and floating ele-
ments, the result can be a bit of a mess. On the other hand, extremely large
windows can cause problems, too. For example, if you stretch a proportionally
sized page to the full width of a widescreen monitor, you might end up with
extremely long lines of text that are hard to read. One solution is to use fixed-
width pages that look good at a range of common browser settings.

Both approaches make sense, but in different scenarios. For a typical site that
presents ordinary text, like a blog post or news story, fixed-width sizing works best.
Figure 8-3 shows it at work on the Wall Street Journal’s website (www.wsj.com).

On other websites, proportional sizing works better, because it lets the website
make the best use of whatever screen space a visitor’s got. For example, perform
a text search on Google and you’ll get a page of results that uses a fixed layout.
But perform an image search on Google, and you’ll notice that the image results
stretch to fill the whole width of the browser window, even on the widest widescreen
monitor (Figure 8-4).

www.wsj.com

CHAPteR 8: PAGE LAYOUT 237

CHOOSING
YOUR LAYOUT

FiGURE 8-3
Top: To read the text of this
article without scrolling
side to side, you need a
window that’s around 600
pixels wide. Just about
every computer screen can
accommodate that.

Bottom: Widen the win-
dow to about 1,000 pixels
and you see frills like vid-
eos, ads, a search box, and
a list of popular articles. If
you make the window any
wider, all you’ll get is extra
blank space.

These days, some sites get even fancier by creating multiple layouts that they swap
in and out as needed, depending on destination device. For example, people viewing
this sort of site on a widescreen monitor will see one version of the site, while people
viewing it on a smartphone get a different view, governed by different style sheet
rules. This approach is more complex, and it requires the latest version of the style
sheet language, CSS3. You’ll learn more in the box on page 250.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn238

CHOOSING
YOUR LAYOUT

FiGURE 8-4
Proportional sizing has the
potential to adapt to the
needs of your web visitors.
Although it makes sense
to fill a browser window
with images, the same
approach wouldn’t work
well with text, because
very long lines become
difficult to follow. For this
reason, you may want to
cap the maximum width of
a proportional web page,
as described on page 248.

No matter which layout strategy you choose, you should test your pages at a variety
of browser sizes to make sure your visitors see the best side of your work. In this
chapter, you’ll learn to build a couple of multiple-column layouts, one of which uses
fixed widths, and one that uses proportional sizing.

The 1,000-Pixel Rule of Thumb
If you opt to create a standard fixed-width layout, you need to figure out how wide
that layout should be. Of course, you have no way of knowing the size of a visitor’s
browser window, which is the most important factor in page layout. Fortunately,
there’s a good rule of thumb to help you out: Make sure your pages look great at
a width of 1,000 pixels. (Pixels are the tiny dots on your computer screen. For a
deeper explanation, see the box on page 239.) The Wall Street Journal example in
Figure 8-3 meets this guideline.

The 1,000-pixel mark is an arbitrary number, but it works surprisingly well for ev-
eryone. Very old computers may have monitors that top out near that range, which
means people using those computers can see everything on a 1,000-pixel-wide
page, as long as they enlarge their browser window to fill the whole screen. The
1,000-pixel rule also works for folks with wider displays. Even though they have
more room to spare, they’re less likely to stretch their browser windows to the full
possible width (if they did, wider columns lead to extremely long lines of text, which
are difficult to read).

CHAPteR 8: PAGE LAYOUT 239

TUTORIAL:
CREATING A

LAYOUT WITH
MULTIPLE
COLUMNS

UP TO SPEED

Understanding Resolution
A pixel is the smallest unit of measure on a monitor, and is
otherwise known as a “dot.” For example, a resolution of 1366
x 768 means that a monitor displays a grid of pixels that’s
1,366 pixels wide and 768 pixels high (for a total of just over 1
million pixels). The smallest resolution you’re likely to find on
a desktop or laptop computer today is 1024 x 600, which are the
dimensions of a teeny netbook screen (a netbook is a tiny and
somewhat underpowered laptop). But remember, people with
large monitors won’t necessarily size their browser windows
to fill up the entire screen. For that reason, 1,000 pixels is a

good lower-limit assumption you can make for the width of
a browser window.

To get some perspective, you might want to figure out what
screen resolution you’re using—or even change it. To do so on
a Windows PC, right-click the desktop, choose Personalize,
click Display Settings, and then adjust the resolution using
the handy slider. In earlier versions of Windows, you can
find the same settings when you right-click the desktop and
then select Properties→Settings. In Mac OS X, click System
Preferences→Displays, and then select from the list of
resolutions.

A 1,000-pixel-wide display works on tiny smartphone screens, too, sort of. However,
even though your page will technically fit on a smartphone display (because smart-
phones cram plenty of pixels into their super-sharp screens), the text on your page
will be too small to read without squinting. That means visitors with mobile devices
are in for a bit of zooming and scrolling. You can avoid this using a technology called
media queries, but it takes a bit of work (see the box on page 248).

 TIP  Some web page editors let you open pages in a range of browser window sizes. For example, in Expres-
sion Web you can choose File→“Preview in Browser,” which has options for a few standard, but old, window
sizes. And some web browsers have add-ons that do the same thing. For example, Chrome and Firefox fans can
use the Web Developer extension (http://chrispederick.com/work/web-developer), which adds a toolbar packed
full of handy web design tools, including an option to quickly change the size of the browser window.

The best way to understand the difference between fixed and proportional layouts,
and to see the 1,000-pixel rule in action, is to put these techniques into practice.
And that’s exactly what you’ll do in the next section.

Tutorial: Creating a Layout with Multiple
Columns

One of the most common web page layouts is a two- or three-column design. The
column on the left typically holds navigation buttons or other links. The column in
the middle includes the main content for the page, and it takes up the most space.
The column on the right, if present, displays additional information, like an adver-
tisement or another set of links.

http://chrispederick.com/work/web-developer

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn240

TUTORIAL:
CREATING A

LAYOUT WITH
MULTIPLE
COLUMNS

In the following tutorial, you’ll take a basic web page and create a classic three-
column layout. You’ll make it a fixed-width layout first, then you’ll try out a resizable
layout, and finally you’ll add a few more refinements. By the time you finish, you’ll
know exactly how to arrange your site with styles.

 TIP  You get the practice files for this tutorial from the Missing CD (available at www.missingmanuals.com/
cds/caw4). Look for the Tutorial-8-1 folder (which stands for “Chapter 8, first tutorial”). Inside is the Start folder,
which has the set of pages you begin the exercise with, and the End folder, which shows the solution. This tutorial
has two solutions, and each one is in a separate subfolder inside the End folder. For example, the first page you’ll
develop has a fixed layout, and you can check the finished page at Tutorial-8-1\End\FixedWidth. The second has
a resizable layout, with the final page at Tutorial-8-1\End\Resizable.

Laying the Groundwork
Before you write any style rules, you need to plan your layout.

As you’ve already seen, you can use style rules to place elements in precise loca-
tions on a page. To create a multicolumn layout, for example, you need to create a
box for each column and then put each box in a separate location on the page. If
you arrange the columns properly, you’ll end up with a page divided into a tightly
interlocked grid of <div> elements, each with its own content (Figure 8-5).

FiGURE 8-5
Here, a grouping of four <div> elements creates
a classic three-column page design, with a header
at the top. The <div> boxes line up snugly against
one another, but there’s no overlap.

You don’t need to map out the exact dimensions of your layout just yet. First, you
need to decide how many sections you want and what each section will contain.
Once you do that, you’ll know everything you need to write your HTML.

Figure 8-6 shows a page that uses the three-column layout outlined in Figure 8-5.
You can find this page, named ThreeColumns.htm, in the Start folder for this tutorial.

www.missingmanuals.com/cds/caw4
www.missingmanuals.com/cds/caw4

CHAPteR 8: PAGE LAYOUT 241

TUTORIAL:
CREATING A

LAYOUT WITH
MULTIPLE
COLUMNS

Initially, the page has all its content but none of the organization (Figure 8-6). It’s
up to you to enclose each section in a <div> element.

FiGURE 8-6
In this layout tutorial, you
start out with a page that
includes all the content, but
none of the layout. Your
first step is to carve the text
up into sections, so you
can position each section
appropriately.

Give each <div> a class name that corresponds to its position in Figure 8-5. For
example, the page begins with this content, which represents the header:

 <h1>The Joy Of Styles</h1>
 <p>A header for <i>Creating a Website: The Missing Manual</i></p>

Here’s how you wrap that header in a <div> element:

<div class="Header">
 <h1>The Joy Of Styles</h1>
 <p>A header for <i>Creating a Website: The Missing Manual</i></p>
</div>

Repeat this process to add <div> elements for each of the three columns. Altogether,
you have to add four <div> elements. Here’s what the final HTML should look like:

<div class="Header">
 <h1>The Joy Of Styles</h1>
 <p>A header for <i>Creating a Website: The Missing Manual</i></p>
</div>

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn242

TUTORIAL:
CREATING A

LAYOUT WITH
MULTIPLE
COLUMNS

<div class="LeftPanel">
 <p>Here are some links that will sit on the left side.</p>
 Page 1

 Page 2

 ...
</div>

<div class="MiddlePanel">
 <p>This section will sit in the middle.</p>
 <p>An expandable middle might not be ...</p>
</div>

<div class="RightPanel">
 <p>And here is some content for the right side.</p>
 <p>Donate to my untraceable Swiss Bank account ...</p>
</div>

When you finish, the page won’t look any different—your content will still have the
boring, column-less layout shown in Figure 8-6, but you’ve laid the groundwork to
apply your styles and layout settings.

Attaching Your Style Sheet
The ThreeColumns.htm example comes with a ready-made style sheet, named (rather
logically) ThreeColumns.css. You’ll find both files in the Start folder for this tutorial.

You need to add two details. First, the ThreeColumns.css style sheet lacks the layout
instructions necessary to structure your page. All it has is a dash of formatting, which
sets a nicer font for the page (Trebuchet MS) and tweaks the font size all around.

Second, the ThreeColumns.htm page doesn’t actually use the ThreeColumns.css
style sheet. You can rectify that by opening ThreeColumns.htm and adding a <link>
element in the <head> section of the page, like so:

<head>
 <title>Sizing</title>
 <link rel="stylesheet" href="ThreeColumns.css" />
</head>

By this point in the book, attaching a style sheet is nothing new. Now you’re ready
to move on to the real work, writing the layout rules.

Building a Fixed-Width Layout
Before you can position the <div> elements that shape your page, you need to decide
whether you want a fixed-width or a resizable layout. (Flip back to page 236 for a
summary of the differences.) In the following sections, you’ll learn to create both,
but you’ll start with a classic fixed-width layout.

CHAPteR 8: PAGE LAYOUT 243

TUTORIAL:
CREATING A

LAYOUT WITH
MULTIPLE
COLUMNS

To set up a fixed-width layout, you need to decide on the exact pixel width of each
<div> element. Here are some good starting widths for this example:

• 100 pixels for the left panel

• 450 pixels for the middle panel

• 150 pixels for the right panel

This adds up (with a bit of margin space in between), to a total of about 700 pixels.

 TIP  If you go with a fixed layout, follow the 1,000-pixel guideline to make sure visitors don’t need to do any
side-to-side scrolling. It’s also a good idea to restrict any individual column of text to a maximum width of 600
to 700 pixels. Any wider and you run into the problem of long lines of text, where readers can lose their place as
they skip to a new line and have to scan back across the page to the left edge.

Once you decide how to allocate your space, you simply need to create three style
rules, one for each column. As in the examples you saw earlier, you control the
horizontal placement of a column by setting its left coordinate, and you let the
content determine its total height.

The following style rule defines a panel that’s 100 pixels wide and positioned along
the left side of a page:

.LeftPanel {
 position: absolute;
 left: 0px;
 width: 100px;
 padding: 15px;
}

The middle panel starts at the 120-pixel mark and takes up another 450 pixels. That
leaves 20 pixels of blank space between the right side of the left panel and the left
side of the middle panel. The middle panel also separates itself from the content on
the left side using border properties.

.MiddlePanel {
 position: absolute;
 left: 120px;
 width: 450px;
 border-left-width: 1px;
 border-right-width: 1px;
 border-top-width: 0px;
 border-bottom-width: 0px;
 border-style: solid;
 border-color: blue;
 padding: 15px;
}

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn244

TUTORIAL:
CREATING A

LAYOUT WITH
MULTIPLE
COLUMNS

Finally, the panel on the right side starts at the 605-pixel mark and takes up 150 pixels.

.RightPanel {
 position: absolute;
 left: 605px;
 width: 150px;
 padding: 15px;
}

Although you could use absolute positioning for the <div> that holds the header
at the top of the page, you don’t need to, because the header comes first in the
HTML. As a result, a browser displays the header and then starts adding the other
<div> elements at the locations you specified, so that the top of each panel starts
just underneath the header. (Another option is to manually set the height property
for the header and the top property for the two side panels, to explicitly set the
horizontal placement of each section.)

You can see the result in Figure 8-7. And if you run into trouble, you can double-check
your changes against the official solution in the Tutorial-8-1\End\FixedWidth folder.

The remarkable thing about this example is that your HTML document is free of
messy formatting details. Instead, it’s a small miracle of clarity, with content divided
into several easy-to-understand sections. And because all the style rules are in an
external style sheet, you can build a second page using the same HTML and without
spending any time puzzling out the correct formatting.

DESIGN TIME

Centering a Fixed-Width Layout
Sometimes, webmasters center fixed-width layouts horizon-
tally. That way, their content always appears in the center of a
browser window rather than smushed up against the left edge.

Implementing this design is fairly easy in theory, but it can
be a bit tricky in practice. First, you need to wrap your entire
layout in another <div> element. In this example, it’s named
BodyContainer:

<div class="BodyContainer">
 <div class="Header">...</div>
 <div class="Left">...</div>

 <div class="Middle">...</div>
 <div class="Right">...</div>
</div>

Then you need to set the width of this <div> to the total
width of your full layout, and you need to set the right and
left margins to auto:

.BodyContainer {
 width: 750px;
 margin-left: auto;
 margin-right: auto;
}

When you set auto margins on both sides, the browser auto-
matically makes them equal. The result is that your <body>
element ends up centered in the middle of the browser window.

But using this technique presents another problem: you
can’t absolutely position any of the <div> elements for the
columns. The workaround is to float all the <div> columns on
the left, one after the other. As long as you set a fixed width for
each column and add them in the right order, this technique
works without a hitch. To see it in practice, check out the
AbsoluteSizing_Centered.htm file with the examples for this
chapter on the companion site (http://prosetech.com/web).

http://prosetech.com/web

CHAPteR 8: PAGE LAYOUT 245

TUTORIAL:
CREATING A

LAYOUT WITH
MULTIPLE
COLUMNS

FiGURE 8-7
A fixed-width layout (top)
maintains the integrity
of your page design as
guests resize their browser
windows. The tradeoff is
that if you pick too wide a
width, visitors will have to
scroll from side to side to
see everything (bottom),
which is sure to exasperate
them. Another side effect,
one that visitors with
large, high-resolution
monitors might see, is a
page that appears “airy”
because of all the empty
white space on either side
of the page.

Switching to a Resizable Layout
A resizable layout is one in which the middle column—the one with the main content
of your page—expands to take advantage of the available browser space. Figure
8-8 shows the difference.

One of the great joys of style-based layout is the fact that you can change your page
design without changing the structure of your HTML. For example, the easiest way
to create the resizable layout shown in Figure 8-8 is to adapt the fixed-width style
sheet you built in the previous section. (If you’re starting from scratch, just grab it
from the folder Tutorial-8-1\End\FixedWidth.) You can convert it into a resizable
layout by making a few small changes to the style rules that govern the three columns.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn246

TUTORIAL:
CREATING A

LAYOUT WITH
MULTIPLE
COLUMNS

FiGURE 8-8
Top: At small sizes,
this layout looks the
same as its fixed-width
counterpart.

Bottom: Shrink or stretch
the window a bit, and
you’ll see the difference:
the side panels stay the
same size, but the middle
panel resizes itself to fit.

First, consider the rule for the left panel. Interestingly, you don’t need to change
this style at all. It can still use absolute positioning to lock onto the side of the page:

.LeftPanel {
 position: absolute;
 left: 0px;
 width: 100px;
 padding: 15px;
}

The panel on the right is slightly different. Because you don’t know how wide the
middle section will be, you don’t know what its left coordinate should be. You get
around this in an interesting way: by using the right position property. This places
the <div> for the right panel in relation to the right side of the browser window, so

CHAPteR 8: PAGE LAYOUT 247

TUTORIAL:
CREATING A

LAYOUT WITH
MULTIPLE
COLUMNS

0px is smack up against the right edge, 100px is 100 pixels to the left, and so on. In
this example, you give the panel 10 pixels of extra space to make sure its content
doesn’t rub up against the right border of the browser window. Here’s the new style
rule with the changed line highlighted in bold:

.RightPanel {
 position: absolute;
 right: 10px;
 width: 150px;
 padding: 15px;
}

The final step is to define the content section that sits between these two panels.
You can’t use absolute positioning for this, because you don’t know how wide your
guest’s browser will be. Fortunately, there’s another trick you can use—margin
space. To make this work, you pretend that your middle panel has the full run of the
browser window, like any normal piece of content. However, you pad the left and
right margins with enough space to leave room for the side panels.

In this example, the left panel measures 100 pixels wide. Add 20 pixels of space in
between, and that means your center panel needs a left margin of 120 pixels. The
right margin is 190 pixels, because you need 150 pixels to accommodate the width
of the right panel, plus 30 pixels of margin space for both sides of the center panel,
and 10 extra pixels to compensate for the space you left between the right panel
and the right edge of the browser window. Here’s the final style sheet rule:

.MiddlePanel {
 margin-left: 120px;
 margin-right: 190px;
 border-left-width: 1px;
 border-right-width: 1px;
 border-top-width: 0px;
 border-bottom-width: 0px;
 border-style: solid;
 border-color: blue;
 padding: 15px;
}

Notice that the middle panel no longer has the position: absolute setting.

This solution presents a problem, however. Because the middle panel no longer
uses absolute positioning, the right panel gets bumped down the page, so that
the top of the right panel aligns with the bottom of the middle panel. To fix this,
you could reshuffle your markup, putting the <div> elements for the left and right
panels before the <div> for the middle panel. But it’s always better if you can make
layout changes without touching your markup. In this case, the problem is more
easily solved by explicitly moving the right panel up the page, back to its proper
position, with the help of the top property. Here’s the style rule, which assumes a
header that’s 90 pixels high:

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn248

TUTORIAL:
CREATING A

LAYOUT WITH
MULTIPLE
COLUMNS

.RightPanel {
 position: absolute;
 top: 90px;
 right: 10px;
 width: 150px;
 padding: 15px;
}

Now, just five small style sheet changes later, you’ve replaced the layout of your
page. And you don’t need to stop there—with a few more edits, you can change
the panel widths, swap the panels from one side to the other, or even transform a
panel into a footer.

UP TO SPEED

Super-Flexible Sites: The Zen of Web Design
Style sheets not only let you apply formatting and layout to
a page, they also let you change the formatting and layout
in one (immensely gratifying) step. This is the holy grail of
web design—a simple, efficient way to update, revamp, and
customize an entire site as your needs change. Figure 8-9 shows
the CSS Zen Garden example website, which demonstrates
this vision.

Here’s a quick recap of the design steps you need to follow to
make flexible design work on your website:

1. Plan your pages before you write a single HTML tag.
Divide your page into distinct regions.

2. Put each region into a separate <div> element.

3. Give each <div> element a unique class name that
reflects its purpose, not its format. Do this for every
section of a page, even if you don’t intend to apply style
sheet rules to it right now.

4. Finally, write the style sheet rules that position and format
each <div> element. This is the most time-consuming
part of your markup to write, but it’s time well spent—you
can tweak your formatting rules at any time, without
disturbing your content.

Maximum Width: The Safety Net
When you create a resizable layout, you can run into two types of trouble. The first
problem occurs if your visitor shrinks her browser window to ridiculously narrow
dimensions. Space becomes so constricted that even a single word can’t fit in the
middle column, and the separate sections begin to overlap. This isn’t a huge prob-
lem—after all, most people don’t expect a website to keep looking pretty when
squashed paper-thin—but it’s still a bit short of a professional page.

The second issue rears its head if a visitor expands his browser window to fill all the
space on a widescreen, high-resolution monitor. In that case, the middle panel is so
wide that the text fits on just two or three lines. Besides looking odd, it’s extraor-
dinarily difficult to read.

CHAPteR 8: PAGE LAYOUT 249

TUTORIAL:
CREATING A

LAYOUT WITH
MULTIPLE
COLUMNS

FiGURE 8-9
One page, dozens of looks.
The website www.css
zengarden.com shows you
how you can thoroughly
reformat and reorganize
an ordinary page (top left)
just by switching the style
sheet it uses. Best of all,
you can download the HTML
and dozens of sample style
sheets for this page so you
can see the power of style
sheets for yourself.

You can prevent both these problems using two more CSS properties: max-width and
min-width. The max-width property sets a maximum width beyond which an element
will not expand, and the min-width property sets a minimum width beyond which an
element will not shrink. Essentially, when you hit these limits, your page turns into a
fixed layout. Expand the page further than the maximum, and you get extra white
space. Shrink it smaller than the minimum, and the browser gives you scroll bars.

You might think that you can put this technique into practice by applying max-width
and min-width to the middle panel only. And you can—but the result won’t be exactly
what you want. If you limit the growth of the middle panel, the right panel will still
follow the right edge of the browser and will gradually move farther and farther
away from the center panel’s content. The solution is to wrap the entire page, with
all its panels, in another <div> container, as shown here:

<!DOCTYPE html>

<html>
<head>
 ...
</head>
<body>
 <div class="BodyContainer">
 <div class="Header">...</div>

www.csszengarden.com
www.csszengarden.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn250

A FEW MORE
LAYOUT

TECHNIQUES
 <div class="LeftPanel">...</div>
 <div class="RightPanel">...</div>
 <div class="MiddlePanel">...</div>
 </div>
</body>
</html>

Then you can set maximum and minimum size rules for this <div>:

.BodyContainer {
 position: absolute;
 max-width: 1000px;
 min-width: 100px;
}

This creates a perfect compromise between flexible and fixed-width sizing. Now the
middle column adapts to the best possible width within reasonable constraints, and
the page looks professional no matter the size of the browser window. You can find
the final solution for this exercise in the Tutorial-8-1\End\Resizable folder.

POWER USERS’ CLINIC

Switching Between Layouts Using a Media Query
The hottest new trend in website design is a CSS3 feature called
media queries, which let you switch between different layouts.

Using media queries, you can create one layout that works
for wide windows (usually a fixed layout), and then switch to
another one for narrower windows, and maybe even a third one
for really tiny screens, like those on smartphones. The advantage
to this approach is that it lets you create a site that gracefully
adapts itself to a range of devices. The disadvantage is that it’s
significantly more complicated to pull off, because you need to
juggle another layer of overlapping style rules that extend or
override your original rules. And because media queries are a
relatively new part of CSS, not all browsers support them.

If you’re interested in experimenting with media queries, you’ll
find an entire chapter on the subject in HTML5: The Missing
Manual. Or you can jump into the deep end with a Smashing
Magazine article on the subject at http://tinyurl.com/mq-for-
mobile. And if you simply want to take a peek and tinker, you
can find a version of the three-column layout example that
uses media queries in the MediaQueries folder, found with
the example files for this chapter. It uses media queries to
rearrange the layout for very narrow pages, putting the left
panel at the top, above the content, and the right panel at the
bottom, after the content. Expand the browser window and
the panels spring back to their proper positions, at the side
of the main content.

A Few More Layout Techniques
Now that you’ve taken your first steps to becoming a style sheet layout guru, it’s
time to cover a few more techniques you might need to know. You won’t use all of
them, but they’re good to keep in your back pocket.

http://tinyurl.com/mq-for-mobile
http://tinyurl.com/mq-for-mobile

CHAPteR 8: PAGE LAYOUT 251

A FEW MORE
LAYOUT

TECHNIQUES
Stretching Column Height
So far, you’ve focused on making columns the correct width, but you haven’t worried
much about height. After all, a browser takes care of that by making an element
just big enough to fit its content, along with any extra padding you specified with
the padding property (page 91).

But there are several situations in which you need to size a column based on the
height of the browser window, rather than on the content it contains. For example,
you might need to apply a background color that fills an entire column, not just the
portion with text in it. Or you might want to use borders that stretch to the bottom
of the window (unlike the borders in the examples you’ve seen so far, which end
with the text). Figure 8-8 shows this effect in practice.

Fortunately, you can dictate height using the min-height property. The trick is to
use a percentage size instead of a pixel size. For example, if you set min-height to
100 percent, the column will stretch to fill the browser window, even if you have
only a small amount of content.

Here’s the formatting rule for the side panels in Figure 8-10:

.LeftPanel {
 position: fixed;
 top: 0px;
 left: 0px;
 left-padding: 10px;
 width: 150px;
 min-height: 100%;
 background-color:#eee;
 border-right-width: 1px;
 border-right-style: solid;
 border-right-color: black;
 padding-bottom: 8px;
}

.RightPanel {
 position: fixed;
 top: 0px;
 right: 0px;
 width: 150px;
 min-height: 100%;
 background-color:#eee;
 border-left-width: 1px;
 border-left-style: solid;
 border-left-color: black;
}

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn252

A FEW MORE
LAYOUT

TECHNIQUES

FiGURE 8-10
Top: This three-panel layout
includes a few refinements, like
fine-tuned borders, fonts, and
background colors.

Bottom: A variation of the same
design sets the height of the
side panels to 100 percent, so
they always fill up a browser
window.

It’s important to note that this example includes a slight change to the position
property. Before, you set it to absolute, which placed an element on a page using
absolute coordinates. A value of fixed places the element using absolute coordi-
nates, too, but it positions the element relative to the viewport—that’s the window
of content your browser displays on a single screen. In many cases, absolute and
fixed have the same effect, but in this situation the distinction is important. That’s
because you want to size the panels relative to the size of the browser window, not

CHAPteR 8: PAGE LAYOUT 253

A FEW MORE
LAYOUT

TECHNIQUES
relative to the size of the entire web page. If you use absolute positioning, the side
panels might grow larger than necessary, forcing the browser to show scroll bars.

Sticky Headers
Fixed positioning is also the kernel of another neat trick: sticky headers. A sticky
header is a bar that sticks to the top of the window and stays there, even when you
scroll down. Usually, the point of a sticky header is to keep a small set of navigation
links or buttons handy even as guests move through a lengthy page. The fanciest
sticky headers incorporate JavaScript code that shrinks the header to just the es-
sentials (like navigation buttons) and keeps it at the top of the screen as guests scroll
down. It’s particularly common on blogs and news sites (see the news and gossip
site www.salon.com for an example).

To create a sticky header, you add two <div> elements, one for the header, and one
for everything else. Here’s the basic arrangement:

<body>
 <div class="Header">
 <h1>The Joy Of Styles</h1>
 <p>A sticky header for <i>Creating a Website: The Missing Manual</i></p>
 </div>

 <div class="BodyContainer">
 ...
 </div>
</body>

For the header, set the position property to fixed, the top property to 0 (to put the
header at the top of the page), and the width property to 100% (so the bar stretches
from side to side). You must also set the background property to give the bar a
background color, so the rest of your content won’t show through the bar when a
visitor scrolls the page. You can also optionally add a border to separate the header
from the rest of the page.

.Header {
 position: fixed;
 top: 0px;
 width: 100%;
 background: #6F4D8F;
 color: white;
 border-bottom: 3px solid #351456;
 padding: 15px 15px 0px 15px;
}

For the <div> that holds the content underneath, you simply need to set the margin-
top property to the approximate height of the header. That way your content won’t
bump into the header.

www.salon.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn254

A FEW MORE
LAYOUT

TECHNIQUES
.BodyContainer {
 margin-top: 80px;
 padding: 20px 70px;
}

You put the rest of your layout inside the second <div>. You can even use one of the
multicolumn layouts you just studied. Figure 8-11 shows a sticky header in action.

FiGURE 8-11
At first glance (top), this
looks like any ordinary page
with a header at the top.
But when you scroll down,
the content moves but the
header floats above it, locked
in place at the top of the
browser window (bottom).

You can use the same approach to create a sticky footer that’s locked to the bottom
of the browser window. In this case, you set the bottom property instead of the top
property, because you want to position the footer relative to the bottom edge of
the browser window.

CHAPteR 8: PAGE LAYOUT 255

A FEW MORE
LAYOUT

TECHNIQUES
Layered Elements
Remember how you need to position elements carefully when you use absolute
positioning to make sure you don’t overlap one element with another? Interestingly,
advanced web pages sometimes deliberately overlap elements to create dramatic
effects. For example, you might create a logo by overlapping two words or create
a heading by partially overlapping a picture. These designs use overlapping layers.

To use overlapping layers, you need to tell your browser which element goes on top.
You do this through a simple number called the z-index. Browsers put elements with
a high z-index in front of elements with a lower one.

For example, here are two elements positioned absolutely so that they overlap:

.Back {
 z-index: 0;
 position: absolute;
 top: 10px;
 left: 10px;
 width: 150px;
 height: 100px;
 background-color: orange;
 border-style: dotted;
 border-width: 1px;
}
.Front {
 z-index: 1;
 position: absolute;
 top: 50px;
 left: 50px;
 width: 230px;
 height: 180px;
 font: xx-large;
 border-style: dotted;
 border-width: 1px;
}

The first class (Back) defines an orange background square. The second class (Front)
defines a large font for text. You set the z-index property of both elements so that
the browser superimposes the Front box (which has a z-index of 1) over the Back box
(which has a z-index of 0). In the example above, the HTML adds a dotted border
around both elements to make it easier to see how the boxes overlap on a page.

 NOTE  The actual value for the z-index isn’t important, but the relative value—how one z-index value
compares to others—is. For example, if you have two elements with z-index settings of 48 and 100, you’ll get
the same effect as two elements with values of 0 and 1: The second element overlaps the first. If two or more
elements have the same z-index value, the one that’s first in the HTML gets shoved underneath those that
come later.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn256

A FEW MORE
LAYOUT

TECHNIQUES
In your HTML, you need to create both boxes using <div> elements. It also makes
sense to supply some text for the Front box:

<div class="Back">
</div>

<div class="Front">
 This text is on top.

</div>

Load this page in a browser and you’ll see a block of text that stretches over part of
the orange box and out into empty space (see Figure 8-12, left).

You can swap the z-index values to change the example (Figure 8-12, right):

.Back {
 z-index: 1;
 ...
}
.Front {
 z-index: 0;
 ...
}

FiGURE 8-12
Left: The colored box has
the lower z-index.

Right: Now the colored box
has the higher z-index and
obscures the text.

Combining Absolute and Relative Positioning
Style sheet experts know that they don’t need to stick to just absolute or relative
positioning. They can get the best of both worlds with a little careful planning.

CHAPteR 8: PAGE LAYOUT 257

A FEW MORE
LAYOUT

TECHNIQUES
To understand how this works, you need to know the following style-sheet secret:
When you use absolute positioning, your browser interprets the coordinates rela-
tive to the container. As you saw in several examples earlier, when you put a <div>
element in the <body> section of a page, your browser positions that element in
relation to the page. Set the <div> element’s left coordinate to 10 pixels, and your
browser positions the element 10 pixels from the left edge of the page. But here’s a
nifty experiment: Try placing the same <div> element inside another element, like
a table cell. Now your browser positions the <div> element 10 pixels from the left
edge of the table cell, no matter where you place that table cell on the page. It’s
as if the <div> element exists in its own private world—and that’s the world of the
container that it lives in, not in the world of the main page.

So how can you use this understanding to your advantage? One technique is to use
absolute positioning to create a special effect, like text superimposed on a photo.
To try this out, create a page with several <div> elements. But don’t use absolute
positioning—instead, let these <div> elements fit themselves into the page one after
the other, the normal web way. In the first and last <div> elements, add ordinary
content (text, pictures, and whatever else you like). But in the middle <div>, let loose
with absolute positioning.

Figure 8-13 shows an example. Here, the first <div> element holds an ordinary para-
graph, as does the third <div> element. But the middle <div> element uses absolute
positioning to add white text over the picture of a tombstone.

FiGURE 8-13
On this page, the middle section uses absolute positioning
to place text over a picture. The neat part is that the rest
of the page is perfectly normal, and even if you shrink the
browser window, thereby bumping the picture down the
page, the text and picture stay locked together.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn258

A FEW MORE
LAYOUT

TECHNIQUES
Here’s the content of the page:

<div>
 <p>Here is some ordinary content. Whatever you put here
 bumps the grave stone box further down the page.</p>
</div>

<div class="GraveContainer">

 <p class="GraveText">Fatal error.
Please reboot.</p>
</div>

<div>
 <p>Here is some more ordinary content.</p>
</div>

The middle <div> element uses two rules to apply all the style properties this example
needs. The GraveText rule turns on the absolute positioning:

p.GraveText {
 position: absolute;
 top: 60px;
 left: 115px;
 color: white;
 font-size: x-large;
 font-weight: bold;
 text-align: center;
}

And the GraveContainer rule sizes the <div> element. Ordinarily, a <div> element
enlarges itself to fit its contents. But when you use absolute positioning, the <div>
element no longer knows how big it should be, and it shrinks itself down to nothing.
Here’s the rule that gives the <div> element the correct height and ensures that the
subsequent content on the page (the third <div> element, with the final paragraph
in it) appears in the correct place:

div.GraveContainer {
 position: relative;
 height: 250px;
}

You’ll notice that the GraveContainer rule uses relative positioning. This allows it to
fit into the flow of your web page, without any hassle.

As a general rule, use relative positioning to make sure a page’s layout is as flexible
and adaptable as possible. But as you see in this example, it’s perfectly reasonable
to use a <div> element and absolute positioning to style smaller regions—in fact,
doing so gives you the chance to add some nifty effects.

CHAPteR 8: PAGE LAYOUT 259

A FEW MORE
LAYOUT

TECHNIQUES
Sizing Tables
The time when tables were used to shape the layout of a page is distant history.
However, tables still play a role in web pages as an easy way to show grids of infor-
mation (like the population statistics in Figure 8-14).

FiGURE 8-14
In this example, the style sheet calls for a table width of
1 pixel. But the browser doesn’t shrink the table down
that far because the content influences the table’s mini-
mum size. The city name Anuradhapura is the longest
unsplittable value, so the browser uses that name to
determine the width of the column. If you really want to
ratchet the size down another notch, try shrinking the
text by applying a smaller font size.

Ordinarily, HTML makes a table as wide as necessary to display all its columns, and
each column grows just wide enough to fit the longest line of text (or to accom-
modate other content, like a picture). However, there’s one additional rule: The table
can’t grow wider than the browser window. Once a table reaches the full width of
the current window, the browser starts wrapping the text inside each column, so
that the table grows taller as you pile in more content.

Of course, there are some circumstances when you need to take control of table
sizing. For example, you might want to give more space to one column than another.
In such a situation, you use the same width and height properties you used to size
<div> elements when you organized a page into columns (see page 239).

SIZING AN ENTIRE TABLE
In most cases, you want to explicitly set the width of your table and its individual
columns. When you do, the table respects those dimensions and wraps text to ac-
commodate those widths.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn260

A FEW MORE
LAYOUT

TECHNIQUES
When sizing a table, you can use a pixel width or a percentage width. For example,
the following rule limits the table to half the width of its current container (which,
in an ordinary page, makes it half the width of the page):

table.Cities {
 width: 50%;
}

To display the table, you cite the table class in your HTML document:

<table class="Cities">
 ...
</table>

The table dynamically resizes as you resize the browser window so it keeps to its
half-window width.

If you use exact pixel widths, the table dimensions never change. For example, the
following rule creates a table that’s a generous 500 pixels wide:

table.Cities {
 width: 500px;
}

There’s one important caveat to table sizing: Although you can make a table as
large as you want (even if it stretches beyond the borders of a browser window if
you used absolute sizing), you don’t have the same ability to shrink a table. If you
specify a table size that’s smaller than the minimum size the table needs to display
your content, the table ignores your settings and appears at this minimum size (see
Figure 8-14).

SIZING A COLUMN
Now that you know how to size a table, you probably want to know what your
browser does if a table has more than enough space for its content. Once a table
reaches its minimum size (just large enough to fit all its content), your browser dis-
tributes any extra space proportionately, so that every column increases in width
by the same amount.

Of course, this isn’t necessarily what you want. You might want a wide descriptive
column paired with a narrow column of densely packed text. Or you might want
to set columns to a specific size so that all your pages look uniform, even if the
content differs.

To set a column’s size, you use the width property in conjunction with the <td> and
<th> elements. Once again, you can do this proportionately, using a percentage,
or exactly, using a pixel width. However, proportional sizing has a slightly different
effect when you use it with columns. Earlier, when you used a percentage value
for table width, you sized the entire table relative to the width of the page. In that
example, you had a table width of 50 percent, which means the table occupied 50
percent of the full width of the page. But when you use a percentage value to set

CHAPteR 8: PAGE LAYOUT 261

A FEW MORE
LAYOUT

TECHNIQUES
a column width, you’re defining the percentage of the table width that the column
should occupy. So when you set a column width of 50%, the column takes up 50
percent of the table.

When you specify the width for columns, you need to create a style rule and unique
class name for each one, unless you want them all to have exactly the same width.

The following style rules set different widths for each column in the table you saw
in Figure 8-14.

th.Rank {
 width: 10%;
}
th.Name {
 width: 80%;
}
th.Population {
 width: 10%;
}

In this example, the class names match the column titles, which makes it easy to
keep track of which rule applies to which column.

 NOTE  When you use percentage widths for columns, you don’t need to specify values for all three columns.
If you leave one out, the browser sizes that column to fill the rest of the space in the table. If you do decide to
include percentage widths for each column (as in the previous example), make sure that they add up to 100
percent; otherwise, the browser will override one of your settings, and you won’t know how your table will
actually appear.

For these rules to take effect, you need to apply them to the corresponding cells:

<table class="Cities">
 <tr>
 <th class="Rank">Rank</th>
 <th class="Name">Name</th>
 <th class="Population">Population</th>
 </tr>
 <tr>
 <td>1</td>
 <td>Rome</td>
 <td>450,000</td>
 </tr>
 ...
</table>

Notice that you specify widths only for the column elements in the first row (the
ones that contain the cell headers in this example). You could apply the rule to every
row, but there’s really no point. When the browser builds a table, it scans the whole

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn262

PUTTING THE
SAME CONTENT

ON MULTIPLE
PAGES

table structure to determine the required size, based on the cell content and any
explicit width settings. If you apply a different width to more than one cell in the
same column, the browser simply uses the largest value.

SIZING A ROW
You can size a row just as easily as you size a column. The best approach is to use
the height property in the <tr> attribute, as shown here:

tr.TallRow {
 height: 100px;
}

When you resize a row, you affect every cell in every column of that row. However,
you’re free to make each row a different height.

 TIP  Need more space inside your table? Style rules make it easy. To add more space between the cell content
and its borders, increase the padding property for the <td> and <tr> elements. To add more space between
the cell borders and any adjacent cells, up the margin width for the <td> and <tr> elements.

Putting the Same Content on Multiple
Pages

As you start building bigger and more elaborate websites, you’ll no doubt discover
one of the royal pains of website design: making a common ingredient appear on
every page.

For example, you might decide to add a menu of links that lets visitors jump from
one section of your site to another. You can place these links in a <div> element,
and you can use a style rule to put this <div> in the correct position on your page.
Add that style rule to your external style sheet, and the menu shows up in the right
spot across your entire website.

But style sheets have their limits. They can’t help you put the same content in more
than one page. So if you want a menu on every page, you’re stuck copying the
big block of HTML that has all the links in it and pasting it into each page. If you’re
not careful—say you inadvertently place the menu in a slightly different spot in a
page—one page can end up with a slightly different version of the same menu. And
when you decide to make a change to the menu, you face the nightmare of updat-
ing every one of your pages. Website creators who try this approach don’t get out
much on the weekend.

So how do web designers create site-wide chunks of content? Big websites use con-
tent management systems or custom web applications that assemble HTML pages
on the fly (see the box on page 264). But if you aren’t relying on one of these tools,
you need a different approach.

CHAPteR 8: PAGE LAYOUT 263

PUTTING THE
SAME CONTENT

ON MULTIPLE
PAGES

You can choose from three potential solutions:

• Server-side includes. A server-side include is a command that injects the
contents of one HTML file inside another. This lets you create a block of HTML
content (for example, a menu) and reuse it in multiple pages. However, there’s
a caveat: Server-side includes aren’t part of the HTML standard. Instead, they’re
an extension to HTML that work only if your web server supports them. Fortu-
nately, almost all web servers do.

• Seamless frames. This is a new HTML5 feature that lets you inject the contents
of one page into another using the <iframe> element (page 565). It’s like a
server-side include, except that the browser makes the magic happen, not
the web server. Seamless frames sound like a great solution, but hands off for
now—at present, not a single browser supports them.

• Web templates. Some high-powered web page editors (namely, Dreamweaver
and Expression Web) include a template feature. You begin by creating a tem-
plate that defines the structure of your web pages and includes the repeating
content you want to appear on every page (like a menu or header). Your web
editor then generates the final pages. But don’t get too excited, because this
technique has a few hidden deal-breakers. The most significant problem is that
minor changes (like adding a link to a menu) force your editor to open, update,
and upload every page in your entire site. Another serious problem is that web
templates aren’t standardized in any way, which means that once you start
using web templates, you’re locked in—you can’t switch to another web editor
without rewriting your entire site.

The best way for the average web developer to solve the problem is with server-side
includes, and you’ll learn how to do that in the next section. Seamless frames are
best ignored—the feature has gotten little attention in the web world, meaning its
future prospects are doubtful. Web templates may make sense for some people,
if they’re developing tiny sites and don’t mind limiting their editing options in the
future. You’ll find templates covered on page 267.

Using Server-Side Includes
Even though you can’t write a web application on your own, you can borrow a few
tricks from the web application model—if your web host supports it. The simplest
example is a technology called server-side includes (SSIs), which is a scaled-down
version of the HTML-assembling technique used on sites like Amazon and Expedia.

Essentially, a server-side include is an instruction that tells a web server to insert the
contents of one HTML file into another. For example, imagine you want to use the
same menu on several pages. You would begin by saving the menu as a separate
file, which you could name menu.htm. Here are its contents:

<h1>Menu</h1>
Page 1

Page 2

Page 3

The End

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn264

PUTTING THE
SAME CONTENT

ON MULTIPLE
PAGES

HOW’D THEY DO THAT?

Multipart Pages on Big Websites
Popular websites don’t seem to have a problem dealing with
repeating content. No matter what product you view on
Amazon, for example, you see the familiar tabbed search bar
at the top. No matter what vacation you check out in Expedia,
you keep the same set of navigation tabs. That’s because
Amazon and Expedia, like almost all of the Web’s hugest and
most popular sites, are actually web applications. When you
request a page from one of these sites, a custom-tuned piece
of software actually creates the HTML page.

For example, when you view a product on Amazon, a web ap-
plication reads the product information out of a gargantuan
database, transforms it into an HTML page, and tops it off with
the latest version of the search bar. Your browser displays

the end result as a single page. This technique lets Amazon
assemble any pieces of content into a slick web page, without
forcing the site designers to maintain thousands (or even
millions) of HTML files. The web application approach is a bit
like the server-side include approach described below (in both
cases, the process involves assembling a whole page out of
pieces on the web server), but it’s more elaborate.

This sort of custom web application is beyond the reach of
an average person. Ordinary people can use a content-man-
agement system like WordPress (http://wordpress.org), but
this involves giving up on the dream of designing everything
yourself. If that doesn’t suit your vision, you need to use the
techniques described in this chapter.

Notice that menu.htm isn’t a complete HTML document. It lacks elements like <html>,
<head>, and <body>. That’s because menu.htm is a building block that you embed
in other, full-fledged HTML pages.

Now you’re ready to use the menu in a web page. To do that, you need to add a
special instruction to your page where you want the menu to appear. It looks like this:

<!--#include file="menu.htm" -->

The #include command disguises itself as an HTML comment (page 27) using the
<!-- characters at the beginning of the line and the --> characters at the end. But its
core tells the real story. The number sign (#) indicates that this command is actually
an instruction for the web server, and the file attribute points to the file you want to
use. In this case, that’s the snippet of HTML that holds the menu.

Here’s the #include command at work in a complete web page:

<!DOCTYPE html>
<html>

<head>
 <title>Server-Side Include Test</title>
 <link rel="stylesheet" href="styles.css" />
</head>
<body>
 <div class="Header">
 <h1>Templates Rule!</h1>

http://wordpress.org

CHAPteR 8: PAGE LAYOUT 265

PUTTING THE
SAME CONTENT

ON MULTIPLE
PAGES

 </div>
 <div class="MenuPanel">
 <!--#include file="menu.htm" -->
 </div>
 <div class="Content">
 <p>This is the welcome page. Just above this text is the handy menu
 for this site.</p>
 </div>
</body>
</html>

When you request this page, the web server scans through it, looking for instruc-
tions. When it finds the #include command, it retrieves the specified file and inserts
its contents into that position on the page. It then sends the final, processed file
to you. In the current example, that means your web browser receives a web page
that actually looks like this:

<!DOCTYPE html>
<html>
<head>
 <title>Server-Side Include Test</title>
 <link rel="stylesheet" href="styles.css" />
</head>
<body>
 <div class="Header">
 <h1>Welcome to a Multipart Page</h1>
 </div>
 <div class="MenuPanel">
 <h1>Menu</h1>
 Page 1

 Page 2

 Page 3

 The End
 </div>
 <div class="ContentPanel">
 <p>This is the welcome page. Just to the left of this text is the
 handy menu for this site.</p>
 </div>
</body>
</html>

Figure 8-15 shows the final page as it appears in your browser.

The advantage to this technique is obvious. You can add the #include command to
as many pages as you want and still keep just one copy of your menu. That lets you
edit your menu easily and ensures that all your pages will have the same version of it.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn266

PUTTING THE
SAME CONTENT

ON MULTIPLE
PAGES

FiGURE 8-15
Although this page looks normal
enough, it takes some magic to
make it happen. Just before the
web server sends this page to your
browser, it reads the menu links
from a separate file and inserts
them into the page.

If this discussion sounds a bit too good to be true—well, it is. You may face a number
of complications:

• Web server support. Not all web servers support server-side includes. To get
the lowdown, contact your web hosting company.

• Page types. For a server-side include to work, the web server has to process
your page and scan for server-side includes. This process happens automatically,
but only if you use the right page type. Usually, you need to use the extension
.shtml instead of .htm or .html, but you’ll need to check with your web hosting
company.

 NOTE  Don’t worry about changing the extension of your pages. The HTML markup inside them will continue
to work exactly the same as it did before.

• Design difficulties. Server-side includes come into effect only when there’s a
web server at work. If you open a web page stored on your hard drive, your
browser ignores the Include instruction, and you won’t see the menu at all.
That makes it difficult to test your site without uploading it to a live web server.
Dreamweaver gives you partial relief—if you open a web page that uses server-

CHAPteR 8: PAGE LAYOUT 267

PUTTING THE
SAME CONTENT

ON MULTIPLE
PAGES

side includes, you’ll see the contents of the included files in Dreamweaver’s
design window while you edit the page.

If you know that your web host supports server-side includes and you aren’t fazed
by the design difficulties, why not give them a whirl?

PHP Includes
Server-side includes are nearly as old as the Web itself. These days, web weavers
more commonly use the include command in PHP, which is a popular server-side
programming language. The PHP include command works in almost exactly the
same way as the #include command you saw in the previous section, but it looks
like this:

<?php include "menu.htm"; ?>

Here, the <?php tag designates the start of a PHP script block, and the ?> marks
the ending. Inside the block, you put as many lines of PHP as you want. In this case,
the script block has just a single line, which injects the contents of the menu.htm
file into the page.

There’s one more difference with the PHP include command. As you just learned,
pages that use includes need a different file extension than the ordinary .htm or
.html. If you use server-side includes, you probably need the extension .shtml. If you
use PHP includes, you definitely need the extension .php (as in Welcome.php). But
don’t worry: if you rename a page to reflect a newly added PHP include command,
you can still keep editing it in your favorite web editor and keep viewing it in your
favorite browser.

At this point, you’re probably wondering, “If server-side includes and PHP includes
are almost identical, why would you prefer one over the other?” The reason is that
PHP is commonly used for all sorts of programming tasks, like validating forms and
reading from giant databases of information. So if there’s a chance your site might
use PHP, you may as well use PHP’s include command. And if you aren’t using
PHP—which describes you, as a beginning website builder—there’s no harm in get-
ting yourself ready for the future.

 NOTE  If the .php extension really bothers you, it’s possible to change the configuration on your web server
so that it checks all your HTML pages for PHP code. That way, you can use the include command in ordinary
.html or .htm files. Making this change is usually as simple as adding a single line to a configuration file on your
website (see http://tinyurl.com/php-in-html). However, this is one configuration task you don’t want to mess
up, so talk to your web host first.

Web Templates
So far, you’ve seen how you can put the same content on a whole batch of pages
using server-side includes. This approach is great—if you don’t mind the design chal-
lenges. After all, the alternative (making a separate copy of the repeated content on
each page) is a surefire way to fry the last few neurons of your overworked brain.

http://tinyurl.com/php-in-html

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn268

PUTTING THE
SAME CONTENT

ON MULTIPLE
PAGES

However, web designers who own Adobe Dreamweaver have one more option: They
can create a web template that sets out the structure of their site pages, and then
reuse that template relentlessly. The technique is similar to server-side includes,
but instead of having a web server do the work, you give the task to your web page
editing program (Figure 8-16).

FiGURE 8-16
A web template holds the
content you want to ap-
pear on every page in your
site. (Here, that’s a header
and a menu.) You then
use your template to build
all your web pages. Best
of all, if you change your
template, Dreamweaver
updates your pages to
reflect that change.

Before you get started with templates, it’s time to face a few drawbacks:

• More time. Every time you change a template, your web design tool needs to
update all the pages that use the template. For this reason, web templates aren’t
a great idea for huge websites, because the updating process takes too long.

• More fragile. As you’ll see, the template system is based on a few secret
comments you bury in your HTML pages. Unfortunately, it’s all too easy to ac-
cidentally delete or move one of these comments and break the link between
a page and its template. When using templates, you need to edit your pages
with extra caution.

• Nonstandard. Web templates work differently in different web editors. If you
use templates to craft the perfect website in Expression Web, you can’t switch

CHAPteR 8: PAGE LAYOUT 269

PUTTING THE
SAME CONTENT

ON MULTIPLE
PAGES

your site over to Dreamweaver (or vice versa)—at least not without a painstak-
ing conversion process that you have to carry out by hand.

If you’re willing to put up with these shortcomings to create true multipart pages,
keep reading.

 NOTE  Expression Web’s template system is similar to Dreamweaver’s. But, as you learned in Chapter 5,
Expression Web is nearing the end of its life, and its template system will die with it. For that reason, we don’t
recommend building a site with Expression Web templates—the risk is just too great that you’ll need to switch
editors and you’ll have no way to take your carefully crafted template file with you.

CREATING A WEB TEMPLATE
To use Dreamweaver’s template system, you need to create a .dwt file, which stands
for Dreamweaver Web Template. In a typical website, you create one template that
standardizes your layout. Then you use that template to create all the HTML pages
on your site.

To create a new, empty template in Dreamweaver, follow these steps:

1. Before getting started, make sure you define your website, as described
on page 161.

Dreamweaver always puts templates in the Templates subfolder of your website
folder. If you don’t define a website, you’ll still be able to create a template, but
you won’t be able to apply it to other pages, which makes it relatively useless.

2. Choose File→New.

Dreamweaver’s New Document window appears.

3. On the left, choose Blank Page. In the Page Type list, choose HTML Template.

In the Layout list, keep the standard option (“<none>”) highlighted. You can
use other layouts, but this example assumes you’re creating the entire template
from scratch.

This is also a good time to pick the doctype you want from the DocType list, so
you don’t need to change it by hand after you create the template.

4. Click Create.

This creates a new template, with the bare minimum of markup. In the following
sections, you’ll learn how to customize the template.

After you finish perfecting your template, choose File→Save; the Save As Template
dialog box opens. From the Site list, pick the defined site where you want to store the
template. It starts out with a name like Untitled_1.dwt, but you can type in a better
name, and then click Save to make it official. Dreamweaver stores the template in
the Templates subfolder of your website folder.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn270

PUTTING THE
SAME CONTENT

ON MULTIPLE
PAGES

You now have a brand-new web template. But right now your template is little more
than a basic HTML skeleton. To turn it into something useful, you need to understand
a bit more about how templates work.

Surprisingly, a web template looks a whole lot like an ordinary web page. In fact, you
can edit your template in Dreamweaver in the same way you edit any other HTML
file. However, there’s a difference: Any HTML markup that you put in a template
becomes fixed content.

Dreamweaver uses fixed content as the basis for every page you create with the
template. For example, if you pop a menu bar and a bunch of <div> elements into
the template, every page gets that same menu bar and those same <div> elements.
And you can modify this fixed content only in the page template itself; you can’t
edit fixed content in the pages the template creates. To be able to edit any part of
a page created from a template, you need to include one or more editable regions.

ADDING EDITABLE REGIONS TO YOUR TEMPLATE
The trick to designing a good template is to add editable regions wherever you need
them, in the midst of your fixed content. Editable regions are areas where you insert
each page’s unique content.

To create an editable region, Dreamweaver uses specialized comments. Although
these look like ordinary HTML comments, they actually identify the editable sections
of a page. These comments come in pairs, so the first one defines the start of an
editable region, while the second one demarcates its end:

<!-- TemplateBeginEditable name="body" -->
...
<!-- TemplateEndEditable -->

There are two things to notice here. First, comments begin with the standard com-
ment indicator <!--followed by a specific command (like TemplateBeginEditable).
That’s how Dreamweaver recognizes that the comment is actually a template instruc-
tion. Second, you can see that the comments give your editable region a name. In
this example, the region is named “body.”

To really understand how editable regions work, you need to see them in the context
of a complete example. Figure 8-17 shows a suitable candidate—a simple multipart
page with a header and a menu. It closely resembles the server-side include example
you saw earlier (page 263).

In this example, the header and navigation bar are fixed, unchangeable elements.
The editable content region is the portion that appears under the header and just
to the right of the menu bar.

The most straightforward way to create an editable region is to type the magic
comments into Code view on your own (Figure 8-18). Alternatively, you can choose
Insert→Template Objects→Editable Region. Web designers in a hurry can press the
shortcut key combination Alt+Ctrl+V.

CHAPteR 8: PAGE LAYOUT 271

PUTTING THE
SAME CONTENT

ON MULTIPLE
PAGES

FiGURE 8-17
Every page on this website gets the same
header and menu.

FiGURE 8-18
Editing a template is just
like editing an ordinary
web page. You can use
the same Design view
and the same commands.
But if you look at the
page in Code view, you’ll
stumble across the special
comments that indicate
editable sections.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn272

PUTTING THE
SAME CONTENT

ON MULTIPLE
PAGES

Here’s the finished template for the page in Figure 8-17:

<!DOCTYPE html>
<html>
<head>
 <!-- TemplateBeginEditable name="title" -->
 <title></title>
 <!-- TemplateEndEditable -->

 <link rel="stylesheet" href="styles.css" />
</head>
<body>
 <div class="Header">
 <h1>Templates Rule!</h1>
 </div>
 <div class="MenuPanel">
 <h1>Menu</h1>
 <p>
 Page 1

 Page 2

 Page 3

 The End
 </p>
 </div>
 <!-- TemplateBeginEditable name="content" -->
 <div class="ContentPanel">
 </div>
 <!-- TemplateEndEditable -->
</body>
</html>

Notice that this example actually creates two editable regions. One is the content
that appears to the right of the menu panel, and the other is the title at the top of the
browser window. Thanks to this latter detail, you can give all your pages a unique title.

You’ll also notice that both editable regions include some content (like the tags for
the <title> element or a <div> element). When you create a page from this tem-
plate, the editable regions always include these elements. However, you’re free to
change or replace them with something completely different.

 NOTE  Because templates use comments, they’re a bit fragile. Seemingly minor changes, like deleting one
of the comments in a pair, changing a section name, or rearranging comments in the wrong order, can cause
problems. At worst, Dreamweaver will become so confused that updating the template will erase part of your
page. To avoid issues like these, always make a backup of your website before you begin editing it, especially
when templates are involved.

CHAPteR 8: PAGE LAYOUT 273

PUTTING THE
SAME CONTENT

ON MULTIPLE
PAGES

USING YOUR WEB TEMPLATE
Once you finish your template, you’re ready to use it to create some pages. Here’s
how it goes down:

1. Choose File→New.

Dreamweaver’s New Document window opens.

2. On the left of the New Document window, choose “Page from Template.”
Then, in the Site list, choose your website.

You’ll see all the templates in your website’s Templates folder listed.

3. Select the template you want, and then click Create.

You’ll see the markup for both fixed and editable content in your new page.
You won’t be able to change the fixed content, which comes directly from the
template. Dreamweaver displays the fixed content in light gray to remind you
that it’s off limits.

Make sure you keep the “Update page when template changes” checkbox
selected. This way, when you change your template, Dreamweaver updates all
the pages that use it.

To create the page shown in Figure 8-17, you simply add a title and a couple of
paragraphs of text in the editable content region. Here’s the finished page in
Dreamweaver:

<!DOCTYPE html>
<html>
<!-- InstanceBegin template="/Templates/PageTemplate.dwt"
codeOutsideHTMLIsLocked="false" -->
<head>
 <!-- InstanceBeginEditable name="title" -->
 <title>Web Templates</title>
 <!-- InstanceEndEditable -->
 <link rel="stylesheet" href="styles.css" />
</head>
<body>
 <div class="Header">
 <h1>Templates Rule!</h1>
 </div>
 <div class="MenuPanel">
 <h1>Menu</h1>
 <p>
 Page 1

 Page 2

 Page 3

 The End
 </p>
 </div>

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn274

PUTTING THE
SAME CONTENT

ON MULTIPLE
PAGES

 <!-- InstanceBeginEditable name="content" -->
 <div class="ContentPanel">
 <p> This website has four pages. They all share the same layout,
 the same header (top), and the same navigation menu (left).</p>
 ...
 </div>
 <!-- InstanceEndEditable -->
</body>
<!-- InstanceEnd --></html>

When you use a template to build a page in Dreamweaver, the new page’s comments
are slightly different from those in the original page. For example, Dreamweaver
replaces the TemplateBeginEditable instruction with an InstanceBeginEditable
command.

 NOTE  When it’s time to upload your website to a server, remember that you want to upload your web pages,
not your templates. The templates are for your design convenience, and you use them only on your computer.

This example shows just a single page. You see the real advantages of a template
when you create dozens of pages based on it. In every case, to create a new page,
you need do nothing more than set a title and add a bit of content.

But you’ll see the biggest benefit when you change the original template. For ex-
ample, imagine you modify the template to use a spiffy new graphic for its header:

<div class="Header">

</div>

Once you save your changes, your web page editor asks if you want to apply those
changes to all the linked pages in the current website. Say Yes, and the editor quickly
and quietly opens all the pages that use the template and updates them with the
new content. The result is an instant face-lift for your site (see Figure 8-19).

 NOTE  Although this chapter gives you a basic introduction to the template system, you may need to consider
other subtleties. For example, you may make changes to a template so dramatic that the edited template becomes
incompatible with the pages that currently use it. Or you might want to rewire an existing page to use a different
template. To learn about the finer points of web templates, consult a dedicated Dreamweaver resource, such as
Dreamweaver CC: The Missing Manual (O’Reilly).

CHAPteR 8: PAGE LAYOUT 275

PUTTING THE
SAME CONTENT

ON MULTIPLE
PAGES

FiGURE 8-19
This header graphic really
makes your web pages stand
out. But the best part is
that you never cracked
open Page1.htm to add this
graphic. Instead, your web
page editor did the updating
for you.

277

CHAPTER

9

By this point, you know how to build a complete, basic website. You’ve written
HTML pages, formatted them with style sheets, incorporated some pictures,
and linked everything together. But all this work is for naught if you don’t put

your page online so your legions of fans (or your uncle Dan in Fresno) can visit it
on the Web.

In this chapter, you’ll learn how web servers work and how to put them to work for
you. Armed with these high-tech nerd credentials, you’ll be ready to search for your
own web host, a company that lets you park your site on its web server. All you
need to do is figure out your requirements, see which hosts offer what you need,
and start comparison-shopping.

How Web Hosting Works
As you learned in Chapter 1, the Web isn’t stored on any single computer, and no
company owns it. Instead, the individual pieces (websites) are scattered across mil-
lions of computers known as web servers. And while it may seem like all these sites
are part of a single environment, in reality, the Internet is just a set of standards that
let independent computers talk to one another.

Understanding Web Servers
Web servers are the computers that store HTML pages. When you type a web ad-
dress into your browser, the browser sends your request to the web server that hosts
the site. When the server receives the request, it carries out a simple and essential
task—it serves the corresponding page to the person who wants it.

 Getting Your Site Online

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn278

HOW WEB
HOSTING
WORKS

For a busy website, this basic task can add up to a lot of work. As a result, web serv-
ers tend to be industrial-strength computers. Even though the average Windows
PC with the right setup can host a website, it’s rarely worth the effort (see the box
on page 310). Instead, most people get a commercial company, called a web host,
to rent them a little space on one of their servers for a small monthly fee. In other
words, to put your site online, you need to lease some space on the Web.

Sometimes, you can rent this space from the same company you use to get online in
the first place, called an Internet service provider, or ISP; it may even include server
space as part of your Internet connection package. But the most straightforward
way to get your site online is to use a web hosting company. Either way, you’re go-
ing to copy your newly built website to some far-off computer that will make sure
a worldwide audience can enjoy your talents.

Understanding URLs
Now that you know where you’re going to put your site (on a web server), it’s time to
answer another question—how does a browser know which of the thousands of web
servers to call when someone requests one of your pages? The process involves a
bit of traffic direction, and it starts with the URL (Uniform Resource Locator), which
is simply the website address a web surfer types into his browser.

A URL consists of several pieces. Some are optional, because a browser or web
server can fill in those blanks automatically. Others are required. Figure 9-1 dissects
the URL http://www.SellMyJunkForMillions.com/Buyers/listings.htm.

FiGURE 9-1
The average URL consists of four pieces of
information. The first part (the protocol)
identifies the web standards the page
follows. The second part (the domain) iden-
tifies the web server you’re contacting. The
third and fourth parts indicate the desired
page’s path and filename on that server.

Web addresses pack a lot of detail into a single line of text:

• The protocol reflects the standard your browser uses to communicate with web
servers. Websites always use the HTTP (HyperText Transfer Protocol) standard,
which means the protocol portion of a website URL is always http:// or https://.
(The latter establishes a super-secure connection to the Web that encrypts
sensitive information you submit, like credit card numbers or passwords.) In
most browsers, you can get away without typing in this part of the URL. For
example, when you type www.google.com, your browser automatically converts
it to the full URL, http://www.google.com.

CHAPteR 9: GETTING YOUR SITE ONLINE 279

HOW WEB
HOSTING
WORKS NOTE  Although http:// is the way to go when browsing the Web, depending on your browser, you may

use other protocols for other tasks. Common examples include ftp:// (File Transfer Protocol) for uploading and
downloading files and file:/// for retrieving a file directly from your own computer’s hard drive.

• The domain name identifies the server that hosts the site you want to see. By
convention, server names usually start with www to identify them as World Wide
Web servers. In addition, as you’ll discover later in this chapter, friendly domain
names like www.google.com or www.microsoft.com are really just stand-ins for
what your browser really needs in order to locate a server—namely, its numeric
address (see page 281).

• The path identifies the folder where the server stores the web page you’re
looking for. This part of the URL can have as many levels as needed. For ex-
ample, the path /MyFiles/Sales/2011/ refers to a MyFiles folder that contains
a Sales folder that, in turn, contains a folder named 2011. Windows fans, take
note—the slashes in the path portion of a URL are ordinary forward slashes,
not the backward slashes used in Windows file paths (like c:\MyFiles\Current).
This convention matches the file paths Unix-based computers use, which were
the first machines to host websites. It’s also the convention used in modern
Macintosh operating systems.

 NOTE  Many browsers are smart enough to correct the common mistake of typing in the wrong type of slash.
However, you shouldn’t rely on this because similar laziness can break the web pages you create. For example,
if you use the element to link to an image and use the wrong type of slash, your picture won’t appear.

• The filename is the last part of the path, and it identifies the specific web page
you’re requesting. Often, you can recognize it by the file extension .htm or .html,
both of which stand for HTML.

 NOTE  While web pages often end with .htm or .html, they don’t need to. For example, if you look at a URL
and see the strange extension .blackpudding, odds are you’re still looking at an HTML document. In most cases,
browsers ignore an extension as long as the file contains information that a browser can interpret. However, just
to keep yourself sane, this is one convention you shouldn’t break.

• The fragment is an optional part of a URL that identifies a specific position
within a web page. You can recognize a fragment because it always starts
with the number-sign character (#) and appears after a filename. For example,
the URL http://www.LousyDeals.com/index.html#New includes the fragment
#New. When you click the URL, it takes you to the section of the index.html
page where the webmaster placed the New bookmark. (You can learn about
bookmarks on page 196.)

• The query string is an optional part of a URL that some websites use to send
extra information from one web page to another. You can identify one because
it starts with a question mark (?) and appears after a filename. To see a query

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn280

HOW WEB
HOSTING
WORKS

string in action, go to Microsoft’s search engine www.bing.com and search
for “pet platypus.” When you click the Search button, Bing creates a URL like
http://www.bing.com/search?q=pet+platypus&form=QBLH&filt=all&qs=n. This
address is a little tricky to analyze, but if you hunt for the question mark and
look to the left of it, you’ll discover that you’re on a page named “search.” The
information to the right of the question mark indicates that you’re executing an
English-language search for pages that match both the “pet” and “platypus”
keywords. When you request this URL, a specialized Microsoft web program
analyzes the query string to determine what to search for.

 NOTE  You won’t use a query string for your own web pages, because it’s designed for heavy-duty web
programs like the one that powers Bing (or Google). By understanding the query string, however, you gain a bit
of insight into how other websites work.

How Browsers Analyze a URL
Clearly, URLs include a lot of detail. But how does a browser actually use one to
fetch the web page you want? To understand that, take a peek behind the scenes
(see Figure 9-2).

FiGURE 9-2
A simple web request
usually involves a bevy
of computers contacting
one another in the order
indicated earlier. The first
computer (the DNS server,
number 2) gives you the
all-important IP address,
letting you track down the
second computer (the web
server, number 4), which
gets you the web page you
want (number 5).

For example, after you type http://www.SellMyJunkForMillions.com/Buyers/listings.
htm into a browser’s address bar and press Enter, here’s what happens:

1. The browser figures out what web server to contact by extracting the do-
main name from the URL.

In this example, the domain name is www.SellMyJunkForMillions.com.

www.bing.com

CHAPteR 9: GETTING YOUR SITE ONLINE 281

HOW WEB
HOSTING
WORKS

2. To find the server that hosts www.SellMyJunkForMillions.com , the browser
converts the domain name into a computer-friendly number called the IP
address.

Every computer on the Web—from web servers to your own machine—has its
own unique IP address. To find the IP address for a server, the browser looks
up the server’s domain name in a giant online catalog called the DNS (Domain
Name System). An IP address looks like a set of four numbers separated by
periods (or, in techie speak, dots). For example, the www.SellMyJunkForMillions.
com website may lead to a web server that has the IP address 17.202.99.125.

 NOTE  The DNS catalog isn’t stored on your computer—your browser gets this information from the Internet.
You can see the advantage of this approach. Under ordinary circumstances, the domain name for an online business
never changes; it’s the public face customers use and remember. Behind the scenes, however, its IP address may
change, because the business moved its website from one server to another. As long as the business updates
the DNS, the move won’t cause any disruption. Fortunately, you won’t need to worry about managing the DNS
yourself if your web host moves to a new server, because the host automatically handles the change for you.

3. The browser sends the page request to the web server’s now-retrieved IP
address.

The actual route the message takes is difficult to predict. It may cross through
a number of other servers on the way.

4. The server receives the request and looks at the path and filename in the
URL.

In this case, the server sees that the request is for a file named listings.htm in
a folder called Buyers. The server looks up that file and sends it back to the
browser. If the file doesn’t exist, the server sends back an error message.

5. The browser receives the HTML page it’s been waiting for (listings.htm) and
then displays it for your viewing pleasure.

The URL http://www.SellMyJunkForMillions.com/Buyers/listings.htm is a typical
web address. In the wild, however, you’ll sometimes come across URLs that seem a
lot simpler. For instance, consider http://www.amazon.com. It clearly specifies the
domain name (www.amazon.com), but it doesn’t include any path or filename for
a page. So what’s a web server to do? It sees that you aren’t requesting a specific
file, so it sends you the site’s fallback page—its default page, in geekspeak, which is
often named index.htm or index.html, and is what you know as the site’s home page.
(However, a web administrator can configure any page as the default.)

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn282

DOMAIN
NAMES

POWER USERS’ CLINIC

Internet vs. Intranet
As you already know, the Internet is a huge network of com-
puters that spans the globe. An intranet is a lot smaller; it’s a
network that exists within a specific company, organization, or
home that joins together a much smaller number of comput-
ers. In fact, an intranet could have as few as two computers.

An intranet makes sense anytime you need a website available
to only a small number of people in one location. For example, a
company could use an intranet to share marketing information
(or the latest office gossip). In your own home, you could let
your housemates browse your web creations from their own
computers. The only limitation is that a website on an intranet
is accessible to the computers on that network only. Other web
visitors won’t be able to see it.

Setting up a website for an intranet is easier than setting one
up for the Internet because you don’t need to register a domain
name. Instead, you can use the network computer’s name. For
example, if your computer has the network name SuperServer,
you could visit a web page with a URL like http://SuperServer/
MySite/MyPage.htm. Of course, this works only if you’ve set
up a home network (easy) and some web server software (a
little more complicated). For example, on a Windows computer,
you might use the IIS (Internet Information Services) server
software, which most versions of Windows include, but you
need to explicitly enable and configure the program. These
tasks are outside the scope of this book. To learn more, consult
a good networking resource.

Domain Names
Before you sign up for a web hosting plan, put some serious thought into the first
part of your website address, the domain. It’s hard to find a domain name that’s
both catchy and available. The solution is to brainstorm some ideas and find out
what’s on the market before you sign up for a hosting plan. That way, you can buy
the domain and sign up for a plan at the same time, from the same company. The
following sections help you get started.

Choosing the Right Domain Name
Shakespeare may have famously written “What’s in a name? That which we call a
rose/By any other name would smell as sweet.” But he may have seen things dif-
ferently if he had to type www.thesweetsmellingredflowerwiththorns.biz into his
browser instead of www.rose.com. Short, snappy domain names attract attention
and are easy to remember.

Unfortunately, most short, clever word combinations have already been claimed as
domain names. Even if they aren’t in use, domain squatters—people who buy and
hold popular names in hopes of selling them to desperate high bidders later—have
long since laid claim to common names. Give up on www.worldsbestchocolate.
com—it’s gone. However, you may find success with names that are a little longer
or more specific (www.worldsbestmilkchocolate.com), use locations or the names
of people (www.bestvermontchocolate.com or www.anniesbestchocolate.com), or

CHAPteR 9: GETTING YOUR SITE ONLINE 283

DOMAIN
NAMES

introduce made-up words (www.chocolatech.com). All these domain names were
available at the time of this writing.

 NOTE  Valid domain names can include only letters, numbers, and dashes.

Choosing a good domain name isn’t an exact science, but you can find plenty of
anecdotal evidence on names that don’t work. Here are some mistakes to avoid:

• Too-many-dashes. It may be tempting to get exactly the domain name you
want by adding extra characters, like dashes, between words. For example,
you have no chance of getting www.popularbusiness.com, but www.popular-
business.com is still there for the taking. Think carefully. Dashes can confuse
some people, and others may overlook them. Some webmasters believe that a
domain name with a single dash is perfectly reasonable, but one with several
dashes looks like a spam site and should be avoided.

• Phrases that look confusing in lowercase. Domain names aren’t case-sensitive,
and when you type a poly-case domain name into a browser, the browser
converts everything to lowercase. The problem is that some phrases can blend
together in lowercase, particularly if you have words that start with vowels.
Take a look at what happens when the documentation company Prose Xact
puts its business name into a lowercase domain name: www.prosexact.com.
You get the picture. (Incidentally, this is one situation where you might want
to resort to a dash.)

 TIP  Even though domain names don’t distinguish case, that doesn’t stop businesses from using capital let-
ters in business cards, promotions, and marketing material to make the domain name more readable. Whether
customers type www.google.com or wWw.gOOgLE.cOm into their browsers, they get to the same site.

• Names that don’t match your business. It’s a classic business mistake. You
set up a flower shop in New York called Roses are Red, only to find out that the
domain www.rosesarered.com is already taken. So you go for the next-best
choice, www.newyorkflorist.com. Huh? Now you’ve created two separate busi-
ness names, and a somewhat schizophrenic identity for your company. If you’re
starting a new business, try to choose your business name and your domain
name at the same time so they match. If you already have a business name,
settle on a URL that has an extra word or two, like www.rosesareredflorist.com.
This name may not be as snappy as www.newyorkflorist.com, but it avoids the
inevitable confusion caused by creating a whole new identity.

In the time since the first edition of this book was published, it’s become much,
much harder to get a decent domain name. In the past, your only competition was
other people planning to set up a website and unscrupulous domain name resellers
looking to buy a hot name and flip it for a big profit. But now, nefarious people buy
just about any domain name at the drop of a hat, build a fly-by-night web page filled
with ads, and wait a few months to see how much unsuspecting web traffic stumbles

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn284

DOMAIN
NAMES

their way. This practice, called domain tasting, is surprisingly profitable. The bottom
line? It’s possible to cook up a decent domain name that’s still available, but you’ll
need a dash of compromise and all the creativity you’ve got.

More Choices for Top-Level Domains
The top-level domain is the part of the domain name after the last period, like .com.
While you can choose whatever you want for the first part of your domain name
(so long as you stick to letters, numbers, and dashes), you’re restricted to a set of
predefined choices for the top-level domain.

Everyone wants a .com address for their business, and as a result they’re the hard-
est top-level domain to get. But you might want to compromise by choosing a less
popular top-level domain (like .net) to get what you want for the rest of the domain
name (say, www.WhenPigsCanFly.net). Is the tradeoff worth it? It depends on the
sort of site you’re building. The following sections lay out your options.

THE ORIGINALS
There’s a small set of general-purpose domains that are nearly as old as the Internet
itself. They include .com, .net, .org, and a few more that are limited to specific uses
(such as .edu for educational institutions and .gov for government organizations).
A few more that are nearly as old are .biz, .info, and .name.

You’ll find that it’s easier to get the domain name you want if you use one of the less
popular top-level domains. The problem is, most web visitors expect a .com. If you
have the domain name www.SuperShop.biz, odds are someone will type in www.
SuperShop.com while trying to find your site. That mistake can easily lead your fans
to a competitor (or to a vastly inferior website). You need to weigh whether this
tradeoff is acceptable for your site. If you’re a local business and you think that a
significant portion of your visitors will get to your site by typing the domain name
straight into their browsers (rather than following a link), you might not want to risk
confusion with a less common top-level domain.

One exception is the top-level domain .org, which was originally intended for non-
profit organizations. It’s now available for anyone to use and abuse. However, if
you’re setting up a nonprofit of your own, the .org domain makes more sense than
.com and is just as recognizable.

COUNTRY-SPECIFIC DOMAINS
These are domains that are (or were) reserved for a specific country. Examples
include .us (USA), .ca (Canada), and .co.uk (United Kingdom, which looks like two
domains, but just go with it). You might use these because you live in that country,
or—in some exceptional cases—because the domain name sounds cool and has been
made available to everyone.

For example, if you offer piano lessons in England, www.pianolessons.co.uk isn’t a
bad choice. If you plan to sell products to an international audience, however, www.
HotRetroRecords.co.uk could frighten away otherwise interested buyers, who may
assume dealing with a British seller is too much trouble.

CHAPteR 9: GETTING YOUR SITE ONLINE 285

DOMAIN
NAMES

Special rules apply regarding who can register country-specific names. For ex-
ample, some are available only to people who live in the corresponding country or
who have a registered business there. Due to these restrictions, some web hosting
companies can’t sell certain country-specific domains. If you have trouble register-
ing the country-specific name you want, you can use Google to find a registrar that
supports your choice. For example, to find a registrar for Australian domains, search
for “Australian domain names.”

Each country in the world has its own unique top-level domain, but some are now
available for people to use in more creative ways. For example, the top-level domain
.tv was created for the tiny country of Tuvalu, but it’s now available for anyone who
wants to create a television-focused website (with the Tuvaluan government getting
a small cut of the domain registrar’s profits). Similarly repurposed domains include
.me, .cd, .tm, and .ws. You can find more information about these odder domain
name choices on Wikipedia, at http://tinyurl.com/rnlmf.

THE NEW KIDS ON THE BLOCK
Recently, longer and more exotic top-level domains have started to appear. Examples
include .club, .church, .consulting, .directory, .fitness, .estate, .global, .guru, .services,
and .training, to name just a few. At the time of this writing, there are nearly 100
top-level domains in existence. But you can’t find them all in one place, because
different domain registrars have rights to different top-level domains.

Experts are divided about whether these domain names will help organize the Web
or just encourage spammers to buy up more addresses. And because they’re so new
and unfamiliar, these new options might trip up people trying to visit your site. Right
now, most seasoned web experts would prefer the domain pacysgrillrestaurant.com
to pacysgrill.restaurant, even though the latter is shorter and perfectly clear. The
problem is that the .restaurant domain hasn’t caught on yet, and so the address
doesn’t instantly look like a URL to the average web visitor.

There’s another risk with the new top-level domains. Certain browsers, operating
systems, web servers, and programs don’t recognize them yet. That’s especially true
for mobile devices, like phones and tablets that run the Android operating system
or older versions of Apple’s iOS. Their browsers don’t recognize the new top-level
domains. If you type one in, the browser performs a search for that text, rather than
taking you to the corresponding site.

This situation will probably change in a couple of years. But if even a small fraction
of your audience is locked out of your site because they’re using old devices, that’s
a serious problem. So for now, your best bet is to avoid the new top-level domains
and stick with the tried, true, and less glamorous domains described in the previ-
ous sections.

Searching for a Name
With a few domain name ideas in hand, you’re ready to start checking their avail-
ability. Every web hosting company has a domain searching tool, and you can use
any one of them. (Google “domain names” to find hundreds.) It doesn’t matter

http://tinyurl.com/rnlmf

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn286

DOMAIN
NAMES

where you go to perform your search, and you don’t need to be ready to commit
to hosting with that particular company. For now, you’re just conducting some web
domain research.

 TIP  Domain name searches are an essential bit of prep work. Try to come up with as many variations and
unusual name combinations as possible. Aim to find at least a dozen available names to give yourself lots of
choice. Once you compile the list, why not make a few late-night phone calls to pester friends and relatives for
their first reactions?

Just about every web hosting company provides its own version of a domain name
search tool. Figure 9-3 shows one from www.instantdomainsearch.com. To get
started, type in the domain you want most and then click Search. (In most cases,
you don’t have to type the www at the start of the name or the .com at the end,
because the search tool adds them behind the scenes.)

FiGURE 9-3
This search reveals that your
first choice, www.freecheese.
com, is gone. All that’s left
are the less-catchy www.
freecheese.biz and country-
specific domains (left). Some
domain registrars will suggest
similar domain names that are
still available (middle), or list
already registered domains
that you can buy from their
owners (right). This is rarely
worthwhile, however, because
domain resellers usually expect
you to shell out some serious
bank (like $9,900 for cheeseco.
com).

www.instantdomainsearch.com

CHAPteR 9: GETTING YOUR SITE ONLINE 287

DOMAIN
NAMES

When you find an available domain name, the hosting company gives you the option
to buy it. But don’t do anything yet, because you still need to do some comparison-
shopping to find the best host.

 NOTE  You may think you could see if a domain is free just by typing it into your web browser. But this
method of checking takes more time, and it doesn’t give you a definitive result. Someone can buy a domain
name without setting up a website, so even if your domain-fishing doesn’t hit on a live site, the domain may not
be available.

Registering Your Name
After you find an available name, you probably want to wait to register it until you’re
ready to sign up for a web hosting plan (which you’ll read about in the next section).
Most web hosts offer free or discounted domain name registration when you rent
space from them. In addition, doing both at once is the easiest way to set up your
domain name, because the process automatically establishes a relationship between
your domain name and your website.

In a few cases, however, you may want to register a domain name separately from
your web hosting package. Here are some examples:

• You don’t want to create a website right now, but you do want to register a
name so no one else can grab it—a tactic known as domain parking (see the
box on page 288). Sometime in the future, you may develop a website that
uses that name.

• You already have web space, possibly through your ISP (Internet service pro-
vider), and all you need to make your website seem more professional is a per-
sonalized domain name. It takes more work to set up this sort of arrangement,
but you can learn how to get started in the box on page 296.

• Your hosting company can’t register the type of domain you want. This can
happen if you need a domain name with a country-specific top-level domain
or one of the new top-level domains (page 284) and your web host isn’t au-
thorized to register them.

If you decide to register a domain name separately, remember that you won’t be
able to use it until you get a web hosting plan. Either way, the next section will help
you get properly set up with the right web host.

 NOTE  All web hosting companies let you register more than one domain for the same website. That means
you can register both www.FancyPants.com and www.FancyPants.biz, and specify that both these addresses
point to the same website. Of course, you’ll need to pay an extra domain name registration fee. (Really big web
companies use this strategy to accommodate typos. For instance, see where http://amzn.com and http://googel.
com take you.)

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn288

GETTING WEB
SPACE

UP TO SPEED

Buying a Domain for the Future
Domain parking means you’ve registered a domain name
but haven’t yet purchased any other services, like renting
web space.

Most people use domain parking to put a domain name away
on reserve. In the increasingly crowded world of the Web,
many people use it to protect their own names (for example,
www.samanthamalone.com). Domain parking is also useful
if you want to secure several potential business names you
may use in the future.

If you do reserve a domain name, do your research and pick a
company that you’d also like to use to host your website. You
can switch domain names from one web host to another, but
it’s a bit of a pain. Contact the host you’re currently working
with for specific instructions.

The real appeal of domain parking is that it’s cheap. You pay
a nominal domain-name registration fee (as little as $5 a
year), and get to keep the name for as long as you’re willing
to pay for it.

Getting Web Space
All you need to achieve web superstardom is a domain name and a small amount of
space on a web server. There’s no one-size-fits-all solution when it comes to finding
a web host. Instead, you choose a hosting company based on your budget, what
you want your website to do, and your own capricious whims (let’s face it—some
hosting companies just have way cooler names than others).

What you don’t want is a web host that offers some sort of special software that
promises to help you create a website in two or three easy steps. These tools range
from mediocre to terrible. After all, if you were content to create the same cookie-
cutter website as everyone else, you probably wouldn’t be interested in learning
HTML, and you wouldn’t have picked up this book.

Instead, you want standard website hosting, where you’re given a slot of space on a
server to manage as you see fit. You create your pages on your own computer and
then copy those files to the web server so others can view them. This type of web
hosting is all you need to use this book.

Web hosts usually charge a monthly fee. For basic hosting, it starts at the reasonable
sum of $5 to $10 per month. Of course, that cost can escalate quickly, depending
on the features you want your host to provide.

Assessing Your Needs
Before you decide on a host, ask yourself one important question—what features do
you need? Web hosts are quick to swamp their ads and websites with techie jargon,
which doesn’t tell you which services are truly useful. Here’s a quick overview that
describes what hosts sell and what you need to know about each offering.

CHAPteR 9: GETTING YOUR SITE ONLINE 289

GETTING WEB
SPACE

• Web space is how much server space you rent to store your website. Although
HTML pages are extremely small, you may need more space for images or files
you want others to download, like a video of your wedding. A modest site can
easily survive with a measly 100 MB (that’s megabytes, not gigabytes) of space,
unless you’re stuffing it full of pictures or videos. Most web hosts throw in 10 or
100 times more server space, knowing you’ll probably never use it.

 NOTE  For the numerically challenged, a gigabyte (GB) is the same as 1,024 megabytes (MB). To put that in
perspective, today’s hard drives can have 500 GB of space or more, enough room for tens of thousands of websites.

• Bandwidth (or web traffic, as it’s sometimes called) is the maximum amount
of information you can deliver to visitors in a month. Usually, you can make do
with the lowest bandwidth your hosting company offers. For more information,
see the box on page 291.

• A domain name is a custom website address, as in www.HenryTheFriendly.com.
If you decide to get a personalized domain name, you don’t necessarily need to
get it from the same company that hosts your site. However, getting both from
the same source makes life easier, and hosting companies often throw in one or
more domain names at a discounted price when you sign up for a hosting plan.

• Email addresses. Odds are, you already have some of these. But you may want
an email address that matches your website address, especially if you’re paying
for a customized domain name. For example, if you own www.HenryTheFriendly.
com, you’d probably like to use an email address like Hank@HenryTheFriendly.
com. Most hosting companies let you create dozens or hundreds of email ad-
dresses for your domain (which is good if you’re running a small company),
and most also let you read your email in your browser or send it to a desktop
program like Microsoft Outlook.

• Upload-ability. The ease of transferring files to your server is another important
detail. As you saw in the previous chapter, you can perfect your web pages on
your own computer before you upload them. But once your website is ready
for prime time, you need a convenient way to copy all the files to your server.
The vast majority of commercial web hosts offer something called FTP (File
Transfer Protocol), which lets you easily copy a number of files at once (for
details, see page 301).

• Programming support. Today, most web hosts support at least some of the
dozens of server-side programming languages available. When shopping for a
web host, you’ll come across their names—ASP, PHP, CGI, Perl, Python, Ruby, and
so on. Although server programming is too complex for most ordinary people,
this feature gives you some room to grow. To take advantage of a server-side
programming technology, you could conceivably use someone else’s script in
your web pages to carry out an advanced task, like collecting visitor informa-
tion with a form.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn290

GETTING WEB
SPACE

 NOTE  Although this book doesn’t cover server-side programs in depth, you’ll learn about client-side scripts
in Chapter 14. Client-side scripts are based on JavaScript, and they run right inside visitors’ browsers. They’re more
limited in ability than server-side programs, and you’ll commonly see them used for special effects like animated
buttons. The nice thing about client-side scripts is that even programming novices can drop a simple script into
a web page and enjoy the benefits. But you don’t need to worry about any of this right now, because unlike
server-side programming, client-side scripts don’t require any special support from your web hosting company.

• Tech support. The best companies provide 24-hour tech support, ideally
through a toll-free number or a live chat feature that lets you ask questions
using your browser.

• Frills. In an effort to woo you to their side, web hosts often pack a slew of
frills into their plans. For example, they’ll sometimes boast about their amaz-
ing, quick-and-easy website creation tools. Translation: They’ll let you use a
clumsy piece of software on their website to build yours. You’ll end up with a
cookie-cutter site and not much opportunity to express yourself. Steer clear
of these pointless features. More usefully, a web hosting company can provide
site statistics—detailed information about how many visitors flock to your site
daily or monthly. (In Chapter 10, you’ll find out about a free visitor-tracking tool
that runs circles around what most hosts provide.)

• Private domain registration. Ordinarily, when you register a domain, your
contact information—which includes your email address, full name, and mailing
address—appears in the official domain records. These records are public, which
means spammers may send you junk and mail you fake domain renewal letters.
To avoid the hassle, you can ask your web host to hide your contact information
for a small fee (usually about $10 per year). But if you’re setting up a site for a
business, you’re probably already publishing your contact details publicly, so
there’s no reason to hide anything.

Choosing Your Host
With your requirements in mind, you’re ready to shop for a web host. You’re looking
for a plan that’s often called shared hosting, because your website shares a web
server with hundreds of other websites.

If you have heftier hosting needs, you can opt for a dedicated hosting plan. This
super-premium option gives you an entire web server to yourself. Big companies
use this type of hosting to get rock-solid stability, but few people want to pay the
extra cost, which can run well over $100 a month.

A similar but somewhat cheaper choice is a VPS, or virtual private server hosting.
With VPS hosting, you don’t get the entire web server computer to yourself, but
your website gets its own private “environment,” so there’s no chance that some-
one else’s malfunctioning website can trample on its toes. VPS hosting also gives
advanced webmasters the ability to customize the software that runs on the web
server. VPS hosting is cheaper than dedicated hosting but still significantly more
expensive than shared hosting.

CHAPteR 9: GETTING YOUR SITE ONLINE 291

GETTING WEB
SPACE

UP TO SPEED

The Riddle of Bandwidth
Most web hosting companies base their prices, at least in part,
on how much web space and bandwidth you need. This can be a
problem, because the average website creator has no idea how
to calculate those numbers to come up with a realistic estimate.

Fortunately, you can save a lot of time and effort by taking
advantage of a dirty little secret: For the average personal
or small-business site, you don’t need much disk space or
bandwidth. You can probably take the smallest amounts on
offer from any web hosting company and live quite happily.

If you still insist on calculating bandwidth, here’s how it works.
Suppose you create a relatively modest website of 50 pages, a
pile of small web-optimized graphics, and a few downloadable
documents (say, PDF files or Word documents). Altogether, this
website occupies 10 MB of space.

Suppose your site is doing well, and receives about 30 visitors
a day. If each guest visits every page (in other words, down-
loads your entire website), your daily bandwidth requirement
is 300 MB (30 visitors x 10 MB), and your monthly bandwidth
consumption weighs in at 9 GB (30 days x 300 MB). That’s far
less than what the typical startup web hosting package offers,
which often includes 100 GB or more per month.

As a result, most people can ignore the bandwidth limits of-
fered by their web host. The only exceptions are if your website
is absurdly popular; if you want to store extremely large files
and let visitors download them; or if you’re showcasing a huge
catalog of digital photos, music, or video, and you don’t want
to use a third-party service like Flickr or YouTube. If you’re in
the small minority of people who need huge amounts of band-
width, look for a web host that promises unlimited bandwidth.
That way, you don’t need to worry about exceeding your limit.

 NOTE  The bottom line is this: If you don’t know what type of hosting plan you want, the best choice for you is
shared hosting. Dedicated and VPS hosting plans are for sites with special requirements or huge amounts of traffic.

Every web host offers shared hosting, and there’s no shortage of choices. Table 9-1
lists just a few hosts (ordered alphabetically) so you can get started comparison-
shopping.

TABLE 9-1 A few of the Internet’s many web hosting firms.

NAME URL

DreamHost www.dreamhost.com

Hawkhost www.hawkhost.com

HostGo www.hostgo.com

Insider Hosting www.insiderhosting.com

MDDHosting www.mddhosting.com

OCS Solutions www.ocssolutions.com

Pair Networks www.pair.com

SpeedySparrow http://speedysparrow.com

StableHost www.stablehost.com

www.dreamhost.com
www.hawkhost.com
www.hostgo.com
www.insiderhosting.com
www.mddhosting.com
www.ocssolutions.com
www.pair.com
http://speedysparrow.com
www.stablehost.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn292

GETTING WEB
SPACE

It’s not easy finding honest web host reviews on the Web. Most websites that claim
to review and rank hosts are simply advertising a few companies that pay for a
recommendation. Popular tech sites haven’t reviewed web hosts in years, because
a thorough analysis of even a fraction of them would require a massive amount of
manpower. And old reviews aren’t much help either, because the quality of a hosting
company can change quickly.

However, the Web isn’t completely useless in your hunt. You can get information
about hosting companies from a web discussion board, where people like you chat
with more experienced hosts and customers. One of the best is WebHostingTalk,
which you’ll find at http://tinyurl.com/5zffwp. Its discussion board is particularly
useful if you’ve narrowed your options to just a few companies, and you’d like to
ask a question or hear about other people’s experiences.

As you consider different hosts, you’ll need to sort through a dizzying array of op-
tions. In the next two sections, you’ll practice digging through some marketing haze
to find the important information in the offerings of two example hosting companies.

FREQUENTLY ASKED QUESTION

Becoming a Web Host
Can I run a web server?

In theory, you definitely can. The Web was designed to be an
open community, and no one is out to stop you. In practice,
however, it’s not at all easy—no matter how many computer-
savvy relatives you have.

Several monumental challenges prevent all but the most
ambitious people from running their own servers. The first is
that you need to have a reliable computer that runs 24 hours
a day. That computer also needs to run special web-hosting
software that can serve up web pages.

The next problem is that your computer requires a special type
of connection to the Internet, called a fixed IP address. An IP

address is a number that identifies your computer on the Web.
(IP stands for Internet Protocol, which governs how different
devices communicate on a network.)

Most ISPs (Internet service providers) randomly assign IP
addresses to customers like you as needed, and change them
on a whim. For your computer to run a website and make sure
others can find it, you need to lock down your IP address so
that it’s not constantly changing. That means that most people
can’t use their computers to host a permanent website, at least
not without special software. If you’re still interested, you can
call your ISP and ask if it provides a fixed IP address service,
and at what cost.

A Web Host Walkthrough
Figure 9-4 shows the home page for the popular web hosting company Aplus.net.
The company offers dedicated servers, standard hosting, domain name registration,
and web design services. All four options are designed to help you get online, but
you’re really interested in the one for web hosting.

The top of the Aplus home page includes several tabbed buttons. The Domain
Registration tab gives you the option to transfer an existing domain name or park a
domain for future use. The Website Hosting tab lets you see Aplus’s hosting plans
(see Figure 9-5), which is what you really want. The “Build a Website” tab is mainly

http://tinyurl.com/5zffwp

CHAPteR 9: GETTING YOUR SITE ONLINE 293

GETTING WEB
SPACE

of interest to HTML-phobes. It lets you pay a web design team to craft all the HTML
pages and graphics for your website. But where’s the fun in that?

FiGURE 9-4
This page packs a lot of
information. Click the
Website Hosting tab to
find out about Aplus’s
hosting plans. At the top
of the page, Aplus lists
a toll-free number for
sales or support. Click
the Live Chat link and a
chat window opens. Type
your question there, and
an Aplus technician gives
you an immediate answer.
If you’re serious about
signing up with Aplus,
give both these options a
try so you can evaluate its
technical support.

FiGURE 9-5
Aplus offers three web
hosting packages. The Ba-
sic package has everything
you need right now. Some
of the features in the other
packages are red her-
rings—for example, only
novices would consider
using the EasySite Wizard,
and you don’t actu-
ally need a special plan to
make your site “Accessible
from All Mobile Platforms.”
To get a deeper compari-
son of these plans, click
the “Compare plans &
pricing” link underneath
(Figure 9-6).

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn294

GETTING WEB
SPACE

To continue, click the Website Hosting tab. Aplus shows you its basic web hosting
package. To compare that with its other offerings, click the See All button (Figure
9-5). And to get even more details about the plans, click the “Compare plans &
pricing” link (Figure 9-6).

FiGURE 9-6
Here’s a breakdown that spells
out the details of Aplus’s three
hosting plans, including how
much bandwidth you’ll get (de-
scribed as “Monthly transfer”),
how much space you’ll have
for your email inboxes, and so
on. Some of these details are
immediately important (you
want FTP support, as explained
on page 289), while some are
more advanced features for
web programs that use server-
side scripts (like databases).

At the end of your search, you’ll discover that the cheapest option is $9 per month
for a free domain name and 100 GB of storage space for your website. Aplus throws
in a free domain name and five email addresses for good measure, along with FTP
support.

Overall, the Aplus.net search turned up a solid offer at a fair price. However, discern-
ing web shoppers may hope to save a few dollars or get a little more space. Before
you sign up, browse several other web hosts, and then research your first choice in
greater detail at WebHostingTalk.

 NOTE  If your web host is letting you down, don’t panic. It’s not too hard to upgrade your hosting plan or
even switch hosts altogether. The key thing to remember is when you change hosts, you’re essentially abandoning
one server and setting up shop on another. It’s up to you to copy your web pages to the new server—no one will do
it for you. As long as you have a copy of your website on your personal computer (and you always should), this part
is easy. If you’re still a little skeptical about what company to choose, look for a 30-day, money-back guarantee.

What to Expect after You Sign Up
Once you decide on a web host, you don’t need anything more than a credit card.
Along the way, you’ll need to choose your domain name. Then sit back and wait—
you’ll be online in only a few hours.

CHAPteR 9: GETTING YOUR SITE ONLINE 295

GETTING WEB
SPACE

First, you’ll get an email or two from your web host (Figure 9-7). They include a
receipt for your payment and the login information you need to get to your account
page. Log in to open the page to manage your hosting plan, pay for renewal, buy
additional domain names, and change your contact information.

FiGURE 9-7
After signing up with a web
host, you’ll receive an email
like this one. Scroll down and
you’ll see the payment details
and the login information for
your account. You’ll also find
instructions about how to
configure your FTP program
(page 301) and set up an email
account.

You’ll also get a web address that points to your site’s control panel, where you can
tap a dizzying array of tools. Most handle features beyond the scope of this book
(for example, you won’t start using databases or installing new software packages
on your site in this book), but you’ll explore your site’s traffic statistics in Chapter 10.

Finally, you’ll get the address for your website. Usually, you’ll get two addresses: the
real website domain that you picked (say, www.reboot-me.com), and a temporary
numeric address (like http://174.37.162.41/~rebootme). Here’s an example of what
this part of the message might look like:

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn296

GETTING WEB
SPACE

Temporarily, you may use one of the addresses given below to manage your
website:

Temporary FTP Hostname: 174.37.162.41

FTP Port: 21

Temporary Webpage URL: http://174.37.162.41/~rebootme/

Temporary Control Panel: http://174.37.162.41/cpanel

Once your domain has propagated:

FTP Hostname: www.reboot-me.com

FTP Port: 21

Webpage URL: http://www.reboot-me.com

Control Panel: http://www.reboot-me.com/cpanel

You can use the temporary address right now. Of course, you haven’t uploaded any-
thing yet, so if you visit your site, you’ll just get an error message or an “Under Con-
struction” page. However, you can start uploading files using your FTP program (page
301), and you can get to your website’s control panel through the temporary control
panel URL. The real website address takes a bit longer to become active, because
it has to spread to DNS servers across the Internet. That should take a day or two.

FREQUENTLY ASKED QUESTION

 A Host Here, a Domain There
Can I buy my domain name and web space from different
companies and still make them work together?

The simplest approach is to get both from the same company,
but that’s not always possible. Maybe you bought your domain
name before you set up your site and you don’t want to pay
to transfer the domain. Or maybe you have a country-specific
domain name (like www.CunningPets.co.uk) that your web
host can’t register. Or maybe you just want the flexibility to
change hosts frequently, so you can get the best service or
cheapest rates.

To make this multiple-company tango work, you need some
technical support from your web hosting company. Contact
its help desk and let the staff know what you plan to do. They
can give you specific instructions, and they’ll set up their name
servers (more on what those are in a moment) with the right
information for your domain.

The next task is to change the registration information for your
domain. Follow these steps:

1. Find out the name of the domain name servers (DNS
servers) at your web hosting company. These are the

computers that convert domain names into numeric IP
addresses (page 281). The technical support staff can give
you this information.

2. Go to the company where you registered the domain name
and update your domain registration settings. Change the
name server setting to match the name servers you found
out about in step 1 (as shown in Figure 9-8).

Due to the way DNS servers work, the change can take 24 hours
or more to take effect.

When you make this change, you’re essentially saying that
your web host is now responsible for giving out the IP address
of your website. When someone types your domain name
into a browser, the browser contacts the name server at your
hosting company to get the IP address. From that point on,
it’s smooth sailing.

Once you modify your domain name registration, you still have
the same two bills to pay. You’ll pay your hosting fees to the
web hosting company and the yearly domain name registration
fee to the company where you registered your domain name.

CHAPteR 9: GETTING YOUR SITE ONLINE 297

GETTING WEB
SPACE

FiGURE 9-8
Here, the website owner
has registered his domain
(sugarbeat.ca) with www.
hover.com, but hosts his
content through www.
brinkster.com. To make
this work, he transfers
control of his domain
name to the name servers
ns1.brinkster.com (http://
ns1.brinkster.com) and
ns2.brinkster.com (http://
ns2.brinkster.com).

Free Web Hosts: Just Say No
As you no doubt know, the Web is a great place for frugal shoppers. Not only can
you score a great deal on a sporty iPod and a used sofa bed, you can also pick up
a bit of web space storage for the princely sum of zero dollars. Sound attractive?
Think again.

Free hosts give you a small parcel of web space without charging you anything.
Sometimes it’s because they hope to get you to upgrade to a cost-based service if
you outgrow the strict limitations of the free package. Other times, free hosts force
you to include an obnoxious ad banner at the top of your web pages.

Although free hosts don’t set out to scam people (at least most of them don’t), they
aren’t worth the risk and aggravation. Here are some of the headaches you can face:

• Ad banners. The worst free hosts force you to display their advertisements on
your pages. If you’d like to crowd out your content with obnoxious credit card
commercials, this is the way to go. Otherwise, move on to somewhere new. It’s
finally possible to find free hosts that don’t impose the Curse of the Blinking
Banner Ad, so don’t settle for one that does.

• Unreliability. Free web hosts may experience more downtime, which means
your website may periodically disappear from the Web. Or the web servers

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn298

TRANSFERRING
FILES TO YOUR

SITE
the host uses may be bogged down by poor maintenance or other people’s
websites, causing your site to slow to a crawl.

• Unpredictability. Free hosts aren’t the most stable companies. It’s not unheard
of for a host to go out of business, taking your site with it and forcing you to
look for a new web home in a hurry. Similarly, free hosts can change their
requirements overnight, sometimes shifting from an ad-free web haven to a
blinking-banner extravaganza without warning.

• Usage limits. Some free hosts force you to agree to a policy that limits the type
of content you can put on your site. For example, you may be forbidden from
running a business, selling ad space, or uploading certain types of files (like
music, movies, or large downloads).

• Limited tech support. Many professional website operators say that what makes
a good host isn’t a huge expanse of free space or a ginormous bandwidth limit—
it’s the ability to get another human being on the phone at any hour to solve
unexpected problems. Free web hosts can’t afford to hire a platoon of techies
for customer service, so you’ll be forced to wait for help—if you get it at all.

• Awkward uploads. Many free hosts lack support for easy FTP uploading (see
the next section). Without this convenience, you’ll be forced to use a time-
consuming upload page.

If you absolutely must try a free web host—perhaps you have the time to experi-
ment, and your site doesn’t need rock-solid reliability—you can learn more at www.
free-webhosts.com. The site provides a huge catalog of free hosts, which painstak-
ingly details the space they give you and the conditions they impose. You’ll also find
thousands of user reviews. However, keep in mind that unscrupulous web hosts may
pad the rankings with their own reviews, and any free host can abruptly change its
offerings.

Transferring Files to Your Site
Once you sign up with a web host, you’re ready to transfer files to your web space.
As long as your host supports FTP (and all the good ones do), this task is almost
as easy as copying files from one spot to another on your computer. You just need
to pick your tool:

• Windows Explorer. If you’re using a Windows computer, you can do the job
using the same tool that you use to manage your computer’s files.

• An FTP program. You can transfer files using one of the many free FTP pro-
grams you can find online.

• A professional web editor. If you’re using a professional web editor like
Dreamweaver or Expression Web, you get all the FTP smarts you need right
in the program.

www.free-webhosts.com
www.free-webhosts.com

CHAPteR 9: GETTING YOUR SITE ONLINE 299

TRANSFERRING
FILES TO YOUR

SITE
The following sections outline these approaches. But before you can upload files
using FTP, you need to collect a few details. These include the address of the FTP
server, as well as the user name and password you use to log onto that server. The
FTP login information may match the login information you use for your web hosting
account, or it may be different.

You also need to decide what you want to upload. To run a simple test, you can
upload a standalone web page, like one of the resumé examples from Chapter 1. For
a more ambitious test, you can upload an entire site—in other words, a collection of
web pages and the resources they use, like style sheets and pictures. For example,
you can transfer the trip website from the tutorial in Chapter 6 (page 181). In this
case, you need to copy all the files in the website folder (in this example, that’s
Tutorial-6-1\End), along with all its subfolders (if there are any).

After you upload a file, you can check your work. Type in your domain name followed
by the web page name. For example, if you upload the resume4.htm example to
your website www.supersavvyworker.com, try requesting www.supersavvyworker.
com/resume4.htm. You don’t need to wait. Once you upload the file to your server,
it’s available almost instantly to any browser that requests it.

Uploading with Windows Explorer
In these modern times, you don’t need a standalone FTP editor. Windows includes
its own built-in FTP features that handle the task comfortably. Here’s how it works:

1. Open Windows Explorer.

One quick way to do this is by right-clicking the Start button and then choosing
Explore (in older versions of Windows) or File Explorer (in Windows 8 and up).

2. Type the FTP address into the Windows Explorer address bar (Figure 9-9).

Make sure the URL starts with ftp://. In other words, if you want to visit ftp.
myhost.com, enter the URL ftp://ftp.myhost.com, not http://ftp.myhost.com,
which incorrectly sends your computer off looking for web pages.

FiGURE 9-9
It’s a surprisingly small jump
to move from the file system
on your Windows computer
to the file system on your
website. It all starts when you
click in the Windows Explorer
address box and type in the
URL for your FTP server.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn300

TRANSFERRING
FILES TO YOUR

SITE
3. Enter your login information (see Figure 9-10).

Once you log in, you’ll see your site’s folders and files on the web server; you
can copy, delete, rename, and move them in much the same way you do local
folders and files. Since you haven’t uploaded anything yet, the folder may be
empty, or it may contain a generic index.htm file that displays an “Under Con-
struction” message if someone happens to browse to the page.

FiGURE 9-10
When you first type in an FTP address, Windows
Explorer may try to log you in anonymously and
fail. It may then prompt you for your user ID and
password (as shown here), or it may display an
error message. If you get an error message, click
OK and then right-click the file display area (on
the right), and choose Login As. If you turn on the
“Save password” checkbox (circled), you don’t
need to repeat this process on subsequent visits.

4. Browse to the folder that holds your website.

You need to copy your files to the right place—the root folder that holds the
content of your website. Depending on your web host, you may start out in this
folder, or you may need to browse to it.

Often this is a folder named public_html. However, it could be something else,
like www or webroot. Your web host can give you the correct name—in fact,
you’re likely to find the details in your welcome email (page 296).

5. Copy your files to the server.

The easiest way to do this is to open a second Windows Explorer window. Then
you can drag the files from that window and drop them in the FTP window.

Figure 9-11 shows the steps to upload the resumé example from Chapter 1. Make
sure you upload both the resume4.htm file and the linked picture, leepark.jpg,
to the same folder on your site. You can drag these files one at a time or as a
group (hold down the Ctrl [z] key as you click each filename), and then pull
them over en masse.

If you want to transfer an entire website, browse to the root website folder on
your computer. Select everything, and then drag all the files and subfolders
to your FTP folder. For example, to copy the trip files from the first tutorial in

CHAPteR 9: GETTING YOUR SITE ONLINE 301

TRANSFERRING
FILES TO YOUR

SITE
Chapter 6, browse to the Tutorial-6-1\End folder and select everything, includ-
ing all the pages and the TripArctic and TripChina folders. You can then drag
all the selected files in one step.

 TIP  Drag-and-drop isn’t the only way to transfer files. You can use all the familiar Windows shortcuts,
including the Cut, Copy, and Paste commands in the Edit menu, and the Ctrl+C (copy) and Ctrl+V (paste) keyboard
shortcuts.

FiGURE 9-11
To get Lee Park onto the
Web from a Windows
computer, start by opening
two instances of Windows
Explorer. Use one for your
local files and one for your
FTP site. Then browse to
the appropriate folder
on your computer. When
you find the resume4.htm
and leepark.jpg files you
downloaded earlier, select
them, and then drag them
onto the FTP window to
start uploading files.

Uploading with an FTP Program
There are plenty of FTP programs that can help you transfer files from your com-
puter to your website. Some come equipped with bells and whistles, like the ability
to set up automated transfers that follow your preset rules. But if you don’t want
any of these exotic features, you can get plenty of basic FTP programs for free, for
any operating system.

Two good, popular, and free FTP programs are Cyberduck (http://cyberduck.io) and
FileZilla (http://filezilla-project.org). Both offer Windows and Mac versions, and both
work more or less the way you’d expect—like a glorified file browser that shows you
the contents of your web server.

http://cyberduck.io
http://filezilla-project.org

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn302

TRANSFERRING
FILES TO YOUR

SITE
 NOTE  The Mac operating system does include an FTP feature, but it’s read-only. That means you can use
the built-in FTP feature to copy files from a web location to your computer, but you can’t use it to transfer your
work to your web server, which makes this feature useless for website development.

To use Cyberduck, follow these steps:

1. Begin by visiting http://cyberduck.io to download Cyberduck and install
it on your computer.

2. Once you install Cyberduck, fire it up.

The main window appears. Right now, it’s empty.

3. Click the plus (+) button in the bottom-left corner (Figure 9-12).

This brings up a window where you tell Cyberduck how to connect to your FTP
server.

FiGURE 9-12
The easiest way to connect to an FTP server in Cyberduck is to create a
bookmark for it. Start by clicking the plus (+) button shown here.

4. Fill in your account details (Figure 9-13).

You need to supply the standard information, including the FTP server address
and your user name. You also need to pick a nickname, because you’re creat-
ing a link to the server and you need to label it. (Cyberduck calls these links
“bookmarks.”)

5. When you finish, click the red X icon in the top-right corner of the box to
close it.

Now you’ll see your bookmark in the main Cyberduck window.

http://cyberduck.io

CHAPteR 9: GETTING YOUR SITE ONLINE 303

TRANSFERRING
FILES TO YOUR

SITE

FiGURE 9-13
Cyberduck saves the connection information for your
FTP site and calls it a bookmark. Cyberduck lists all the
bookmarks you’ve created in the main window.

6. Double-click your new bookmark to connect to the FTP server.

7. Enter your password.

If you turned on the “Save password” checkbox, Cyberduck remembers the
password for this site, so you won’t need to enter it the next time you connect.

Once Cyberduck connects, you’ll see a list of the folders and files on your web
hosting account.

8. Browse to the root folder for your site.

Often, it’s named public_html, but not always. Check with your web host if you
can’t find the right spot.

9. Start transferring your files.

To upload something to your website, simply drag your files and folders from
Windows Explorer (on Windows) or Finder (on Mac) and drop them onto the
Cyberduck window.

Uploading in Dreamweaver
If you’re fortunate enough to be working with Dreamweaver, you don’t need to
fiddle around with Windows Explorer or another FTP program. Instead, you can
do all your uploading from the comfort of the Dreamweaver window. Even better,
Dreamweaver’s uploading feature is intelligent. For example, with a single click, it lets
you copy just the files you changed since the last time you uploaded files to your site.

ADDING YOUR FTP INFORMATION
Before you can use Dreamweaver’s FTP features, you need to “define” your website,
a process first described on page 161. However, merely defining a site isn’t enough.
You also need to make sure you’ve added the FTP connection information to your
site. Here’s how:

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn304

TRANSFERRING
FILES TO YOUR

SITE
1. Go to the Site Setup window.

If you’re creating a new site, start by choosing Site→New Site. Then fill in a
descriptive name and pick the folder on your computer where you store your
site’s files, as described on page 162.

If you’ve already created a site, choose Site→Manage Site. Then, double-click
the site you want to edit.

2. Now click Servers in the list on the left.

This takes you to the Servers section of the Site Setup window.

3. Click the tiny plus icon in the bottom-left corner of the empty server list
(Figure 9-14).

Dreamweaver displays a dialog box where you fill in your connection informa-
tion (see Figure 9-15).

FiGURE 9-14
Initially, Dreamweaver’s list of
web servers is empty. You need
to fill in the information for
your web server.

 NOTE  Don’t forget to fill in the Root Directory setting. This is the folder on your web hosting account that
holds your site (usually it’s something like public_html). Dreamweaver is going to do the uploading for you, and
if this detail isn’t in place, it won’t put your files in the correct location.

4. When you finish entering your server information, click Save.

Dreamweaver stores your connection information so you won’t need to enter
it again and returns you to the Site Setup window.

5. Click Save again to close the Site Setup window.

You return to the Manage Sites dialog box.

CHAPteR 9: GETTING YOUR SITE ONLINE 305

TRANSFERRING
FILES TO YOUR

SITE

FiGURE 9-15
Your web host can supply all the connection information
you need. Key details include the address of your FTP
server, your user name and password, and the root direc-
tory (folder name) of your website on the server.

6. Click Done.

You return to Dreamweaver’s main window.

Once you finish adding the FTP information to your site, you’ll be able to take a peek
at the contents of it using Dreamweaver’s Files panel (Figure 9-16). In the location
drop-down list at the top right of the panel, choose “Remote server” to see what’s on
the web server. Choose “Local view” to switch back to the folder on your computer.

The Files panel includes a strip of buttons that let you transfer files back and forth
from your computer to the server. The following sections explain how to use them.

COPYING FILES TO YOUR WEBSITE
To transfer files from your local computer to your server, you use an operation called
a put in FTP jargon. It works like this:

1. In the Files panel, choose your website from the drop-down menu at the
top left.

2. Choose “Local view” from the drop-down menu at the top right.

The Files panel lists the files on your computer (see Figure 9-16).

 TIP  Initially, Dreamweaver crams the file view into a small corner of the Dreamweaver window. To expand
it to fill the entire window and simultaneously display both the files on your local hard drive and those on the
web server, click the Expand button shown in Figure 9-16. This gives you a view that’s similar to the Site View tab
in Expression Web.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn306

TRANSFERRING
FILES TO YOUR

SITE

FiGURE 9-16
This is the local view of a website
named LeeParkSite. It lists all the
files in the site folder on your
computer. Using the icons in this
window, you can quickly transfer
files to and from your server.

3. Select the files you want to transfer to the server.

You can select multiple files by holding down Ctrl (z) while you click each
file’s icon.

4. Click the Put arrow (the one that points up), or right-click the selected files,
and choose Put.

Dreamweaver asks if you want to copy dependent files.

5. Choose Yes to copy all the files that make up your site.

For example, if you upload a page that uses elements to display graph-
ics, click Yes to make sure Dreamweaver uploads the graphics files as well as
the pages themselves. If you don’t have any dependent files, your choice has
no effect.

Once you make your choice, Dreamweaver connects to your web server and
transfers the files.

COPYING FILES TO YOUR COMPUTER
To do the reverse and transfer files from your server to your computer, you use a
get operation. Follow these steps:

1. In the Files panel, choose your website from the drop-down menu at the
top left.

CHAPteR 9: GETTING YOUR SITE ONLINE 307

TRANSFERRING
FILES TO YOUR

SITE
2. Choose “Remote server” from the drop-down menu at the top right (see

Figure 9-16).

Dreamweaver doesn’t automatically display the list of files on your server, be-
cause getting that list could take a little time. So you need to specifically ask
Dreamweaver for an updated view of the files on the server, which you’ll do in
the next step.

3. Click the Refresh button, which looks like a circular arrow icon.

Dreamweaver connects to the web server and displays the list of site files.

4. Select the files you want to transfer to your computer.

You can select multiple files by holding down Ctrl (z) while you click each
file’s name.

5. Click the Get arrow (the down-pointing arrow icon), or right-click the se-
lected files, and choose Get.

Dreamweaver asks if you want to copy dependent files.

6. Choose Yes if you want to copy linked files.

For example, if you download a page that uses elements to display graph-
ics, click Yes to make sure Dreamweaver downloads the graphics, too. If your
page doesn’t have any dependent files, your choice has no effect.

Now Dreamweaver connects to your web server and copies the files to the site
folder on your computer.

 TIP  Once you’re comfortable transferring small batches of files, you can try out Dreamweaver’s Synchronize
button. It works like the website publishing feature in Expression Web. When you click it, Dreamweaver examines
the web page files on your computer, determines which ones you updated, and transfers just those to your server.

Uploading in Expression Web
Uploading a site in Expression Web is just as convenient as it is in Dreamweaver.
Not only does it save you the effort of switching to a separate program, but it also
keeps track of pages that have changed and lets you update just those files in a
single, speedy operation.

Before you can take advantage of Expression Web’s FTP features, however, you need
to define your local website by following the site definition process explained on
page 167. Make sure you choose to add the metadata folders, because Expression
Web needs them to keep track of the files you change.

Once you define a site and switch on the metadata folders, you’re ready to press
on. Here’s how to upload your site:

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn308

TRANSFERRING
FILES TO YOUR

SITE
1. Choose Site→Publishing (or click Publishing at the bottom of the Site View

tab).

You can’t publish your website until you fill in some basic information about
your web hosting company.

2. Click the big “Add a publishing destination” link in the middle of the Site
View tab.

Expression Web displays the Connection Settings window (see Figure 9-17).

FiGURE 9-17
Your web hosting company
should tell you the exact
choices to make in the Con-
nection Settings window.
Typically, you need to
supply the address of
your host’s FTP server, the
directory (folder name) of
your website on the server,
and your user name and
password. You need to
complete this form only
once. If you’re successful,
Expression Web uses this
information the next time
you publish your site (al-
though you have to type in
your password each time).

3. Fill in the information that tells Expression Web how to connect to your
server, and then click Add.

Expression Web saves the info and connects to your web host. The next time
you upload files, you’ll see a “Connect to publishing destination” link instead
of the “Add a publishing destination” link. Just click once to connect, with no
extra work.

Once you’re connected, Expression Web shows you a side-by-side file list that
compares the contents of the website stored on your computer with that on
the server, so you can tell at a glance which files have changed (Figure 9-18).

4. To bring your web server up to date, choose Site→Publish Changed Files.

This choice starts the publishing process (see Figure 9-19).

CHAPteR 9: GETTING YOUR SITE ONLINE 309

TRANSFERRING
FILES TO YOUR

SITE
You can also transfer individual files using the arrows that appear between the
two file lists. To transfer files from your computer to the server, select them on
the left list and then click the right-facing arrow. To download a file from your
server, select it from the right list and then click the left-facing arrow. The two-
way arrow underneath (“Synchronize files”) is like both operations rolled into
one; it examines each file you select and makes sure it updates any old versions
on either your computer or web server.

FiGURE 9-18
Here, Expression Web uses a pencil
icon to highlight two files that you
updated on your computer but not
on the web server.

FiGURE 9-19
When you publish a website,
Expression Web scans your
files and copies only the ones
you added or changed since
the last time you published
the site. A progress indicator
identifies the file being copied
and estimates how long the
operation will take.

Connecting with
Your Audience

PART

3

CHAPTER 10:

 Introducing Your Site to the World

CHAPTER 11:

 Website Promotion

CHAPTER 12:

 Adding a Blog

CHAPTER 13:

 Making Money with Your Site

313

CHAPTER

10

So far, you’ve polished your website-design mettle and learned how to build
sleek and sophisticated pages. Now it’s time to shift to an entirely different
role, that of website promoter.

One of the best ways to attract new visitors to your site is to turn up as a result in a
web search. For that to happen, the leading search engines (that’s Google, Yahoo,
and Bing) need to know about your site, and they need to think it’s important enough
to rank as a search result. For example, if you’re hawking fried delicacies at www.
sweetsaltysweets.com, you want your website to turn up when someone searches
for “chocolate-covered potato chips.” And ideally, that result will be among the first
few listed, or at least on the first page of results, which greatly increases your odds
of getting noticed.

In this chapter, you’ll see how search engines work. You’ll learn how to make sure they
regularly index your site, capture the right information, and expose your brilliance to
the world. (Later, in Chapter 11, you’ll continue this journey and learn more promotion
strategies, all of which can help you work your way up the search results rankings.)

Lastly, you’ll learn to gauge the success of your site with visitor tracking. You’ll use
a powerful, free service called Google Analytics to discover some of your visitors’
deepest secrets—like where they live, what browsers they use, and which of your
web pages they find absolutely unbearable. With this information, you’ll have all
the tools you need to improve your content and fine-tune the organization of your
website. Before you know it, you’ll be more popular than chocolate ice cream.

 Introducing Your
Site to the World

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn314

YOUR WEBSITE
PROMOTION

PLAN Your Website Promotion Plan
Before you plunge into the world of website promotion, you need a plan. Grab a
pencil and plenty of paper, and get ready to jot down your ideas for global website
domination (fiendish cackling is optional).

Although all webmasters have their own tactics, web mavens generally agree that
the best way to market a site is to follow these steps:

1. Build a truly great site.

If you start promoting your site before there’s anything to see, you’re wasting
your effort (and probably burning a few bridges). Nothing says “Never come
back” like a website that consists of an “Under Construction” message.

2. See step 1.

If in doubt, keep polishing and perfecting your site. Fancy graphics aren’t the
key concern here. The most important detail is whether you have some genu-
inely useful content. Ask yourself—if you were browsing the Web, would you
stop to take a look at this site? Make sure you take the time to add the kinds of
features that keep visitors coming back. One great option: include a discussion
forum (see the next chapter for details on that).

3. Make your site search-engine friendly.

There are a number of ways to tweak and optimize your site to help search
engines understand the nature of your content. Small details like page titles,
alternate text, and meta elements (page 317) are easy to overlook when you
start building a site but become more important when you need to popularize it.

4. Submit your site to Internet search engines.

Now you’re ready for the big time. Once you submit your site to search heavy-
weights like Google and Yahoo, it officially enters the public eye. However, it
takes time to climb up the rankings and get spotted.

5. Tweak your website’s public profile with the free Google Webmaster Tools.

These handy tools let you adjust how Google sees your site and reveal some
valuable information about it. For example, it lets you specify the geographic
region you want associated with your site and lets you discover whether Google’s
having trouble indexing some of your pages.

6. Figure out what happened.

To assess the successes and failures of your promotion strategies, you need to
measure some vital statistics, like how many people visit your site, how long
they stay, and how many visitors come back for more. To take stock, you need
to crack open tools like hit counters and server logs.

You’ll tackle all these steps in this chapter.

CHAPteR 10: INTRODUCING YOUR SITE TO THE WORLD 315

MAKING YOUR
SITE SEARCH-

ENGINE
FRIENDLYMaking Your Site Search-Engine Friendly

A “search-engine friendly” website is one that search engines understand. As ex-
plained in the box on this page (below), a search engine needs to be able to pull
some essential information from your web pages. Then it analyzes those details every
minute and decides how useful your site is to millions of web searchers.

Modern search engines handle this task quickly and quietly, without revealing how
much effort it really is. But behind the scenes, search engines use a lot of messy
logic and number-crunching to analyze raw website data. If you can simplify the
engines’ work and make the content, quality, and relevance of your site stand out,
you just might be rewarded with higher placement in search results.

UP TO SPEED

How Web Search Engines Work
A web search engine like Google consists of three parts. The first
is an automated program that roams the Web, downloading
everything it finds. This program (often known by more pic-
turesque names like spider, robot, bot, or crawler) eventually
stumbles across your site and copies its contents.

The second part is an indexer that chews through web pages
and extracts a bunch of meaningful information, including
the page’s title, description, and keywords. The indexer also
records a great deal more esoteric data, like tracking the words
that crop up most often on your page, what other sites link
to your page, and so on. The indexer inserts all this digested
information into a giant catalog (technically, a database).

The search engine’s final task is the part you’re probably most
familiar with—the search home page. You enter the keywords
you’re hunting for, and the search engine scans its catalog
looking for suitable pages. Different engines have different
ways of choosing pages, but the basic idea is to make sure
the best and most relevant pages turn up early in the search
results. (The best pages are those that the search engine ranks
as highly popular and well-linked. The most relevant pages are
those that most closely match your search keywords.) Due to
the complex algorithms search engines use, a slightly different
search (say, “green tea health” instead of just “green tea”) can
get you a completely different set of results.

Choose Meaningful Page Titles
Remember that short snippet of content that goes in the <title> element in your
web page (page 20)? It’s easy to overlook but vitally important, because the title
text becomes the key piece of identifying information people see in a search result
(Figure 10-1).

A common newbie mistake is to give every page the same title—for example, a com-
pany name. This is appropriate on your home page, but not anywhere else on your
site. Instead, a good page title describes the function of your page. For example, a
music school named Cacophony Studios might have page titles like this: Our Teach-
ers, The Cacophony Studios Difference, Signing Up for Music Class, Payments and
Policies, and so on. (If you really must have the company name in a page title, place
it after the descriptive text, as in “Our Teachers - Cacophony Studios.”)

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn316

MAKING YOUR
SITE SEARCH-

ENGINE
FRIENDLY

FiGURE 10-1
Ever wondered where
the information you see
in search listings comes
from? The link in this ex-
ample (“Sugar Beat Music
for Children”) is the title of
the target page, as set in
the <title> element.

 TIP  If a visitor bookmarks your page, the text in the bookmark label comes from the <title> element in
your page. Keep that in mind, and refrain from adding long slogans. “Ketchup Crusaders – Because ketchup isn’t
just for making food tasty” is about the longest you can stretch a title, and even that’s iffy. On the other hand,
your titles should include essential information; titles like Welcome or Untitled 1 (a favorite in Expression Web)
aren’t very helpful.

Title text is also important because search engines look for it. In fact, they give it
more weight than the text inside your page. So if someone’s search keywords match
words in your title, odds are your page will get better placement in the search results.
(But don’t try to game the system with ridiculously long page titles, because search
engines may compensate by ignoring them.)

Include a Page Description
Along with the title, every web page should have one other basic piece of informa-
tion: a description that briefly summarizes the page. Once again, the description text
plays two roles. First, search engines give it extra weight in a search, and second,
they often display the description on the search results page, as shown in Figure 10-2.

CHAPteR 10: INTRODUCING YOUR SITE TO THE WORLD 317

MAKING YOUR
SITE SEARCH-

ENGINE
FRIENDLY

FiGURE 10-2
If a search engine finds words in a
page that match your search terms,
it displays that snippet, as shown
here (top). But if you type in part of a
domain name, or if the search engine
doesn’t have any content that seems
relevant to your search terms, it may
show the page’s description instead
(bottom).

To add a description, you need to supply something called a meta element (also
known as a meta tag). Technically, meta elements contain hidden information—in-
formation that doesn’t appear in a visitor’s browser but may convey important in-
formation about your site’s content to something else, like an automated search-bot.

 NOTE  Fun fact for etymologists and geeks alike: the term “meta element” means “elements about,” as in
“elements that provide information about your web page.”

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn318

MAKING YOUR
SITE SEARCH-

ENGINE
FRIENDLY

You put all meta elements in the <head> section of a page. Here’s a sample meta
element that assigns a description to a web page:

<!DOCTYPE html>
<html>
<head>
 <meta name="description"
 content="Noodletastic offers custom noodle dishes made to order." />
 <title>Noodletastic</title>
</head>
<body>...</body>
</html>

All meta elements look more or less the same. The element name is <meta>, the
name attribute indicates the type of meta element it is (a page description, a set of
keywords, an author name, and so on), and the content attribute supplies the rel-
evant information. In theory, there’s no limit to the type of information you can put
inside a meta element. For example, some web page editing programs insert meta
elements that say its software built your pages (don’t worry; once you understand
meta elements, you’ll recognize this harmless fingerprint and you can easily remove
it). Another page might use a meta element to record the name of the web designers
who created it, or the last time you updated the page.

 TIP  Although you can stuff a lot of information into your description, it’s a good idea to limit it to a couple of
focused sentences that total no more than around 50 words. Even if your description appears on a search results
page, readers see only the first part of it, followed by an ellipsis (…) where it gets cut off.

NOSTALGIA CORNER

The Keyword Meta Element
Long ago, when life was far simpler and Nigerian gentlemen
never needed help transferring large sums of money, search
engines had an easy task. Many ignored most of a web page
but paid close attention to the keywords meta element. Then,
when someone went searching, the search engine simply
checked for pages that had the search terms in their keyword
list and put those in the search results.

Here’s an example of a typical keywords list. It includes about
25 words or phrases that best represent the website, with each
entry separated by a comma.

<meta name="keywords"
content="Noodletastic, noodles, noodle,

pasta, delicious, Italian food, fantastic
noodles, ramen, custom, made-to-order,
dishes, organic, whole-wheat, spelt" />

Today, most search engines ignore the keyword list. That’s
because it was notorious for abuses (many a webmaster
stuffed her keyword list full of hundreds of words, some only
tangentially related to the site’s content). Search engines like
Google take a more direct approach—they look at all the words
on your web page and pay special attention to words that
appear most often, appear in headings, and so on. Most web
experts argue that the keyword list has outlived its usefulness,
and many don’t bother adding it to their pages at all.

CHAPteR 10: INTRODUCING YOUR SITE TO THE WORLD 319

MAKING YOUR
SITE SEARCH-

ENGINE
FRIENDLY

Supply Alternate Text for All Your Images
A search engine draws information from many parts of your page. One easily
overlooked detail is alternate text—the text a browser displays if it can’t retrieve an
image. As you learned on page 116, you specify this text using the alt attribute in
the element:

Search engines pay attention to alternate text. If a web search uses keywords that
match your alternate text, there’s a greater chance of your page turning up in the
results. The odds increase even more if the searcher is looking for a picture. For
example, Google uses alternate text as the basis for its image search tool at http://
images.google.com. If you don’t have alternate text, Google has to guess what the
picture is about by looking at nearby text, which is less reliable.

Use Descriptive Link Text
The famous anchor tag can wrap any piece of text. Search engines like Google give
that piece of text—the clickable bit that’s underlined in blue—extra weight. But that’s
not much help if you waste it with a link like this:

To learn more about elephants, click here.

A better-designed link like this tells search engines more about your site:

To learn more about elephants, visit our
Elephant Stories page.

It’s also worth your while to make sure that the web page you link to (in this case,
that’s ElephantStories.htm), has a good, recognizable name.

Don’t Try to Cheat
There are quite a few unwholesome tricks that crafty web weavers have used to
game the search engine system (or at least try). For example, they might add a huge
number of keywords but hide the text so that it isn’t visible on the page (white text
on a white background is one oddball option, but there are other style-sheet cheats,
too). Another technique is to create pages that aren’t really part of your website but
that you store on your server. You can fill these pages with repeating keywords. To
implement this trick, you use a little JavaScript code to make sure real people who
accidentally arrive at the page are directed to the entry point of your site, while
search engines get to feast on the keywords.

As seductive as some of these strategies may seem to lonely websites (and their
owners), the best advice is to avoid them altogether. The first problem is that they
pose a new set of headaches and technical challenges, which can waste hours of
your day. But more significantly, search engines learn about these cheats almost
as fast as web developers invent them. If a search engine catches you using them,
it penalizes your site (so it ranks lower in the search results) or bans it completely,
relegating it to the dustbin of the Web. (It even happens to the heavyweights. For

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn320

REGISTERING
WITH SEARCH

ENGINES
example, JCPenney was given a hefty search demotion for using a few dirty search-
engine optimization tricks during the Christmas 2010 season.)

If you’re still tempted, keep this in mind: Many of these tricks just don’t work. In the
early days of the Web, primitive search engines gave a site more weight based on the
number of times a keyword cropped up, but modern search engines like Google use
much more sophisticated page-ranking systems. A huge load of hidden keywords
won’t move you up the search list one iota.

Registering with Search Engines
For most people, search engines are the one and only tool for finding information
on the Web. If you want the average person to find your site, you need to make sure
it appears in the most popular search engine catalogs and turns up as one of the
results in relevant searches. This task is harder than it seems, because millions of
sites jockey for position in search-engine rankings. To get noticed, you need to spend
time developing your site and enhancing its visibility. You also need to understand
how search engines rank pages (see the box on page 321 for more on that).

But every website needs to start somewhere. In the following sections you’ll learn
how to formally introduce yourself to Google, Bing, Yahoo, and an online directory
of sites called the ODP.

Submitting Your Site to Google
The undisputed king of web search engines is Google (www.google.com). It’s far
and away the Web’s most popular search tool, with a commanding share of over 70
percent of all search traffic.

Second place currently goes to Yahoo, and third place to Microsoft’s Bing. But behind
the scenes, Yahoo quietly uses Bing to power its search results. This means that just
two search engines (Google and Bing) are responsible for at least 95 percent of the
web searches in the Western world. Other countries, particularly those with web
censorship practices, like China, have their own search engines.

It’s not too difficult to get Google and other search engines to notice your site. By
the time it’s about a month old, Google will probably have stumbled across it at least
once, usually by following a link from another site. As described in the box on page
321, Google takes outside links into consideration when sizing up a site, so the more
sites that link to you, the more likely you are to turn up in someone’s search results.

If you’re impatient or you think Google is passing you by, you can introduce yourself
directly using the submission form at www.google.com/addurl (see Figure 10-3).
To get Bing’s attention, go to www.bing.com/toolbox/submit-site-url. Most search
engines include a submission form like this. Just make sure you keep track of where
you apply, so you don’t inadvertently submit your site to the same search engine
more than once.

www.google.com
www.google.com/addurl
www.bing.com/toolbox/submit-site-url

CHAPteR 10: INTRODUCING YOUR SITE TO THE WORLD 321

REGISTERING
WITH SEARCH

ENGINES

FiGURE 10-3
Google’s stripped-down
submission form requires just
one detail: the URL that points to
your site’s home page. Make sure
you include the http:// prefix at
the start.

UP TO SPEED

How Google’s PageRank Works
Google uses a rating system called PageRank to size up differ-
ent web pages. It doesn’t use PageRank to find search results; it
uses it to order them. When you execute a search with Google,
it pulls out all the sites that match your search keywords. Then
it orders the results according to the PageRank of each page.

The basic idea behind the PageRank system is that it deter-
mines the value of your site by the community of other websites
that link to it. There are a few golden rules:

• The more sites that link to you, the better.

• A link from a more popular site is more valuable than a
link from a less popular site.

• The more links a site has, the less each link is worth.
In other words, if someone links to your site and just a

handful of other sites, that link is valuable. If someone
links to your site and hundreds of other sites, the link’s
value is diluted.

Although Google regularly fine-tunes its secret PageRank
recipe, web experts spend hours trying to deconstruct it. For
some fascinating reading, you can learn more about how
PageRank works (loosely) at www.markhorrell.com/seo/
pagerank.html. For a more technical look at the math behind
PageRank, check out http://en.wikipedia.org/wiki/PageRank.

www.markhorrell.com/seo/pagerank.html
www.markhorrell.com/seo/pagerank.html
http://en.wikipedia.org/wiki/PageRank

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn322

REGISTERING
WITH SEARCH

ENGINES
Submitting Your Site to the Open Directory Project
Directories are searchable site listings with a difference: humans, not programs, cre-
ate them. The idea made a lot of sense in the early days of the Internet, and it turned
Yahoo, the creator of the most popular early Internet directory, into a tech titan.
But over the years, directories have become increasingly marginalized. Companies
like Google and even Yahoo have shuttered their once-popular directories, because
they could no longer keep up with the rapidly changing Web.

So, given that directories are nearly obsolete, what’s the point of talking about
them? You could ignore directories altogether, and many perfectly intelligent web
designers do exactly that. However, some search engines (including Google) still pay
attention to the listings in the Open Directory Project (ODP) at http://dmoz.org, a
long-standing website directory staffed entirely by thousands of volunteer editors.
If you get a spot in the ODP, it can help your site start to move up the results list in
a full-text search.

However, there’s a catch. In recent years, the ODP has become swamped with reg-
istration requests. In some categories, it may be months or years before a site is
considered. And there’s been more than one sordid story of ODP editors demand-
ing bribes to get a website into the directory. The best advice is this: When your
website is ready, follow the steps in this section to submit it to the ODP. But don’t
panic if your site doesn’t get listed, as search engines have plenty of other ways to
find and rank your pages.

Before submitting to the ODP, take the time to make sure you do it right. An incor-
rect submission could result in your website not getting listed at all. You can find
a complete description of the rules at http://dmoz.org/add.html, but here are the
key requirements:

• Don’t submit your site more than once.

• Don’t submit your site for consideration in more than one subject category.

• Don’t submit more than one page or section of your site (unless you have a really
good reason, like that the separate sections are notably different).

• Don’t submit sites that contain “illegal” content. By the ODP’s definition, that’s
more accurately described as unsavory material like pornography, libelous
content, or material that advocates illegal activity—you know who you are.

• Clean up any broken links, outdated information, or other red flags that might
suggest that your site isn’t here for the long term.

• When you submit your site, describe it carefully and accurately. Don’t promote
it. In other words, “Ketchup Masters manufactures gourmet ketchup” is accept-
able. “Ketchup Masters is the best food-oriented site on the Web—the Louisville
Times says you can’t miss it!” isn’t.

• Don’t submit an incomplete site. Your “Under Construction” page won’t get
listed.

http://dmoz.org
http://dmoz.org/add.html

CHAPteR 10: INTRODUCING YOUR SITE TO THE WORLD 323

REGISTERING
WITH SEARCH

ENGINES
The next step is to spend some time at the ODP site until you find the single best
category for your website (see Figure 10-4).

FiGURE 10-4
Top: When you arrive at the ODP site,
you see a group of general, top-level
categories.

Bottom: As you click your way deeper
into the topic hierarchies, you’ll
eventually find a specific subcategory
that would make a good home for
your site, such as the Arts→Visual
Arts→“Native and Tribal” category.
There are several subcategories (like
Asia, with 23 sites). Categories with
an @ after their names link to related
categories in a different place in the
directory.

Once you find the perfect category, click the “suggest URL” link at the top of the
page and fill out the submission form. It asks for your URL, the title of your site, a
brief description, and your email address.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn324

REGISTERING
WITH SEARCH

ENGINES
 TIP  If you have some free time on your hands, you can offer to help edit a site category; just click the “become
an editor” link. And even if you don’t have editorial aspirations, why not check out the editor guidelines at http://
dmoz.org/guidelines/ to get a better idea of what’s going on in the mind of ODP editors, and how they evaluate
your submission?

Once you submit your site, there’s nothing to do but wait. If a month passes without
your site appearing in the listing and you haven’t received an email describing any
problems with it, it’s time to contact the category editor. If that still doesn’t work, it’s
time to write a polite email asking why your site wasn’t added to the listings, being
sure to include the date of your submission(s) and the name, URL, and description of
your site. You can find the email address for the category editor at the very bottom
of the category page (see Figure 10-5).

FiGURE 10-5
Click the editor’s name
(“sprice” here) to find out
who he is, what categories
he manages, and how you
can email him. If that still
doesn’t work, it’s time to
move on. Sadly, the ODP
isn’t always reliable, and
there still dozens of ways
to promote your website
to the world.

Rising Up in the Search Rankings
You’ll soon discover that it’s not difficult to get into Google’s index, but you might
find it exceedingly hard to get noticed. For example, suppose you submit the site
www.SamMenzesHomemadePasta.com. To see if you’re in Google, try an extremely
specific search that targets just your site, like “Sam Menzes Homemade Pasta.” This
should definitely lead to your doorstep. Now try searching for just “Homemade
Pasta.” Odds are you won’t turn up in the top 10, or even the top 100.

http://dmoz.org/guidelines/
http://dmoz.org/guidelines/

CHAPteR 10: INTRODUCING YOUR SITE TO THE WORLD 325

REGISTERING
WITH SEARCH

ENGINES
So how do you create a site that the casual searcher is likely to find? There’s no easy
answer. Just remember that the secret to getting a good search ranking is having
a good PageRank, and getting a good PageRank is all about connections. To stand
out, your website needs to share links with other leading sites in your category. It
also helps to have people talking about your site online, whether that’s on Twit-
ter, Facebook, or a personal blog. In the next chapter, you’ll get plenty of tips for
website promotion.

Google won’t tell you the PageRank of your website. (In fact, it suggests you con-
centrate on building a fantastic website rather than getting fixated on a number.)
However, most webmasters want to know how they rank, if only so they can gauge
how the site’s standing changes over time. Although you can’t get the exact Page-
Rank that Google uses in its search calculations, you can get a simplified PageRank
score that gives you a general idea of your website’s performance. This simplified
PageRank is based on the real PageRank, but it’s updated just twice a year, and it
provides only a value from 1 to 10. (All things being equal, a website ranked 10 will
turn up much earlier in someone’s search results than a page ranked 1.)

There are two ways to find your website’s simplified PageRank. First, you can use
the free Google Toolbar (www.google.com/toolbar), which snaps on to your browser
window and provides a PageRank button. However, you need to explicitly enable
this feature, as described at http://tinyurl.com/64bjmtd. A simpler approach is to
use an unofficial PageRank-checking website, like the one shown in Figure 10-6. You
simply type in your URL and click a button to get your simplified PageRank score.

FiGURE 10-6
Use www.prchecker.info
(or search Google for a dif-
ferent PageRank checker)
to quickly rank any
website. Here, it reports
that www.prosetech.com
scores a middle-of-the-
road 4 out of 10.

www.google.com/toolbar
http://tinyurl.com/64bjmtd
www.prchecker.info
www.prosetech.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn326

REGISTERING
WITH SEARCH

ENGINES
If you want to delve into the nitty-gritty of search engine optimization (known to
webmasters as SEO), consider becoming a regular reader of www.webmasterworld.
com and www.searchengineland.com. You’ll find articles and forums where webmas-
ters discuss the good, bad, and downright seedy tricks you can try to get noticed.

 TIP  It’s possible to get too obsessed with search engine rankings. Here’s a good rule of thumb: Don’t spend
more time trying to improve your search engine rank than you do improving your website. In the long term, the
only way to gain real popularity is to become one of the best sites on the block.

Hiding from Search Engines
In rare situations, you might create a page that you don’t want to turn up in a search
result. The most common reason is because you posted some information, like the
latest Amazon e-coupons, that you want to share only with a few friends. If Google
indexes your site, thousands of visitors could come your way, expecting to find a
discount coupon and sucking up your bandwidth for the rest of the month. Another
reason may be that you’re posting something semi-private that you don’t want other
people to stumble across, like a story about how you stole a dozen staplers from your
boss. If you fall into the latter category, be very cautious. Keeping search engines
away is the least of your problems—once a site is on the Web, it will be discovered.
And once it’s discovered, it won’t ever go away (see the box on page 328).

But you can do at least one thing to minimize your site’s visibility or, possibly, hide
it from search engines altogether. To understand how this procedure works, recall
that search engines do their work in several stages. In the first one, a robot program
crawls across the Web, downloading sites. You can tell this robot not to index your
site, or to ignore a portion of it, in several ways.

To keep a robot away from a single page, add the robots meta element to the page.
Set the content attribute to noindex, as shown here:

<meta name="robots" content="noindex" />

Remember, like all meta elements, you place this one in the <head> section of your
HTML document.

Alternatively, you can use nofollow to tell robots to index the current page but not
to follow any of its links:

<meta name="robots" content="nofollow" />

If you want to block larger portions of your site, you’re better off creating a spe-
cialized file called robots.txt, and placing it in the top-level folder of your site. The
robot will check this file before it goes any further. The content inside the robots.
txt file sets the rules.

If you want to stop a robot from indexing any part of your site, add this to the
robots.txt file:

www.webmasterworld.com
www.webmasterworld.com
www.searchengineland.com

CHAPteR 10: INTRODUCING YOUR SITE TO THE WORLD 327

REGISTERING
WITH SEARCH

ENGINES
User-Agent: *
Disallow: /

The User-Agent part identifies the type of robot you’re addressing, and an asterisk
represents all robots. The Disallow part indicates what part of the website is off
limits; a single forward slash represents the whole site.

To rope off just the Photos subfolder on your site, use this (making sure to match
the capitalization of the folder name exactly):

User-Agent: *
Disallow: /Photos

To stop a robot from indexing certain types of content (like images), use this:

User-Agent: *
Disallow: /*.gif
Disallow: /*.jpeg

As this example shows, you can put as many Disallow rules as you want in the robots.
txt file, one after the other.

Remember, the robots.txt file is just a set of guidelines for search engine robots; it’s
not a form of access control. In other words, it’s similar to posting a “No Flyers” sign
on your mailbox: It works only as long as advertisers choose to heed it.

 TIP  You can learn much more about robots, including how to tell when they visit your site and how to restrict
robots from specific search engines, at www.robotstxt.org.

The Google Webmaster Tools
If you’re feeling a bit in the dark about your website’s relationship with Google,
you’ll be happy to know that the company has a service that can help you out. It’s
called the Google Webmaster Tools, and it serves two purposes. First, it provides
information that clarifies how Google indexes your pages. Second, it lets you tweak
a few settings that govern how Google treats your site.

To use the Google Webmaster Tools, follow these steps:

1. Go to www.google.com/webmasters/tools and sign in with your Google
account. If you don’t have one (it’s free), click “Create an account now.”

A Google account lets you use a number of indispensable Google services, like
Google Analytics (page 332), Gmail (Google’s web-based email service), Google
AdSense (Chapter 13), and Blogger (Chapter 12). Every webmaster has one.

www.robotstxt.org
www.google.com/webmasters/tools

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn328

REGISTERING
WITH SEARCH

ENGINES

UP TO SPEED

Web Permanence
You’ve probably heard a lot of talk about the ever-changing
nature of the Web. Maybe you’re worried that the links you
create today will lead to dead sites or missing pages tomorrow.
Well, there’s actually a much different issue taking shape—cop-
ies of old sites that just won’t go away.

Once you put your work on the Web, you’ve lost control of it.
The corollary to this sobering thought is: Always make sure
you aren’t posting something that’s illegal, infringes on a
copyright, is personally embarrassing, or could get you fired.
Because once you put this material out on the Web, you can
assume it will be there forever.

For example, imagine you accidentally reveal your company’s
trade secret for carrot-flavored chewing gum. A few weeks
later, an excited customer links to your site. You realize your
mistake and pull the pages off your web server. But have you
really contained the problem?

Assuming the Google robot has visited your site recently (which
is more than likely), Google now has a copy of your old site. Even
worse, people can get this cached (saved) copy from Google if
they know about the cache keyword.

For example, if the offending page’s URL is www.GumLover.
com/newProduct.htm, a savvy Googler can get the old copy of
your page by typing in the search term cache:www.GumLover.
com/newProduct.htm. (Less savvy visitors might still stumble
onto a cached page by clicking the Cached link that appears
after each search result in Google’s listings.) Believe it or
not, this trick has been used to resurrect accidentally leaked
information, ranging from gossip to software license keys.

You can try to get your page out of Google’s cache as quickly
as possible using the remove URL feature at www.google.com/
webmasters/tools/removals. But even if this works, you’re
probably starting to see the problem: You have no way to know
how many search engines made copies of your work. Interested
(or nosy) people who notice that you pulled information off of
your site may hit these search engines and copy the details to
their own sites, making it pretty near impossible to eliminate
the lingering traces of your mistake. There are even catalogs
dedicated to preserving old websites for posterity (see the
Wayback Machine at www.archive.org).

2. Once you sign in, you need to register your website. Click the “Add a site”
button, type in the full URL of your site (like www.supermagicalpotatoes.
co.uk), and then click Continue.

This associates your website with your Google account. However, before you can
actually view data for your site or manage its Google-related search settings,
you need to prove that you’re the legitimate owner of the site.

3. Choose how you want to prove website ownership (see Figure 10-7).

Google asks you to prove ownership by uploading a Google-supplied file to your
website folder. In some situations, however, you might need to take a slightly
more awkward approach. For example, if you use domain forward to direct the
visitor to another site, Google will check for the uploaded file on the website that
does the forwarding, which isn’t the website that holds your content. In this case,
you can verify your website by adding a DNS record (click “Alternate methods,”
choose “Domain name provider,” and then follow the instructions from there).

www.google.com/webmasters/tools/removals
www.google.com/webmasters/tools/removals
www.archive.org

CHAPteR 10: INTRODUCING YOUR SITE TO THE WORLD 329

REGISTERING
WITH SEARCH

ENGINES

FiGURE 10-7
To verify that you own a
site, download the Google-
supplied verification file,
and then upload it to your
site’s root folder.

 NOTE  Rest assured, no matter what verification method you use, it won’t affect the way your website works.
In fact, Google recommends that you don’t remove the meta element you added (or delete the verification file
you uploaded). That way you won’t need to verify your ownership to Google again.

4. Once you upload the confirmation file, click Verify.

Usually, Google verifies your site mere seconds after you make the appropriate
change. Once the company knows that you’re the real owner, it brings you to
the Webmaster Tools’ site-management page and adds a pile of management
links to the left side of it (see Figure 10-8). From this point on, whenever you
log into the Google Webmaster Tools and click your site’s name, you’ll be able
to use all of Google’s tools to review and manage it.

The Google Webmaster Tools let you look at your website through the eyes of Google.
You choose what you want to do by clicking one of the links in the Dashboard section
on the left side of the page. Here are some of the possibilities:

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn330

TRACKING
VISITORS

• Search Appearance→Sitelinks. Sitelinks are the quick-access links that appear
underneath some search listings and let visitors jump straight to a specific page
in the website. Unfortunately, only Google can decide to reward your website
with sitelinks (based on the popularity and structure of your site). If Google
does give you sitelinks, however, you can use this section to remove any that
aren’t appropriate.

• Search Traffic→Search Queries. Here you get information about the searches
that have led Googlers to your website (see Figure 10-8).

• Search Traffic→Links to Your Site. This option shows you which websites link
to yours. It’s a useful way to see who’s paying attention to your content.

• Crawl→Crawl Errors. This section warns you about any problems Google
encounters as it indexes your site, like incorrect metadata (page 317), pages
that it couldn’t access (and therefore couldn’t index), or evil malware lurking
on your server.

• Crawl→robots.txt Tester. This section helps you create a robots.txt file, which
hides a portion of your site from nosy search engines, as explained on page 326.

• Crawl→Sitemaps. This section helps you build a sitemap—a special file that
describes the structure of your site and the files in it. You can submit your
sitemap to Google and other search engines so they know what to index. This
is particularly useful if you have pages that Google might ordinarily miss, like
standalone pages (those not linked to other pages).

• Gear icon (top-right corner)→Change of Address. Moving to a new URL?
This section helps you redirect Google to your new home, so you can take your
web traffic with you.

Most serious web designers eventually check out their sites with Google Webmaster
Tools. If nothing else, you can use it to make sure everything is running smoothly—in
other words, that Google can get to your pages, that its automated robot returns
frequently to check for new content, and that the robot reviews all the pages you
have to offer.

Tracking Visitors
As a website owner, you’ll try a lot of tactics to promote your site. Naturally, some
will work while others won’t. You want to keep the good strategies and prune those
that fail. To do this successfully, you need a way to assess how your site performs.

Almost every web hosting company (except free web hosts) gives you some way to
track the number of visitors to your site (see Figure 10-9). Ask your host how to use
these tools. Usually, you need to log onto a “Control Panel” or “My Account” section
of your host’s site. You’ll see a variety of options there; look for an icon labeled “Site
Counters” or “Web Traffic.”

CHAPteR 10: INTRODUCING YOUR SITE TO THE WORLD 331

TRACKING
VISITORS

FiGURE 10-8
Traffic is trickling into this
recently launched site.
The search keywords show
that some people simply
stumble across the site (for
example, after searching
for “beat music” or “music
for children”), while others
search specifically for the
business name (with the
queries “sugarbeat” and
“sugar beat”). You can
get even more detailed
statistics using the Google
Analytics tracking service
described in this chapter.

With more high-end hosting services, you often have more options for viewing
your site’s traffic statistics. Some hosts provide the raw web server logs, which
store detailed, blow-by-blow information about every one of your visitors. This
information includes the times visitors came to your site, their IP addresses (page
281), their browser types, what sites referred them to you, whether they ran into an
error, what pages they ignored, what pages they loved, and so on. To make sense
of this information, you need to feed these raw numbers into a high-powered pro-
gram that performs log analysis. These programs are often complex and expensive.
An equally powerful but much more convenient approach is the Google Analytics
tracking service, described next.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn332

TRACKING
VISITORS

FiGURE 10-9
This Brinkster Page View
Summary shows the
number of hits (page
requests) received on a
given day. The chart below
the summary (not shown)
details the total number
of bytes of information
downloaded from your
site. It’s important to real-
ize that a “hit” is defined
as a request for a page.
If a single visitor travels
around your website,
requesting several pages,
she generates several hits.
To find out how many
unique visitors you have,
you need to use a separate
log analysis program,
described below.

Understanding Google Analytics
In 2005, Google purchased Urchin, one of the premium web tracking companies.
It transformed Urchin into Google Analytics and abolished its hefty $500-a-month
price tag, making it free for everyone. Today, Google Analytics just might be the best
way to see what’s happening on any website, whether you’re building a three-page
site about dancing hamsters or a massive compendium of movie reviews.

Google Analytics is refreshingly simple. Unlike other log analysis tools, it doesn’t
ask you to provide server logs or other low-level information. Instead, it tracks all
the information you need on its own. It stores this information indefinitely and lets
you analyze it anytime with a range of snazzy web reports.

To use Google Analytics, you need to add a snippet of JavaScript code to every web
page you want to track (usually, that’s every page on your site). Once you get the
code in place, everything works seamlessly. When a visitor heads to one of your
pages, the browser sends a record of the request to Google’s army of monster web
servers, which store it for later analysis. The visitor doesn’t see the Google Analytics
stuff. Figure 10-10 shows you how it works.

 NOTE  Remember, JavaScript is a type of mini-program that runs inside virtually every browser in existence.
Chapter 14 provides an introduction to JavaScript.

CHAPteR 10: INTRODUCING YOUR SITE TO THE WORLD 333

TRACKING
VISITORS

FiGURE 10-10
The best part about Google Analytics is that you
don’t need to keep track of any information on
your own.

Using this system, Google Analytics collects two kinds of information:

• Information about your visitors’ browsers and computers. Whenever a
browser requests a page, it supplies a basic set of information. This includes
the type of browser it is, the features it supports, and the IP address of the
computer it connects through (an IP address is a numeric code that uniquely
identifies a computer on the Internet). These details don’t include the informa-
tion you really want—for example, there’s no way to find out personal details
like names or addresses. However, Google uses other browser information to
infer additional details. For example, using the IP address, it makes an educated
guess about your visitor’s geographic location.

• Visitor tracking. Thanks to its sophisticated tracking system, Google Analytics
can determine more interesting information about a visitor’s patterns. Ordinarily,
if a visitor requests two separate pages from the same site, there’s no way to
establish whether those requests came from the same person. However, Google
uses a cookie (a small packet of data stored on a visitor’s computer) to uniquely
identify each visitor. As a result, when visitors click links and move from page
to page, Google can determine their navigation paths, the amount of time they
spend on each page, and whether they return later.

Google Analytics wouldn’t be nearly as useful if it were up to you to make sense of
all this information. But as you’ll see, Google not only tracks these details, but it also
provides reports that help you figure out what the data really means. You generate
the reports using a handy web screen menu, and you can print them out or download
them for use in another program, like Excel, to do further analysis.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn334

TRACKING
VISITORS

Signing Up for Google Analytics
Signing up for Google Analytics is easy:

1. Head over to www.google.com/analytics. If you’re not logged into your
Google account, click the “Sign in” link.

Google Analytics is yet another of many services you can use with a single
Google account. If you don’t have a Google account, click “Create an account,”
supply the standard personal details, and then continue on.

2. Click the “Sign up” button, and then fill in the information about your
website.

You need to supply several pieces of information, including the following:

• A descriptive name for your account and your website. It doesn’t matter
what you pick (but using your business name or your website’s domain
name makes good sense). These names are just there so you can tell your
sites apart if you add more than one.

• The URL for the site you want to track (for example, www.supermagical
potatoes.co.uk). A Google Analytics account can track as many sites as you
like, but for now start with just one.

• The industry category, which characterizes the type of site you’re tracking.
You pick from a list that includes entries such as “Arts and Entertainment”
and “Politics.”

• Your time zone. This lets Google Analytics synchronize its clock with yours.

3. Click the “Get Tracking ID” button.

After you sign in, Google gives you the JavaScript code you need to add to your
pages to start tracking visitors (see Figure 10-11). The next section tells you how.

4. Add the tracking code to your web pages.

When you add Google’s code to a page, put it at the very end of the <head>
section, just before the closing </head> tag. Here’s an example of where it fits
in a typical web page:

<!DOCTYPE>
<html>
<head>
 <title>Welcome</title>
 <!-- Put the analytics code here. -->
</head>
<body>
 ...
</body>
</html>

www.google.com/analytics

CHAPteR 10: INTRODUCING YOUR SITE TO THE WORLD 335

TRACKING
VISITORS

FiGURE 10-11
The Google Analytics
code is lean and concise,
requiring just a few lines
of JavaScript. It links to a
file on Google’s web serv-
ers to get the real tracking
code. Select all the code
displayed, and then copy
it to your Clipboard (you
do this in most browsers
by selecting the text,
right-clicking it, and then
choosing Copy).

Be advised, however, that Google Analytics used to use a different approach
for several years, which put a slightly different tracking code after the </body>
tag. So if you look at another page that uses Google Analytics, you might find
the tracking code in a different place.

 TIP  For best results, copy the tracking code to every page in your site.

5. Upload the new version of your web pages.

Once you change all your pages, make sure to upload them to your server. Only
then can Google Analytics start tracking visitors. The tracking features won’t
work when you run the pages from your own computer’s hard drive.

Now it’s a waiting game. Within 24 hours, Google Analytics has enough information
about recent visitors to provide its detailed reports.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn336

TRACKING
VISITORS

The Google Analytics Dashboard
Once you set up your site, log into Google Analytics. You start at the Home tab
shown in Figure 10-12, where you’ll see a list of all the sites you’re tracking and a
few key details about each one.

FiGURE 10-12
Here, the sample
ProseTech account tracks
two websites, but only
one is successfully col-
lecting data (prosetech.
com), while the other is
not (www.supermagical
potatoes.co.uk). Click
one of your sites to start
exploring its statistics.

For example, in Figure 10-12 you can see that the prosetech.com site had 195 sepa-
rate visits, with people lingering an average of just over a minute. But the bounce
rate, which tells you how many visitors left the site after viewing just a single page,
reports the bad news: 72% of your guests quickly moved on.

If you’ve waited 24 hours and Google still hasn’t collected any statistics for your
site (as with the www.supermagicalpotatoes.co.uk site in Figure 10-12), it’s time to
investigate the problem. Here’s how to check your site’s status:

1. Click the Admin link at the top of the page.

Google takes you to a multicolumn management page.

2. At the top of the Property column, choose the site that has the problem.

The column lists all the sites you track. If you track only one site, it’s already
picked.

http://prosetech.com
http://prosetech.com
http://prosetech.com

CHAPteR 10: INTRODUCING YOUR SITE TO THE WORLD 337

TRACKING
VISITORS

3. In the same column, click Tracking Info→Tracking Code.

Google displays a box with the Analytics tracking code (just like in Figure 10-11).
This is handy if you somehow made a mistake copying the code or if you need
to add it to more pages. Just above the tracking code is the tracking status,
which tells you whether the tracking code is working (Figure 10-13). You could
see three values:

• Receiving Data indicates that all is well. Your visitors are going from page
to page under the watchful eye of Google Analytics.

• Waiting For Data indicates that Google’s JavaScript code is running on
your pages, but the information needed for a report isn’t available yet.
Usually, you see this for the first 6 to 12 hours after you register a new site,
but it could take a full day.

• Tracking Not Installed indicates that Google isn’t collecting any informa-
tion. This could be because you need to wait for visitors to hit your site, or
it could suggest you haven’t inserted the correct JavaScript tracking code.

FiGURE 10-13
“Tracking Not Installed”
means the Google Analyt-
ics code isn’t running
on your pages. Perhaps
you forgot to copy the
JavaScript code, put it in
the wrong spot, left part
of it out, or somehow
introduced a mistake.

You start tracking new sites from the Admin tab, too. To do that, click the drop-down
list of websites in the Property column, and then choose Create New Property. You’ll
need to supply a descriptive website name, website URL, industry category, and
reporting time zone, just like you did when you added your first site.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn338

TRACKING
VISITORS

Examining Your Web Traffic
The Home tab (Figure 10-12) gives you just the tiniest bit of information. It lets you
see, at a glance, how many people are visiting your site and how they like it. You
can focus on any time period you like, from a single day to several years. To change
the date range, click the arrow next to the current range (just above the top-right
corner of the website list) and pick new start and end dates.

It won’t take you long to tire of the Home page. When you’re ready to take a deeper
look at your statistics, click the website you want to study. Google Analytics switches
to the Reporting tab, which contains dozens of customizable tracking reports. Pick
the report you want using the links on the left, but you’ll start out with the Audience
Overview graph (Figure 10-14).

FiGURE 10-14
The Audience Overview
graph displays a number
of basic charts that detail
your website’s vital signs.
The menu on the left lets
you browse to a variety of
more specialized reports.

The information in the Reporting tab can be a little overwhelming. To give you a
better sense of what’s going on, the following sections take you through some of
the most interesting statistics, one chart at a time.

CHAPteR 10: INTRODUCING YOUR SITE TO THE WORLD 339

TRACKING
VISITORS

SESSIONS GRAPH
At the top of the page, the Sessions graph (Figure 10-15) shows the day-by-day
popularity of your site over the last month. This count doesn’t say anything about
how many pages the average visitor browsed or how long she lingered. It simply
records how many different people visited your site. Using this chart, you can get
a quick sense of the overall uptrend or downtrend of your web traffic, and you can
see if it rises on certain days of the week or around specific dates.

FiGURE 10-15
To get the specific value
for a data point, point to
it. For example, this chart
indicates a modest 59
visits on January 19.

With a few clicks, you can change this chart to show pageviews, the count of how
many web pages your visitors viewed. For example, if an eager shopper visits your
Banana Painting ecommerce store, checks out several enticing products, and com-
pletes a purchase, Google Analytics might record close to a dozen pageviews but
only a single session. The number of pageviews is always equal to or greater than
the number of sessions; after all, each session includes at least one pageview. To see
pageviews, click the down arrow next to the word “Sessions” in the top-left corner
of the chart, and then choose Pageviews.

 TIP  Remember, you can look at the data Google Analytics collects over a different range of dates using the
date box in the top-right corner of the Reporting page, as identified in Figure 10-14. Initially, Google sets the date
range to a single month, ending yesterday.

SITE USAGE
The Site Usage section is crammed with key statistics (Figure 10-16). Details include:

• Sessions. The total number of separate visits to your site for the selected date
range.

• Users. The total number of unique visitors. The number of users will always be
less than the number of sessions, because some people will stop by your site
more than once.

• Pageviews. The total number of viewed pages. This adds up every page that
every visitor browsed.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn340

TRACKING
VISITORS

 NOTE  There are some types of repeat visitors that Google won’t correctly identify. For example, if a repeat
visitor uses a different computer, a different browser, or logs into his computer with a different user name, he’ll
appear to be a new visitor. For these reasons, the number of repeat visitors may be slightly underreported.

• Pages/Session. The average number of pages a visitor reads before leaving
your site.

• Avg. Session Duration. The average time a visitor spends on your site before
browsing elsewhere.

• Bounce Rate. A bounce occurs when a visitor views only one page—in other
words, she gets to your site through a specific page and then departs without
browsing any further. A bounce rate of 5 percent tells you that 5 percent of
your visitors leave immediately after they arrive. Bounces are keenly important
to webmasters because they indicate potential lost visitors. If you can identify
what’s causing a big bounce rate, you can capture a few more visitors.

• % New Sessions. The percentage of new visits. For example, a rate of 81 per-
cent indicates that 19 percent of your traffic is repeat business, and 81 percent
are new visitors. Both types of visitors are important to your website’s health.

FiGURE 10-16
These statistics show you the most
important indicators of your site’s
overall web health. Click one of
them to see a separate report with
more detail.

MAP OVERLAY
If you scroll down the Audience Overview report, you’ll find an interesting chart at
the bottom of the page. It displays your visitor count by country and tallies up the
countries with the largest number of guests. However, you don’t need to stop there.
You can get an even more interesting look using the Map Overlay, which gives you
a graphical picture of where your visitors are located on the globe.

To see the Map Overlay, choose Audience→Geo→Location from the menu of re-
ports on the left. Google shows you a map of the world, divided into countries and

CHAPteR 10: INTRODUCING YOUR SITE TO THE WORLD 341

TRACKING
VISITORS

color-coded. The darker the shade, the more popular your website is in that country.
Underneath the map is a table with the exact numbers.

The Map Overlay gets even more interesting if you use the City view, shown in Figure
10-17. To see it, click the City link under the map.

FiGURE 10-17
The City view adds a
small circle next to every
location where a visitor
resides, using larger circles
for areas that funneled a
particularly large amount
of traffic your way. To see
the city-by-city details,
point to individual data
points. Here, 74 visits in
the month originated in
St. Petersburg, Russia. The
table below (not shown
here) adds a few more
details—for example, St.
Petersburg visitors viewed
an average of 3.6 pages
on each visit (slightly
lower than usual), spent
a surprising 13 minutes
browsing (on average),
but accounted for only 20
percent of new visitors.

FREQUENTLY ASKED QUESTION

Does Google Really Know Where I Live?
How accurate is the location data Google supplies?

Being able to determine the location of your visitors is a
powerful tool. After all, if you know your Graceland Vacation
site is absurdly popular in Japan, you might consider accepting
payments in yen, translating a few pages, or adding some new
pictures. But Google’s geographic locating service isn’t perfect.
In fact, it has two weaknesses:

• The location service is based on a visitor’s ISP (Internet
service provider), not the actual visitor herself. In many
cases, the ISP is located in a different area from the
visitor’s own computer.

• ISPs economize by pooling their traffic together and
dumping it onto the Internet at a central location. This
means that even if your visitor and her web server are in
a specific city, the computer that connects that visitor to
the Internet might be somewhere else.

As a general rule of thumb, the geographic information that
Google uses is likely to be close to reality, but not exact. It’s
highly likely that the country is correct, but the specific city
may not match that of your visitor.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn342

TRACKING
VISITORS

TRAFFIC SOURCES OVERVIEW
One key piece of information every webmaster needs to know is how visitors find
your website. Are they typing it in by hand, following a link from another site, or
stumbling across it in a Google search? The Traffic Source Overview chart can help
answer that question. To take a look, choose Acquisition→Overview.

The Traffic Sources Overview chart has three slices:

• Referral. This slice counts visitors who arrive through websites that link to yours.

• Direct. This slice counts visitors who type your URL directly into a browser or
use a bookmark to make a return visit.

• Organic Search. This slice counts visitors who come to your site through a
search engine. If this percentage is small, you might want to spend more time
on search engine optimization (page 324).

Figure 10-18 shows a closer look.

FiGURE 10-18
Over the past month, 35 percent of this site’s visitors came from refer-
ring sites, while 45 percent found their way through a search engine.

The Traffic Sources Overview chart provides a good high-level look at how your
visitors get to your site, but there are plenty more details to explore.

To learn what sites lead visitors to your site, choose the Acquisition→All Traffic→
Referrals report. It shows a chart of referring sites, sorted by the amount of traffic
they’ve sent your way. This is a great tool for quickly identifying your most success-
ful web partnerships.

To learn what searches send people to your site, choose the Acquisition→Search
Engine Optimization→Queries report. It shows the search keywords that people
typed in to find your site, which lets you determine what your visitors are looking
for (and possibly diagnose why they left unhappy).

 NOTE  Before you can use the search query report, you need to have your site set up and verified with the
Google Webmaster Tools (page 327). The first time you try to view the search query report, you’ll see a “Set up
Webmaster Tools data sharing” button. Click it and follow the steps to get your site’s Google Webmaster Tools
profile affiliated with your Google Analytics account.

CHAPteR 10: INTRODUCING YOUR SITE TO THE WORLD 343

TRACKING
VISITORS

CONTENT OVERVIEW
As every webmaster knows, all pages aren’t created equal. Some might command
tremendous interest while others languish, ignored. To get a snapshot of how your
pages are performing, check out the Behavior→Site Content→All Pages report
(Figure 10-19).

 NOTE  The Behavior group of reports is so named because it includes analyses that help you figure out the
behavior of your visitors—for example, where they go first, what pages they look at last, and how they travel
through your site in between.

FiGURE 10-19
For this site, BooksNET.htm
is the clear winner of the
Most Popular Page award,
with 22 percent of the total
website traffic. It’s not the
page that entices visitors
to linger the longest,
however—that honor goes
to Classes.htm.

Simply determining which pages your visitors view the most isn’t enough to deter-
mine how useful they are to your site. Some pages are extra important because of
their ability to attract visitors. For example, the page of Member Photos on your
International Nudist site might attract large volumes of visitors who then stick around
to check out your personalized coffee cups, clothing, and memorabilia. To figure out
where visitors enter your site, so you know what pages are attention-getters that
lure traffic, see the Behavior→Site Content→Landing Pages report.

Almost as important are the pages that mark the end of a visit. They may indicate
a problem, like a page that’s slow to download, doesn’t work correctly in some
browsers, or just plain irritates people. To get this detailed information, take a look
at the Behavior→Site Content→Exit Pages report.

 NOTE  You can explore many more reports in Google Analytics, and find many more ways to slice and dice
the info there to come up with some conclusions about your web traffic. In fact, entire books have been written
about the fine art of analyzing website performance. However, the five charts explained above get you started
with great insight into how your site is doing.

345

CHAPTER

11

The best website in the world won’t do you much good if it’s sitting out there all
by its lonesome self. For your site to flourish, you need to attract new visitors
and then keep them flocking back for more.

You started on this path in the previous chapter. You learned how to get your site
noticed in a web search and how to track the number of visitors who stop by. But
a search listing, on its own, isn’t enough to grow a brand-new site into a thriving
web destination. For that, you need a range of promotional tactics, from sharing
links to buying ad space. Contrary to what you might expect, this sort of grassroots
promotion might bring more traffic to your site than high-powered search engines
like Google.

In this chapter, you’ll learn some of the best techniques for website promotion. You’ll
also see how to build a sticky site—one that not only attracts new faces, but also
encourages repeat visitors. To pull this off, you need to transform your site into a
web community by giving visitors a way to interact with you and with one another.
You make that happen using newsletters, blogs, Twitter, Facebook, and special-
interest social media groups.

 NOTE  The tasks in most of this book—crafting web pages, formatting them with style sheets, uploading
your finished site—are relatively straightforward. They might take some time and effort, but when you’re done,
you know you’re done. The tasks you’ll tackle in this chapter—promoting your website and building a community
around it—aren’t so well-defined. They require continuous work, and it may take a lot of thankless slogging before
your site traffic starts to grow.

 Website Promotion

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn346

SPREADING
THE WORD Spreading the Word

To promote your website well, you need to master many skills. Good site promotion
ranges from old-fashioned advertising to search-engine magic.

In the following sections, you’ll pick up several fundamental techniques. You’ll start
thinking about how to promote yourself in the right places, take a quick look at
services like Google Places and Google AdWords, and plan a strategy that encour-
ages repeat visits.

Shameless Self-Promotion
Some of the best advertising doesn’t cost anything. The secret is to look for sites
where you can promote yourself and contribute at the same time.

For example, if you create the website www.HotComputerTricks.com, why not
answer a few questions in a computing newsgroup, discussion board, or on a Face-
book page? Openly promoting your site is considered tactless, but there’s nothing
wrong with dispensing some handy advice and following it up with a signature that
includes your URL.

Here’s an example of how you can answer a poster’s question and put in a good
word for yourself at the same time:

Jim,

The problem is that most hard drives will fail when submerged in water. Hence,
your fishing computer idea won’t work.

Sasha Mednick

www.HotComputerTricks.com

On a popular site, hundreds of computer aficionados with the same question could
read this post. If even a few decide to check out Sasha’s site, he’s made great progress.

If you’re very careful, you might even get away with something that’s a little more
explicit:

Jim,

The problem is that most hard drives will fail when submerged in water. Hence,
your fishing computer idea won’t work. However, you might want to check out my
homemade hard-drive vacuum enclosure (www.HotComputerTricks.com), which
I developed to solve the same problem.

Sasha Mednick

www.HotComputerTricks.com

 WARNING  This maneuver requires a very light touch. The rule of thumb is that your message should
be well-intentioned. Direct someone to your site only if it really does have content that addresses the poster’s
question.

CHAPteR 11: WEBSITE PROMOTION 347

SPREADING
THE WORD

If you’re unsure of how much promotion is too much, consider the popular website
www.reddit.com, which has thousands of discussion groups (called subreddits)
covering every conceivable topic. Reddit’s rule of thumb is that 10% or fewer of
your posts should link to your own content or talk about your business. For more
detailed guidelines on how to share the good news about your site without being a
spammer, check out www.reddit.com/wiki/selfpromotion—it includes good advice
for contributing to any site. Violate these good-taste guidelines, and you’ll find
yourself ignored, insulted, and even banned from a group altogether.

You don’t have to limit your posts to comments and discussion groups. You can
also seek out sites that let you post tips, reviews, or articles. There you can use a
variation of the technique shown above. Remember, dispense useful advice, and
then follow it up with a signature at the end of your message. For example, if you
submit a free article that describes how to create your groundbreaking vacuum
enclosure, end it with this:

Sasha Mednick is a computer genius who runs the first-rate computing site www.
HotComputerTricks.com.

Promotion always works best if you believe in your product, so make sure your
site has relevant, high-quality content before you boast about it. Don’t ever send
someone to your site based on content you plan to add (someday).

 TIP  If you’re a business trying to promote a product, you’ll get further if you recruit other people to help
you spread the word. One excellent idea is to look for influential bloggers—people who create websites with the
personal posting format you’ll learn about in Chapter 12. For example, if you’re trying to sell a new type of fluffy
toddler towel pajamas, hunt down popular blogs about parenting. Then offer the blogger some free pajamas if
she’ll offer her thoughts in a blog review (with full disclosure, of course). This sort of word-of-mouth promotion
can be dramatically more successful in the wide-reaching communities of the Web than it is in the offline world.

Cultivating Links
Even better than linking to yourself is getting other people to link to your site. Links
from high-quality websites not only drive traffic, but they also increase your street
cred in the eyes of Google, encouraging it to rank your site higher in its search
results. Finding people who will link to your site takes time and research. Here’s
some good advice:

• Help others. Your best bet is to reach out to people who can benefit from your
content, and then provide something useful. Writing emails and asking for links
has a low rate of success, but it does occasionally have success.

• Network. If you’re a business, consider the people and organizations you interact
with in real life. They may have sites that can link up with yours.

• Never pay for a link. The world is full of business registries that exist for no
other purpose than to collect links for certain types of services (like children’s
programs, medical establishments, restaurant listings, and so on). They make
money by charging for “enhanced” listings, even though few people actually

www.reddit.com
www.reddit.com/wiki/selfpromotion

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn348

SPREADING
THE WORD

use these registries. In most cases, the only link worth having is one that’s
freely given.

• Research the competition. One way to identify good link prospects is to find
out who’s linking to other sites like yours. One tool that can help you out is the
Open Site Explorer (http://moz.com/researchtools/ose). Enter a URL there, and
the Explorer finds other pages on the Web that link to the site. These are places
where you might want to get your own site mentioned.

• Study your most valuable links. By analyzing your inbound links using Google
Analytics (page 332), you can figure out what links do the best job directing
traffic to your site. You need as many of these types of links as you can get.

Google Places
In the previous chapter, you learned how your site can show up in a web search
result. That’s a critical way to reel in new people, and many webmasters spend their
late-night hours obsessing about page rank and search keywords.

But if you’re running a business or organization that has a physical presence in the
real world (not just the virtual one), you can improve your search listing for free. In
fact, you’ve probably seen this sort of enhanced listing before, if you’ve ever used
Google to hunt down a local business (Figure 11-1).

FiGURE 11-1
The first result in this search is an extended
listing that includes an address. On the right is
the associated business information, with a map
and photos.

Clearly, this listing has more presence than the average search listing. It takes up
more space, provides more information, and makes the business seem more pro-
fessional. When visitors see a listing like this, they feel that they’ve come across a
real, established business.

The service that makes this happen is called Google Places, which is a part of the
Google+ social networking service. Happily, you can sign up for Google Places and
have your own beefed-up search listing for free. There are just two things to keep
in mind:

• You need to provide your location’s mailing address. To verify that your busi-
ness exists at the location you say it does, Google will mail you a confirmation

http://moz.com/researchtools/ose

CHAPteR 11: WEBSITE PROMOTION 349

SPREADING
THE WORD

code. Once you enter that code, your Google Places listing becomes active. If
you don’t have a physical mailing address (even if it’s your home), or you don’t
want it to appear on Google, then the Google Places service isn’t for you.

• The enhanced listing appears only for certain searches. Google’s goal is
to show the enhanced listing when a web searcher specifically looks for your
business. So if someone types your business name or street address into
Google, he’s likely to get the enhanced page. But if someone simply enters a
few keywords that match the content on your website, Google displays only
an ordinary search listing.

To create your own Google Places listing, head to http://places.google.com/business.
If you have a Google account (used for other services, like Gmail and Google
Webmaster Tools), sign in. Otherwise, click “Sign up now” to create one.

After you log in, you can add your business listing. You need to fill out a single-page
form of business information that includes your address, phone number, website
address, a short description, and a category. Optionally, you can upload pictures
(which is always a good idea, because people will see them on your Google Places
page), add YouTube videos, and specify operating hours. When you finish, submit
the form. Remember, your listing won’t appear automatically, because Google sends
you a confirmation code by mail. When you get it, type in the code to activate your
Google Places page. Then it’s just a matter of time before your enhanced listing
starts showing up in web searches and in Google Maps.

Google AdWords
As a traveler on the World Wide Web, you’ve no doubt seen several lifetimes’ worth
of flashing messages, gaudy banners, and invasive pop-ups, all trying to sell you
some awful products. It probably comes as no surprise that these types of ads aren’t
the way to promote your site—in fact, they’re more likely to alienate people rather
than entice them. However, there are respectable paid placements that can get
your site in front of the right readers, at the right time, and with the right amount of
tact. One of the best is AdWords (http://adwords.google.com), Google’s insanely
flexible advertising system.

The idea behind AdWords is that you create text ads that Google shows alongside
its regular search results (see Figure 11-2). The neat part is that Google doesn’t show
the ads indiscriminately. Instead, you choose the search keywords you want your
ad associated with.

The nice (and slightly confusing) part about AdWords is that you bid for the key-
words you want to use. For example, you might tell Google you’re willing to pay 25
cents for the keyword “food.” Google takes this into consideration with everyone
else’s bids and displays the higher bidders’ ads more often. But Google isn’t out to
rip anyone off, and it charges you only the going rate for your keyword, regardless
of how much you told Google you’re willing to pay. And Google doesn’t charge you
anything to simply display your ad on a search results page. It charges you only
when someone clicks your ad to get to your site.

http://places.google.com/business
http://adwords.google.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn350

SPREADING
THE WORD

FiGURE 11-2
The ads that Google
AdWords displays usually
appear just above or to
the right of your search
results. You can identify
ads by the yellow “Ad”
tag that appears next to
each one, or by the fact
that they appear in a
“Sponsored” box.

By this point, you might be getting a little nervous. Given the fact that Google handles
hundreds of millions of searches a day, isn’t it possible for a measly 1-cent bid to
quickly put you and your site into bankruptcy? Fortunately, Google has a solution
for this, too. You just tell the company the maximum you’re willing to pay per day.
Once you hit your limit, Google stops showing your ad.

Interestingly, the bid amount isn’t the only factor that determines how often your
ad appears. Popularity is also important. If Google shows your ad over and over
again and it never gets a click, Google realizes that your ad just isn’t working and
lets you know with an automated email message. Google may then start showing
your ad significantly less often or stop showing it altogether, until you improve it.

You can also limit your ads to people in certain geographic regions (like a specific
country or city) so you don’t waste money showing ads for your kiddie hair salon
to people in Tunisia. This sort of geographic targeting makes AdWords equally ef-
fective for both local and global promotions.

Bidding for AdWords can be competitive. To have a chance against all the AdWords
sharks, you need to know how much a click is worth to your site. For example, if you
sell monogrammed socks, you need to know what percentage of visitors actually
buy something (the conversion rate) and how much they’re likely to spend. A typical

CHAPteR 11: WEBSITE PROMOTION 351

SPREADING
THE WORD

cost-per-click hovers around $1, but there’s a wide range, depending on the word
you choose and your campaign settings (how many clicks you want to buy, whether
you’re limiting your ad to a specific region, and so on). If you’re willing to compete
for a prime-time word like lawyer, you can easily spend $10 for a click. But you can
steal an unlikely keyword combination like llama care for a few cents. (And in recent
history, law firms have bid “mesothelioma”—an asbestos-related cancer that could
become the basis of a class-action lawsuit—up over $100.) Before you sign up with
AdWords, it’s a good idea to conduct some serious research to find out the recent
prices of the keywords you want to use.

 NOTE  You can learn more about AdWords from Google’s AdWords site (http://adwords.google.com). For
a change of pace, go to www.iterature.com/adwords for a story about an artist’s attempt to use AdWords to
distribute poetry, and why it failed.

Return Visitors
Attracting fresh faces is a critical part of visitors, website promotion, but novice
webmasters often forget something equally important: return visitors. For a website
to become truly popular, it needs to attract visitors who return again and again. Many
a website creator would do better to spend less time trying to attract new visitors
and more time trying to keep the current flock.

If you’re a marketer, you know that a customer who comes back to the same store
three or four times is a lot more likely to make a purchase than someone who’s
there on a first visit. These regulars are also more likely to get excited and recruit
their friends to come and take a look. This infectious enthusiasm can lead more and
more people to your site’s virtual doorstep. The phenomenon is so common that it
has a name: the traffic virus.

 NOTE  Return visitors are the ultimate yardstick of a website success. If you can’t interest someone enough
to come back again, your website is just not fulfilling its destiny.

So how does your website become a favorite stopping point for web travelers?
The old Internet adage says it all—content is king. Your site needs to be chock-full
of fascinating, must-read information. Just as important, this information needs
to change regularly and noticeably. If you update information once a month, your
website barely has a pulse. But if you update it two or more times a week, you’re
ready to flourish.

Never underestimate the importance of regular updates. It takes weeks and months
of up-to-date information to create a return visitor. However, one dry spell—say, three
months without changing anything more than the color of your buttons—doesn’t
just stop attracting newcomers; it can kill off your current roster of return visitors.
Savvy visitors immediately realize when a website has gone stale. They have much
the same sensation you feel when you pull out a once-attractive pastry from the

http://adwords.google.com
www.iterature.com/adwords

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn352

SPREADING
THE WORD

fridge and find it’s as hard as igneous rock. You know what happens next: Toss the
pastry away, clear out the website bookmarks, and move on.

UP TO SPEED

Keepin’ It Fresh
Creating a website is hard enough, and keeping its content
fresh is even more taxing. Here are a few guidelines that can
help you out:

• Think in stages. When you put your first website online,
it won’t be complete. Instead, think of it as version 1, and
start planning a few changes for the next version. Bit by
bit, and stage by stage, you can add everything you want
your site to have.

• Select the parts you can modify regularly, and leave the
rest alone. There’s no way you can review and revise an
entire website every week. Instead, your best strategy
is to identify sections you want to change regularly. On
a personal site, for example, you might put news on a
separate page and update just that page. On a small-

business website, you might concentrate on the home
page so you can advertise new products and upcoming
specials.

• Design a website that’s easy to change. This is the hardest
principle to follow, because it requires not only planning,
but a dash of hard-won experience. As you become a more
experienced web author, you’ll learn how to simplify your
life by making your pages easier to update. One method
is to separate information into several pages, so you can
add new content without reorganizing your entire site.
Another is to use style sheets to separate page formatting
from your content (see Chapter 3). That way, you can easily
insert new material without having to format the content
from scratch to match the rest of your site.

The other way to encourage return visitors is to build a community. Discussion fo-
rums, promotional events, and newsletters are like glue. They encourage visitors to
feel as though they’re participating in your site and sharing your web space. If you
get this right, hordes of visitors will move in and never want to leave.

GEM IN THE ROUGH

Bookmark Icons
One of your first challenges in promoting your site is getting
visitors to add your site to their browser bookmarks. Book-
marking, however, isn’t enough to guarantee a return visit.
Your site also needs to be fascinating enough to beckon from
the bookmark menu, tempting visitors to come back. If you’re
a typical web traveler, you regularly visit only about 5 percent
of the sites you bookmark.

One way to make your site stand out from the crowd is to
change the icon that appears in visitors’ bookmarks or favorites
menu, an icon technically called a favicon (Figure 11-3). This
technique works in any modern browser.

To create a favicon, add an icon file to the top-level folder of
your website, and make sure you name it favicon.ico. The best
approach is to use a dedicated icon editor, because it lets you
create both a 16-pixel x 16-pixel icon and a larger 32-pixel x
32-pixel icon in the same file. Browsers use the smaller icon
in their bookmark menus, and computers display the larger
version when visitors drag the favicon to their desktop. If you
don’t have an icon editor, create a bitmap (a .bmp file) that’s
exactly 16 pixels wide and 16 pixels high. To get an icon editor,
visit a shareware site like www.download.com.

www.download.com

CHAPteR 11: WEBSITE PROMOTION 353

TRANSFORMING
A SITE INTO A
COMMUNITY NOTE  Signs of a stale site include old-fashioned formatting, broken links, and references to old events (like

a Spice Girls CD release party or a technical analysis of why Enron stock is an ironclad investment).

FiGURE 11-3
This Bookmarks menu shows the customized
favicons for Amazon, the New York Times,
eBay, and Wikipedia.

Transforming a Site into a Community
The Web is the crowded home of many millions of site owners, so when you put your
website online, it doesn’t just drop into a vacuum. Instead, it takes center stage in
front of an audience that’s always interested and often opinionated.

For your site to really fit in with the rest of the Web, you need to interact with your
visitors. The idea of dialogue—back-and-forth communication among peers—is
hard-wired into the Internet’s DNA. Get it right and people won’t just be talking
about you—they’ll be promoting you to friends, getting to know you better, and
putting you in the public eye.

To make this magic happen, you need a bit of planning, a willingness to promote
yourself (almost to the point of embarrassment), and a smattering of social media
skills. In the following sections, you’ll learn how to do all this.

Fostering a Web Community
How do you start transforming your website into a web community? The first thing
to do is change your perspective, so that you plan your website as a meeting place
instead of just a place to vent your (admittedly brilliant) thoughts. Here are a few
tips to help you get in the right frame of mind:

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn354

TRANSFORMING
A SITE INTO A
COMMUNITY

• Clearly define the purpose of your site. For example, the description “www.
BronteRevival.com is dedicated to bringing Charlotte Bronte fans together to
discuss and promote her work” is more community-oriented than “www.Bronte
Revival.com contains information and criticism of Charlotte Bronte’s work.”
The first sentence describes what the site aims to do, while the second reflects
what it contains, thereby limiting its scope. Once you define a single-sentence
description, you can use it in your description meta element (page 318) or in a
mission statement on your home page.

• Build gathering places. No one wants to hang around a collection of links
and static text. Jazz up your site with discussion forums or chat boards, where
your visitors can kick up their heels. You’ll learn how to put these bits in place
later in this chapter.

• Give your visitors different roles. Successful community sites recognize
noteworthy contributors—some use gold stars (or some other sort of icon) to
recognize frequent posters. Others give certain visitors more power, like the
ability to manage members in a group (page 371). The right people can grow
into leadership roles and even coordinate events, newsletters, discussion groups,
or portions of your site.

• Advertise new content before and after you add it. To get visitors coming
back again and again, you need lots of new content. But new content on its
own isn’t enough—you need to build visitors’ expectation of new content so
they know enough to return, and you need to clearly highlight the new mate-
rial so guests can find it once they do come back. To help this work smoothly,
try adding links on your home page that lead to newly added content, along
with a quick line or two about upcoming content you plan to add and concrete
information about when it’ll be there.

• Introduce regular events. It’s hard to force yourself to update your site regularly.
Even when you do, visitors have no way of knowing when there’s something that
makes a return visit worthwhile. Why not help everyone keep track of what’s
going on by promoting regular events (like a news section you update weekly
or a promotional drawing that happens on a set date)?

• Create feedback loops. It’s a law of the Web—good sites keep getting better,
while bad ones magnify their mistakes. To help your site get on the right track,
make sure there’s a way for visitors to tell you what they like. Then spend the
bulk of your time strengthening what works and tossing out what doesn’t.

Now that you have your website good-citizenship philosophy straight, it’s time to
learn how to build the ingredients every web community needs.

Website Community Tools
On its own, an ordinary website is a one-way medium, like cable television or a
newspaper. A visitor surfs to your site, reads a few pages, and leaves. At that point,
the conversation ends.

CHAPteR 11: WEBSITE PROMOTION 355

TRANSFORMING
A SITE INTO A
COMMUNITY

But community-oriented websites deepen and extend this interaction using strategies
that remind fickle viewers that you exist. If you’re a big business, this approach is part
of a branding strategy that establishes the value of your products in the minds of
potential customers. If you’re a small business, it could be part of the long courting
process that leads up to a sale. And even if you’re not selling or promoting anything,
keeping visitors engaged with your website is the best way to boost traffic, reach
new people, and remain the center of attention.

Websites differ in how deeply they focus on community. Some add just a touch of it
(for example, the product review system on an ecommerce site), while others go all
the way with fan-run Facebook pages and discussion forums. Table 11-1 lists some
of the ways a website can build a community.

TABLE 11-1 Different ways to reach your visitors.

APPROACH DESCRIPTION LEVEL OF COMMUNITY LEARN MORE ON/IN

Email newsletters Readers sign up, and you contact
them with the latest news
whenever you want. It’s a good
way to keep your community up
to date without forcing people to
make a repeat visit.

Low. Newsletters are still a
one-way conversation, and
there’s no opportunity for
readers to respond.

Page 356

Blogs You write regular, informal posts.
Readers can keep up to date using
a feed reader and talk back by
adding comments.

Medium. Blogs feel more
conversational, and popular
blogs attract piles of
comments.

Chapter 12

Twitter You send out brief snippets of
text to the world with news,
commentary, or random thoughts.
Other people can pick up your
theme and tweet (send out a
message) to their fans.

High. At first, Twitter
feeds look like a one-way
conversation. But in reality,
Twitter is part of a large,
overlapping discussion that
never ends.

Page 358

Facebook You create a page where you can
post news, start discussions, and
let other people chat about you.
In some ways, the page is a hybrid
of a newsletter and a group, with
Facebook gluing it all together.

High. Like groups, but
any one of the hundreds
of millions of registered
Facebookers can post.

Page 363

Groups Readers join a forum where they
can post messages and talk to one
another. Usually, the discussion
is limited to a pool of registered
members.

High. Not only can you talk
back to your visitors, but
they can also talk to one
another.

Page 371

The rest of this chapter outlines how you can use these community-building prac-
tices with your own site.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn356

EMAIL
NEWSLETTERS

 NOTE  This chart includes two of the biggest names in social media (Facebook and Twitter), but there are
many more sites that can help you connect with the world and attract attention. Examples include snap-share
site Instagram, business network site LinkedIn, and the all-in-one Facebook competitor Google+, just to name a
few.

Email Newsletters
The idea behind email newsletters is simple: When visitors stop by your website,
you offer them the chance to subscribe to your newsletter. With a little luck, visi-
tors type in their email addresses, click a button, and open up their inboxes to you.

After that, you send subscribers periodic emails with news or special offers. Usually
you do that no more than once a month. After all, you don’t want an exasperated
recipient blocking your address and sending your messages straight to the junk
mail bin.

Even in today’s world of blogs, Facebook, and social media, email newsletters are
wildly popular. However, they introduce a few new challenges.

First, you need a small box somewhere on your website where people can type in an
email address and sign up for your newsletter (see Figure 11-4). Creating this chunk
of HTML is easy. Technically, it’s called a contact form, and it uses a set of elements
called HTML forms (page 487). The difficult part is controlling what happens when
someone clicks the sign-up button.

FiGURE 11-4
Fashion retailers usually
put a newsletter sign-up
link on the front page of
their sites. Here, a coupon
offer encourages spur-of-
the-moment sign-ups.

CHAPteR 11: WEBSITE PROMOTION 357

EMAIL
NEWSLETTERS

If you’re a web coder working with a high-powered programming platform, contact
forms are easy. When a visitor clicks a button, the browser sends her email address
to a web application running on the web server, and that program stores the ad-
dress in a database. But mere mortals need a different approach. Essentially, you
have three choices: use your web host’s form-processing program, borrow someone
else’s server-side script (a tiny scrap of code that runs on a web server), or use a
form submission service. Here are the details:

• Ask your web host. First, check with your web host to see if they have any
ready-made scripts you can use to create a basic contact form. Typically, you’ll
use a small snippet of prewritten PHP or ASP code, which will extract the visi-
tor’s email address and send it to you in an email. You simply need to paste that
code into your web page and tweak a few details.

• Search the Web. If you can’t find a ready-made script, check with your web host
again—this time to find out if it supports a server scripting language, and what
that language is. (The code for the script differs depending on the server-side
programming technology it uses.) Then you can use Google to hunt down a
suitable script on the Web. For example, www.freecontactform.com/free.php
has the bare-bones HTML and script you need to collect email addresses on a
web server that supports PHP.

• Form submission services. Finally, if your web host doesn’t support server
scripts, or you just don’t want to wrestle with the headaches a programmer
would normally handle, you can use a free form submission service. Essentially,
this service runs your form on its web servers but emails you the data. To create
your form, you simply choose the data you want to collect. The form submission
company gives you a block of HTML that you plop into your page. You can find
free form-creation services at www.emailmeform.com and www.123contactform.
com. However, free services may put a tiny note at the bottom of the form (that
says something like “This form powered by TheSuperCoolFormCreationCom-
pany”); if that bothers you, you can pay to have it left out.

 NOTE  Contact forms are just the simplest example of data-collection forms. Using a form-submission service,
you can create a form that collects a whole whack of information. For example, you might want to get a mailing
address so you can send out product samples. But be wary of asking for too much. The longer the form, the less
chance that a guest will fill it out and submit it.

Just because your website has a working sign-up box doesn’t mean anyone will
use it. People are justifiably paranoid about spammers and junk mail, and they only
give up their email addresses if they think it benefits them. To get sign-ups, make
the process easy—that means one box for an email address and a button that says
“Sign Up” or “Subscribe.” You don’t need names, phone numbers, birth dates, or
any other information that might make a potential subscriber bail out. Then sell the
benefits of signing up with a simple, one-sentence description. These benefits could
include hot deals, coupons, notifications about special events, or opportunities that
aren’t available through the website.

www.freecontactform.com/free.php
www.emailmeform.com
www.123contactform.com
www.123contactform.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn358

TWITTER
Once you get guests’ email addresses, use them. Web marketing research sug-
gests that the average person looks at an email newsletter for just 51 seconds, so
include something compelling that captures a reader’s interest in that brief mo-
ment. Most newsletters are formatted in HTML, but it’s best to compose them in an
email program, because some mail programs don’t properly handle HTML features
(like external or embedded style sheets). Use pictures sparingly and always add
alternate text (page 116), because many email programs block images if they don’t
recognize the sender. Don’t forget to include links that let readers jump from the
email to the relevant page on your website, so they can follow up on breaking news
or a hot new offer.

Twitter
Twitter is sometimes called a “micro-blogging” system. It lets anyone talk to the
world by sending out text messages of 140 or fewer characters (hence the “micro”
moniker). Of course, the success of your Twitter messages—called tweets—depends
on whether anyone pays attention to what you say. Top tweeters have a huge crowd
of followers that hang on every word. And followers can bring you more attention
by retweeting your messages—that is, sending your message to their followers.

You can follow a tweeter that you like in a number of ways. You could just read their
messages on an ordinary web page (Figure 11-5), but more serious tweeters keep
up with a huge crowd of people using a third-party program or by having tweets
delivered to their smartphones. (Similarly, tweeters can send tweets in a variety
of ways, from typing them in on Twitter’s web page to using a smartphone app.)

Paradoxically, Twitter’s greatest strength is also its greatest limitation: the 140-char-
acter limit that constrains Twitter messages to a sentence or two. When it works, the
limit forces tweeters to stick to concise, complete thoughts. For example, a tweet
might announce a new product, link to a useful website, comment on current news,
or reply to another tweet.

Another great thing about Twitter is the breadth of people using it. You can follow
tweets by everyone from the Dalai Lama to Kim Kardashian. To sign up for your own
Twitter account, go to http://twitter.com.

Twitter can be a tricky medium. It takes time—perhaps a few weeks—to absorb the
rhythm and flow of messages. The biggest mistake new tweeters make is to launch
a feed, use it as a place to vent random or low-content thoughts (examples include
“School sucks,” “I’ve lost my socks,” and “Am eating a piece of gristly chicken, right
now!”), and then wonder why no one is paying attention. But if you tweet useful,
insightful messages, you can gradually attract more attention to yourself, your
brand, and your website.

http://twitter.com

CHAPteR 11: WEBSITE PROMOTION 359

TWITTER

FiGURE 11-5
This is Stephen Colbert’s
Twitter stream, as seen on
the Twitter website.

Here are good guidelines for any new tweeter:

• Take it slow. Don’t start tweeting madly until you have a good feel for what
works and what doesn’t. To do that, follow other tweeters. Use the Twitter search
tool (http://twitter.com) to find tweets relevant to you (your business name, your
area of expertise, your website topic), and see what other people are saying.

• Share useful things. Point out neat tools, recommend web links, and pass out
snippets of advice. Don’t use your Twitter account for relentless selling or self-
promotion, because that turns everyone off.

• Solicit opinions. Ask others to interact with you. Here are examples of how top
companies get attention: offer advance copies of a book to review, ask about
problems with current products, or run a promotion where people chime in with

http://twitter.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn360

TWITTER
stories or suggestions. The key is to contribute to the Twitter community before
you have something to sell. They’ll appreciate the gesture, give good feedback,
and maybe even help publicize your site when the time is right.

• Respond to other people. Comment on someone else’s tweet, or retweet a
comment made about your site’s subject area. That way, you’re not just shouting
from the rooftops, you’re engaging with like-minded people.

• Show the human side. It’s not all about your cause, business, or professional
aspirations. When people follow a tweeter, they expect to get a personal touch.
So use Twitter to share comments that explain the real-life side of what you do.

 TIP  You can achieve Twitter success two ways. First, you can start off being such an important, wonderful,
and famous person that no one wants to miss what you text from your mobile phone at 3:00 a.m. But assuming
you’re not a celebrity, you need to take the second approach: Say something that’s relevant to other tweeters.
That way, they may notice your comments, follow up on them, and help bring your words to a wider audience.

Twitter mastery is outside the scope of this book. If you’re just starting out, check
out The Twitter Book (O’Reilly), which can help you think like a true tweeter, and
provides great advice for Twitter-based promotion.

Sharing Your Tweets on Your Site
If you’re a seasoned tweeter, you probably want to share your tweets on your site.
You could take the simple path, and just add a link to your Twitter stream. But a
niftier idea is to put a snapshot of your recent tweets directly on one of your pages.
Even better, you can stick your tweets in a side column, so they appear on every
page in your site.

Pulling this off is surprisingly easy. You simply need to ask Twitter to generate a
widget according to your specifications. Technically, a Twitter widget is a short
snippet of HTML markup.

Here’s how to create a personalized Twitter widget for your site:

1. Go to the Twitter account settings page (https://twitter.com/settings/
account) and log in with your email address and password.

The settings page lets you configure a set of options.

2. In the panel on the left, click Widgets.

You see a list of all the Twitter widgets you’ve created. (Chances are, that will
be exactly none.)

3. To create your first widget, click Create New.

Twitter takes you to the widget-creation page shown in Figure 11-6.

https://twitter.com/settings/account
https://twitter.com/settings/account

CHAPteR 11: WEBSITE PROMOTION 361

TWITTER

FiGURE 11-6
As you set options for
your timeline (on the left),
Twitter shows a preview of
what it will look like (on
the right).

4. Configure your widget.

You don’t need to change anything if you don’t want to. Twitter automatically
creates a timeline (Twitter’s name for a reverse-chronological list of tweets)
that shows just your tweets. However, here are some details you might want
to change:

• Exclude replies hides a tweet if it’s just a reply to someone else’s tweet
(which readers can find confusing because it’s out of context).

• Auto-expand photos displays the pictures you link to in your tweets right
in your timeline (no extra click required).

• Height sets the vertical size of the timeline, and therefore determines how
many tweets readers can see at once. Choose a height that fits nicely along-
side the content in your page (or, if your tweets are going site-wide, choose
a height that fits nicely in a side column). Don’t worry about the width—the
timeline will automatically size itself to fit the space in your layout.

• Theme lets you change the color scheme from light (the standard) to dark.
The dark option blends in better with dark page backgrounds.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn362

TWITTER
Alternatively, you can create a different type of Twitter timeline by picking a
different tab (just under “Choose a timeline source”). Ordinarily, Twitter as-
sumes you want the “user timeline” option, which shows the tweets you’ve
made. Alternatively, you can show favorite tweets, tweets from a list you create,
tweets that match a search keyword (for example, tweets about you or your
business), or tweets from a custom timeline you created. Twitter provides plenty
of information about these more exotic choices.

5. When you finish, click Create Widget.

The markup for your widget appears in a text box just underneath the widget
preview (Figure 11-7).

FiGURE 11-7
The quickest way to copy
your Twitter widget is to
right-click the teeny text
box with the markup in
it, choose “Select all” to
highlight all the HTML, and
then press Ctrl+C.

6. Copy the widget markup and paste it into one of your web pages. Then save
the page, load it up in your browser, and watch the magic happen.

You don’t need to upload your page to a web server before you try it out. The
<script> code works even if you launch the page right from your desktop
(Figure 11-8).

To have your tweets appear on every page of your site, you need to use the layout
and content-sharing techniques from Chapter 8. First, carve out a section of a
page where you want the Twitter timeline to appear—usually, that’s a separate

CHAPteR 11: WEBSITE PROMOTION 363

FACEBOOK
column on the right side of your page. Create a <div> for that column and use
the normal CSS rules to set its position and width (see page 240 to recap your
options). Then put the Twitter script in your <div>. To save effort and reduce
the likelihood of mistakes, you can put the Twitter script in a separate file, and
inject it into your pages using a server-side include, as explained on page 263.

 NOTE  If you’re using a web editor, make sure you don’t paste the markup in design view. If you do, your
editor will convert your HTML into ordinary text, which isn’t what you want. For the widget to work, you need to
put the <script> element in your HTML markup.

JavaScript powers the Twitter script. It talks to the Twitter web server, grabs
a chunk of HTML with your most recent tweets, and inserts it into your page.
Although you won’t learn how to talk to web servers in this book, you will learn
the other half of this equation—how to dynamically insert new content into a
page—when you explore JavaScript in Chapter 14.

FiGURE 11-8
Here’s the now-embedded
Twitter feed you created in
Figure 11-7, scaled down to
fit the column where you
placed it. In the feed, each
tweet becomes a link that,
if you click it, takes you to
Twitter to read the whole
conversation.

Facebook
It can be tough to build an audience from scratch. That’s why an increasing number
of web dwellers don’t try to do it alone. Instead, they bring their audience to an
existing community—one set up around a social networking site. And when it comes
to social networking, no company is better known than Facebook.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn364

FACEBOOK
Facebook began as a way for college students to keep in touch with one another.
In only a few years, it mushroomed into a social site where hundreds of millions of
ordinary people track down everyone from long-lost loves to faintly remembered
high-school acquaintances. Thanks to Facebook Pages (the feature you’ll learn
about in this section), Facebook has even become a branding tool for businesses
and nonprofit organizations—one with unique advantages and limitations.

Creating a Facebook Page
A Facebook page (formerly known as a Facebook fan page) is a public meeting
spot you create on Facebook. You use it to promote something—say, a company, a
cause, a product, a television show, or a band. You might already have a Facebook
Page to promote your business or yourself (for instance, musicians, comedians, and
journalists often do). Any Facebook member can create one. For example, www.
facebook.com/kristof is the Facebook Page for New York Times columnist Nicholas
D. Kristof. He uses it to comment on current affairs and discuss the issues of the day
with readers. On an entirely different but more delicious note, www.facebook.com/
benjerry is a Facebook Page for Ben & Jerry’s ice cream. It’s a chattier, less formal
version of its website, complete with whimsical discussions about now-abandoned
ice cream flavors.

A Facebook Page is similar to a personal Facebook profile, but it’s better suited to
promotion. That’s because anyone can visit a Facebook Page and read its content,
even if she doesn’t have a Facebook account. Those who do have accounts can do
the usual Facebook things—click Like to follow the page, post on the page’s timeline,
and join in any of its discussions.

 NOTE  A personal Facebook page (known as a profile page) is more restrictive than a Facebook Page. It’s
better suited to talking to your friends or networking with business contacts. But a Facebook Page is a better way
to promote yourself, your business, or your cause to the masses of people you don’t know.

Here’s how to create a Facebook Page:

1. Go to www.facebook.com/pages/create.php.

If you haven’t already signed into Facebook, do so now. (Or, if you don’t have a
Facebook account, click the “Sign up” link to create one, and provide the usual
details about yourself.)

Once you reach the Facebook Page creator, you’ll see a few big, tiled buttons
with labels like “Company, Organization, or Institution” and “Brand or Product.”
Each button represents a different type of page.

2. Click the button that represents the type of page you want.

For example, you can create a page for your local business, a big company, a
band, a product, a public figure, or a cause.

www.facebook.com/benjerry
www.facebook.com/benjerry
www.facebook.com/pages/create.php

CHAPteR 11: WEBSITE PROMOTION 365

FACEBOOK
Facebook then asks you for more information (Figure 11-9). The most important
detail is the name, which will appear prominently on your page. Depending on
the type of page you’re creating, you’ll use your name, the store’s name, your
band’s name, or something else. Good examples include “Larry S. Tindleman”
or “Larry’s Polka Band” or “Tindleman World-o-Shoes,” depending on what
you want to promote.

FiGURE 11-9
Click the “Local Business or
Place” tile and Facebook
requests some additional
details, such as the type of
store you have, its name,
and its address.

3. Once you fill in the details, click Get Started.

Facebook sends you to a new page to gather a bit more information (Figure
11-10).

4. Choose a category for your page and type in a brief description.

After you create your page, Facebook submits it to search engines like Google
on your behalf. The category and description help search engines figure out
what your page is all about, so it can place your page in its search results.

As you type a category, you’ll see a list of choices appear in a pop-up list.
Choose the best fit for your site. You can specify more than one category (the
site in Figure 11-10 has two), but make sure you always choose from the list of
suggestions—your site won’t rank as well if you make up a category of your own.

Make your description as concise as possible. Facebook doesn’t let you type
more than 155 characters, which is the length of the description in Figure 11-10.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn366

FACEBOOK

FiGURE 11-10
Facebook leads new-page
creators through three
steps, represented by the
buttons at the top of the
page. In the first and most
important step, About,
you describe your page
and pick an official page
address.

5. Optionally, add a link to your website.

Some people or businesses create a Facebook Page but no website of their own,
but the best way to promote yourself is to have both. Usually, it’s best to put the
most important content on your built-from-scratch website, and then promote
your site with a Facebook Page. In essence, your Facebook Page extends the
reach of your site into the social world.

6. Tell Facebook if your page is for a real establishment, and if it’s an official
page.

Facebook lets you create pages for fictional places (say, the Hogwarts School
of Witchcraft & Wizardry). It also lets you create a page for something you like
but don’t own (like a fan club for your favorite sports team). But Facebook
needs to know if what you’re doing is real and if it’s official, so it knows how to
describe your site to the world.

7. Click Save Info to continue.

Facebook takes you to the second step, where you supply your profile picture.

CHAPteR 11: WEBSITE PROMOTION 367

FACEBOOK
8. Click Upload From Computer, pick your picture, and then click OK to upload

it.

The profile picture will sit in the top-right corner of your page. This detail is
critically important, because it’s the first thing viewers see, and it establishes
your identity.

9. Click Next to continue.

Facebook takes you to the final step, where you describe the types of people
you want to reach.

Depending on your page, Facebook may ask about your audience’s location
(for example, a local store may target people in a specific city), their age range,
and their interests. All this information is optional, but it can help Facebook get
your site in front of the right people.

10. Once you enter your audience information, click Save.

Now Facebook creates your page and takes you to its Timeline (Figure 11-11).

A new Facebook Page starts with several tabs, much as an ordinary Facebook
page does (which Facebook nerds call a personal profile). The most obvious
difference between the two is the fact that a Facebook Page includes a Reviews
tab, which lets fellow Facebookers weigh in on the person or business with a
review—a short post that includes a one- to five-star ranking.

FiGURE 11-11
Here’s the freshly created
Elephantyne Furniture page.
It includes a timeline where
you can add posts, the store’s
contact information, a map, a
tiled view of pictures, and a
count of the Page’s likes.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn368

FACEBOOK
11. Take note of the URL for your Facebook Page.

The quickest way to get your page’s URL is to look at the web browser’s address
bar. Your URL is everything up until the question mark. It includes the Facebook
site, page name, and a series of numbers.

For example if you see this in the address bar:

https://www.facebook.com/pages/Elephantyne-Furniture/791439684258787?sk=timeline

Your Facebook Page URL is this:

https://www.facebook.com/pages/Elephantyne-Furniture/791439684258787

You can send this URL to other people so they can find your page.

Although you might not feel like you’ve done very much, your Facebook Page is now
live and accessible to anyone on the social network. People outside of Facebook
can see it too, but it will take awhile before it turns up in Google’s search results.

In the meantime, here are some good ideas for what to do next:

• Give your page its first like. Start your page out right by clicking the Like button.

• Post on the timeline. The timeline is where you and your fans post messages.
People read your timeline to take the pulse of your page. If it’s full of lively chat-
ter, news, and events, it’s a good sign that your page is thriving.

• Flesh out the About tab. The About tab holds the basic information you supplied
when you created the page. In this case, that’s the description and address for the
business. Depending on the type of page, the About tab will give you the option
of adding other details. In the store example, you can add your operating hours
(click Add Hours), and the price range of your goods (click Add Price Range).

• Invite your Facebook friends. Eventually, your page will get attention by word
of mouth, but you need to start somewhere. The easiest approach is to get your
circle of friends or colleagues to take note. To do that, click the three-dot button
(…), which appears at the top of your page right next to the Message button,
and choose Invite Friends. You’ll see a list of all your Facebook friends; click the
Invite button next to each person you want to recruit. Facebook contacts these
people on your behalf, inviting them to check out your new page and give it a
Like. If they do, they’ll be connected to your page (Figure 11-12).

 TIP  Remember, Facebook is all about community. You don’t need to reply to every comment, but you should
talk back often. Offer thanks when praised and apologies when criticized.

• Reach out to more people by email. You can use Facebook’s email feature
to invite people from your contact list using any popular email program (click
the three-dot button, and then click Suggest Page to get started). Or, if you
want to craft your own message so it sounds less spammy, make a note of your
page’s URL and send it to your peeps. For a better response, let them know

CHAPteR 11: WEBSITE PROMOTION 369

FACEBOOK
about some pictures or content that might interest them, or ask them to give
your page a review.

FiGURE 11-12
One of a Facebook Page’s
most important jobs is
delivering your posts to
fans. It all starts when
someone clicks Like on
your page (top). Now,
when you post a message
on your Timeline (middle),
the information shows
up on your fan’s page
(bottom).

• Add pictures on the Photos tab. Facebookers expect to be able to see you,
so photos are a must. Often, Facebook pictures are informal and focus on
people (for example, a business might upload pictures of its employees or a
social event).

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn370

FACEBOOK
• Choose whether other people can post. It’s up to you whether you want

to be the sole picture uploader or let your fans in on the action, too. Initially,
your timeline and Photos tab are open to all, which encourages people to get
involved and form a relationship with you. But if you need to clamp down on
these permissions, click the Settings button (it appears in a bar just above your
page, on the right side). On the Settings page, choose the General tab and then,
under Posting Ability, edit the options.

• Give your page a better URL. Facebook Page URLs are messy, thanks to the
long series of numbers at the end. But you’ve probably noticed that big players
get better URLs, with no numbers at the end. You, too, can apply for a number-
free Facebook vanity URL. To get started, click the About tab on your page.
Then, click Page Info in the column on the left. Finally, look for the setting named
“Facebook Web Address,” and click the link next to it.

• Spread the Likes. Facebook relationships go both ways. Your main focus is on
getting people to like your page, but you can also build relationships by liking
other pages and other people. For example, a children’s store might Like a nearby
daycare center, a baby-themed event, or a children’s entertainer. The trick is to
make sure it’s your page doing the liking, not your personal Facebook account.
(See the box below to make sure you’re using the right identity.)

GEM IN THE ROUGH

Becoming Your Facebook Page
In the past, Facebook Page creators had to use their personal
Facebook accounts to manage their professional pages. This
wasn’t always perfect. For example, it made it hard to keep
some distance between you and your business or brand, and
you had to take on the role of official spokesperson for your
organization, even though the page really may have belonged
to a whole team of people.

All this changed when the makers of Facebook introduced a
feature that lets you explicitly take on the identity of your
Facebook Page. Once you assume the identity of your page,
you can leave messages on other people’s Timelines, track the
activity on your page, add comments to ongoing discussions,
and Like other businesses (which gives you a great avenue

for cross-promotion). For example, Elephantyne Furniture
might choose to Like a wholesaler, marketer, or supplier. On
Facebook, it will clearly indicate that Elephantyne Furniture
likes the person or business, without revealing the personal
details of the person who manages the page.

To switch to your Facebook Page account, click the Account
button in the top-right corner of your Facebook profile page
(it looks like a down-pointing triangle). Facebook lists all the
pages you’ve created. Click the page you want to become.

When you’re ready to switch back to your personal profile,
click the Account button again and choose your name in the
“Use Facebook as” list.

Promoting Your Facebook Page on Your Website
Now that you’ve crafted the perfect Facebook Page, it’s time to promote it on your
website. You have several options, including the following:

CHAPteR 11: WEBSITE PROMOTION 371

GROUPS
• Facebook badge. This small box advertises your Facebook Page on a web

page. When someone clicks the box, they move from your website to your
Facebook Page. To create a badge, go to www.facebook.com/badges and then
click Profile Badge. Optionally, click the “Edit this badge” link to customize your
icon’s look. Then click the Other button and get the relevant HTML, which you
can copy into any of your web pages.

• Like button. You can slap this Facebook-styled Like button on any of your web
pages. If a Facebooker visits your page and clicks the button, it’s the same as
clicking Like on your actual Facebook Page: It establishes a relationship that
boosts your ranking and allows information to flow from your page to your fan’s
Facebook page. To get a Like button, go to http://tinyurl.com/get-like-button.
Fill in your Facebook Page URL, tweak the other options if you want to change
the button’s appearance, and then click Get Code.

• Like box. This panel includes a summary of what’s happening with your Face-
book page—for example, recent Timeline and note postings. It also includes
the ever-important Like button. To get a Like box, go to http://tinyurl.com/get-
like-box. Fill in your Facebook Page URL, tweak the other options if you want
to change what the Like box looks like, and then click Get Code (Figure 11-13).

Typically, you’ll position a Like box or a Facebook badge in a separate column on
your page, using the CSS positioning properties you learned about in Chapter 8.

Groups
A group is a small community of people who share the same online space. They
interact by posting messages to the group, just like you do on a social network like
Facebook. The difference is that a group has a more formalized arrangement. Usu-
ally, it focuses on a certain topic or limits its membership to members of a certain
organization. Whereas people use Facebook casually, to share the experiences and
gossip of everyday life, they use groups to pursue specific interests or get work done.

Before you create a group, you need to understand where it works and where it
doesn’t. Groups are not a good way to strike up a conversation with people who
don’t really know you and who don’t have a vested interest in your website. Potential
customers, curious web tourists, and people who stumble across your site aren’t
going to go through the trouble of joining a group to talk to you. You’ll have a better
chance luring them in with Facebook.

On the other hand, there are some situations where groups work better than loose-
knit social media sites like Facebook. Here are some examples:

• You have a niche topic, one that attracts highly dedicated fans, but isn’t already
discussed somewhere else. This isn’t easy, because the Web already has Glee
forums, forums for people to complain about bosses, vampire fan forums, and
so on.

www.facebook.com/badges%20
http://tinyurl.com/get-like-button
http://tinyurl.com/get-like-box
http://tinyurl.com/get-like-box

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn372

GROUPS

FiGURE 11-13
To create a Like box, fill
in the settings on the left
and look at the preview
on the right. This Like box
includes all the frills: Show
Faces (to show the faces of
some of your followers),
Show Stream (to show
recent news), and Show
Header (which adds the
“Find us on Facebook” bar
at the top).

• You provide product support. If you run a business, it makes sense to answer
common questions in a forum so all your fans can find the answers they need,
rather than repeating yourself over and over again in email messages.

• Your group is an extension of the real world. In this case, the people in the
group already know one another, and already have a reason to band together.
For instance, a group could be a convenient way for you to chat with the mem-
bers in your knitting circle.

CHAPteR 11: WEBSITE PROMOTION 373

GROUPS
• Your group wants privacy. For example, if you run a support group for recov-

ering addicts, you might want to shut out the Internet riffraff. In this case, you
can create a group and limit its membership.

The best forums drive themselves. Once you get the right ingredients in place, a
forum can succeed without you having to intervene. Think of forums as a dinner
party that you host, and all you need to do is get the conversation started before
making a polite retreat. And if you use forums to answer technical questions, you
can reduce your workload immensely. For example, in many forums, the emphasis
is on customers or experts helping one another. That means forum members share
information, advice, and answers, and you need to step in only to clear up a long-
running debate.

Creating a Google+ Community
Many sites let you create your own group, and they’re all free. Examples include
Facebook Groups (which work well with groups that are casual or social), LinkedIn
Groups (which tend to focus on business networking), Google Groups (which are
fantastic, but a bit dated), and Google+ Communities (which are the modern suc-
cessors to the long-lived Google Groups).

Before you dive into Google+ Communities, take a step back and consider Google+,
which is Google’s social networking service. People sometimes think of it as a
Facebook competitor, although it really isn’t—Facebook is far more popular, and
nobody jumps ship for a new social site without their friends. Instead, Google+ is
better understood as a suite of social networking services, some of which are useful
to anyone. Most people already have a Google account, whether it’s for YouTube,
Gmail, or one of Google’s indispensable web developer services (like the Google
Webmaster Tools or Google Analytics). Or maybe you use it to synchronize your
bookmarks in Chrome, back up your Android phone, or create a blog on Blogger.
The point is that most web fans pick up a Google account at some point. And when
you have a Google account, you can use all the Google+ services. That means you
can join a Google+ community without the usual rigmarole of entering your personal
details, thinking up a new password, and clicking a link in a confirmation email.

To create a new Google+ group (known to Google as a community), follow these
steps:

1. Go to http://plus.google.com.

That’s the hub for Google+. If you’re not yet signed in, Google asks you to do
so before you continue.

2. Click the drop-down menu in the top-left corner (right now it says Home)
and choose Communities.

Google shows you a list of communities you can join. But right now, you want
to establish one of your own.

http://plus.google.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn374

GROUPS
3. At the top of the list of communities, click the “Create community” button.

Google asks you what type of community you’re creating (Figure 11-14).

FiGURE 11-14
If you click the Public tile
on the left, you can create
a group that’s open to
everyone on the Web.
The next step is to pick a
community name (here,
that’s “Candy Collectors”),
and decide if people need
to ask for your approval
before they can join.

4. Choose either a public or a private community.

• Public communities are open to friends, strangers, and random Internet
visitors. Everyone can find your group and read its posts. This approach is
most in keeping with the spirit of the Web. If you don’t have a good reason
to lock down your community, make it open.

• Private communities are hidden from view. Members of the group can
read its posts, but other people can’t. In fact, they might not even be aware
that the group exists at all.

 TIP  It’s important to get the privacy settings right, because you can’t change them later on.

5. Enter a name for your community in the “What do you want to call it?” text
box.

A good, descriptive name is essential. It tells people the purpose of your com-
munity. If your community is public, the name tells newbies what the group is
all about.

Community names don’t need to be unique, because Google+ identifies them
using a numeric ID that it generates automatically, That means it doesn’t matter

CHAPteR 11: WEBSITE PROMOTION 375

GROUPS
if someone else already has a community that uses the name you want for your
own community.

 NOTE  You can change the name of your community after you create it, as long as it has fewer than 500
members. If your community expands beyond that, its identity becomes fixed, and Google won’t let you rename
it.

6. If you’re creating a public community, choose whether people need per-
mission to join.

• Choose “No, anyone can join” to let people sign up to your group at will,
without your intervention. This really lowers the barrier of entry to your
community. It means that someone can discover your group, sign up, and
start posting without any delays.

• Choose “Yes, anyone can ask to join” to micromanage who joins your
group. Visitors who want to join must send a request, and it’s up to you
to approve it. No matter how carefully you watch your email, there will be
an inevitable delay between the moment someone makes a request and
the time you approve it. Although this setting prevents spammers, it also
hampers requests, because many prospective members will wander away
without bothering to ask for membership.

FREQUENTLY ASKED QUESTION

Putting a Lock on Your Community
Should I restrict people from joining my community?

It’s tempting to force members to apply to your group, but
resist the ego trip. On the Web, people are impatient and easily
distracted. If you place barriers in the way of potential group
members, they may just walk away.

On the other hand, there are some cases where restricted mem-
bership makes a lot of sense. Two examples are when you want
to discuss semi-secret information, like company strategies, or
you’re afraid your topic might attract the wrong kind of crowd.
For example, if you set up a group called Software-Piracy to
discuss the social implications of software piracy, you might
find yourself deluged with requests for the latest versions of

stolen software. As a general rule, restrictions make sense only
if you use them to control the quality of your group.

The same holds true for message moderation. Most healthy
online communities are self-regulating. If a member inadver-
tently offends the general community, others will correct him;
if it’s deliberate, most will eventually ignore the provocation.
You might need to step in occasionally to ban a member, but
screening every message is overkill. It also requires a huge
amount of extra work from you and severely cramps the
dynamic of your group, because a new message won’t appear
until you review it, which will usually be several hours after
the poster wrote it. For fans of the Web who expect instant
gratification, that’s not good news.

7. If you’re creating a private community, choose whether people can find it
in a search.

• Choose “No, hide it from searches” if you want your group to go com-
pletely underground. No one will know it exists, except the people you invite.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn376

GROUPS
• Choose “Yes, people can find it and ask to join” if you want your group

to hide its posts, but you’re willing to consider new members. Visitors can
find your community, visit its page on Google+, and make a request to
join. But unless you grant them membership, they won’t see any of your
group’s content.

8. Click the “Create community” button.

Google creates your community and opens the page (Figure 11-15).

 TIP  Check the address bar in your browser and you’ll see the URL for your community page. It doesn’t include
the community name, just a unique number that Google assigned it. Here’s an example: https://plus.google.com/
communities/101390776243635376950.

FiGURE 11-15
Right now, your commu-
nity looks drab and empty.
To finish it up, you need
a few personal touches,
like a picture and group
description.

9. Personalize your community by adding the information requested in the
sidebar on the left.

Every self-respecting community needs the following:

CHAPteR 11: WEBSITE PROMOTION 377

GROUPS
• Tagline. The tagline appears just under the community name. Think of it

as a catchphrase for your site, like “Candy lovers unite!”

• Photo. Click the “Pick a photo” button and choose an image for your com-
munity. It’ll appear in the sidebar on the left, giving your group an instant
identity.

• Description. Type a longer description in the “About this community” text
box, which appears farther down the page. Think of this as a one-paragraph
description that sums up the purpose of your community.

• Discussion categories. If you don’t add any categories, everyone’s post-
ings will land in the general Discussion category. If you expect plenty of
conversation, you can impose some order by subdividing the discussions
into separate sections. For example, the Candy Collector community uses
the custom categories Candy Facts and Your Favorite Candies. Every other
posting winds up in the Discussion category. To add a category, click the
“Add category” link and then type a short category name of your choosing.

10. When you finish, click Done.

Your community is ready for action. Google may prompt you to invite potential
members. For now, just click Cancel so you can survey your community (Figure
11-16).

FiGURE 11-16
The Candy Collectors community is quiet but
ready for action.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn378

GROUPS
11. Invite some company.

There are two ways to recruit members for a public community. You can invite
them, which means you specifically ask someone to join, or you can share your
group with them, which means you’re simply telling them about the group and
suggesting they stop by for a look. But if you have a private community, inviting
is the only action that makes sense.

To send some invites, click the “Invite people” button (Figure 11-17). To share
your group, click “Share this community.” Either way, the effect is almost the
same. Google sends an email to the people you specify, describing your com-
munity and inviting them to click a button to join (if you sent an invitation) or
to visit (if you opted to share).

FiGURE 11-17
To send an invitation, you
need to supply a personal
message (top) and list
the people you want to
invite (bottom). Figure
11-18 shows the email that
Google dispatches.

Once you establish a community of people, your group is ready to get off the ground.
Members can visit the group, write posts, comment on other people’s posts, add
events to the Events section, upload photos to the Photos section, and see the list
of other members. From this point on, the challenge isn’t in setting up the group,
it’s in attracting enough interesting people so that it becomes a lively community.

CHAPteR 11: WEBSITE PROMOTION 379

GROUPS

FiGURE 11-18
If the recipient clicks
Accept Invitation, he
becomes an official Candy
Collectors members.

 TIP  Google communities are chatty places. Every time someone adds a post, you (and other members) will
get an email notification. You can turn this off by clicking the alarm bell icon, which sits at the top of the sidebar
on the left, just under the community name.

POWER USERS’ CLINIC

Managing Your Members
As your community expands, you’ll accumulate more and
more members. You can see who’s in your group by visiting
your community, scrolling to the bottom of the left-hand
sidebar until you see the Members section, and then clicking
the “See all” link.

You, the group creator, have extra powers. Not only can you
review the list of members, but you can also explicitly remove
a member, ban her (so the person can’t rejoin the group), or
promote her to the role of a moderator. To do either, click the

Options button (the down-pointing arrow in the top-right
corner of the box for that member). You’ll see a short menu
of options, including “Remove from community,” “Ban from
community,” and “Promote from member to moderator.”

Moderators gain the same post-management powers you
have (Figure 11-19). They aren’t limited to writing posts and
comments—they can also delete posts and comments, pin
important posts so they stick to the top of the community page,
and ban troublemakers. However, they can’t delete your posts.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn380

GROUPS

FiGURE 11-19
Moderators have super-
powers over posts. To see
your choices, click the Op-
tions button in the corner
of a post or comment.
Everyone has the ability
to mute a post (to stop
getting notifications about
it) or report it (essentially,
to send a complaint to the
group owner when you
discover spam or inap-
propriate content). But
only moderators can pin
posts, delete posts, and
ban malicious posters.

381

CHAPTER

12

A traditional website is the gold standard of the web world. It’s infinitely flex-
ible—able to chronicle a personal trip to Machu Picchu just as well as it powers
an ecommerce storefront.

However, there’s something distinctly unspontaneous about a website. For example,
imagine you want to post a piece of gossip about a celebrity sighting in your home-
town. Before you can share your thoughts with the rest of the word, you need to pick
a web page filename, decide what HTML elements you’ll use, determine how you’ll
link your page to other pages, and so on. None of these tasks is really that difficult,
but taken together, they’re enough to discourage casual web authors from writing
anything that doesn’t seem worth the trouble.

That’s where blogs fit into the picture. Blogs are a self-publishing format that gets
your thoughts online quickly and easily, while avoiding the headaches of website
management. They’re a fresh, straightforward, and slightly chaotic way to communi-
cate on the Web. To maintain a blog, you publish short entries whenever the impulse
hits you. High-powered blogging software collects, chronologically organizes, and
presents your posts on web pages. That means that if you don’t want to fuss with
the fine details of website management, you don’t need to. All you need to worry
about is posting your thoughts—and with some blogging software, that’s as easy
as firing off an email.

In this chapter you’ll learn how blogs work, and you’ll see how to create your own
blog with Google’s Blogger, one of the Web’s most popular blogging services.

 Adding a Blog

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn382

UNDERSTANDING
BLOGS Understanding Blogs

The word “blog” is an combination of the words web and log, which makes sense
because blogs are logs of a sort—regular, dated blurbs, like a cross between a diary
entry and a posting in a discussion forum. “Blog” is also a verb, as in “I just ate at a
terrible restaurant; when I get home I’m going to blog about it.” Figure 12-1 dissects
the anatomy of a basic blog.

FiGURE 12-1
A typical blog displays
posts in reverse chrono-
logical order, starting with
the most recent post at the
top of the page. A blog’s
home page may feature
the last few entries or
just the most recent one,
depending on the options
you set. If blog entries
are extremely long, the
home page might display
just the post’s first few
paragraphs, with a link to
the rest of the post (as in
this example). Off to the
side, you’ll find other de-
tails, like a calendar or set
of links that let you read
older posts, a picture of
or blurb about the author,
or a list of recommended
blogs (called a blogroll).

Although blogs make it easy to post your thoughts on the Web, it’s unfair to say that
they’re just a simplified way to publish online. Rather, blogs are a wholly different
form of online communication. And although there’s no definitive test to determine
what is or isn’t a blog, most blogs share several characteristics:

CHAPteR 12: ADDING A BLOG 383

UNDERSTANDING
BLOGS

• Blogs are often personal. You can find topic-based blogs, work-based blogs,
political blogs, and great numbers of blogs filled with random, offbeat musings.
No matter their mission, however, blogs usually emphasize the author’s point
of view. They rarely attempt to be objective—instead, they’re unapologetically
idiosyncratic opinions.

• Blogs are organized chronologically. When you design a website, you spend
a lot of time deciding how best to organize your material, often using menus
or links to guide visitors through an assortment of topics. Blogs take a radically
different approach. They have no organization other than ordering your posts
chronologically. Anything else would just slow down restless bloggers.

• Blogs are updated regularly. Blogs emphasize fast, freewheeling communica-
tion rather than painstakingly crafted web pages. Bloggers are known to add
content obsessively, often several times a week. Because blog entries are dated,
it’s glaringly obvious if you don’t keep your blog up to date. If you can’t commit
to blogging regularly, don’t start a blog—set up a simple web page instead.

• Blogs are flexible. There’s a bit of blog wisdom that says no thought is too
small for a blog. And it’s true—a blog post communicates equally well whether
you write a detailed discussion on the viability of peanut-butter Oreos or a
three-sentence summary of an uneventful day.

• Blogs create a broader conversation. Blogs form communities more readily
than websites do. Not only are blogs more conversational in nature, but they
also support comments and links that can tie different blogs together in a
conversation. If someone posts an interesting item on a blog, a legion of fellow
bloggers follow up with replies, blog posts, Twitter messages, and Facebook
Likes. Scandalous blog gossip can rocket around the globe in a heartbeat.

Blogs occupy a specialized web niche, distinct from a lot of the other types of sites
you’ve seen. For example, you can’t effectively sell a line of trench coats for dogs
on a personal blog. But many people start blogs in addition to ordinary websites.
This is a great combination. Visitors love blogs because they crave a glimpse behind
the scenes. They’re also sure to visit again and again if they can count on a regularly
updated blog that offers a steady stream of news, gossip, and insight.

 NOTE  A significant number of big businesses have found that they can make their companies seem friendlier
and more open by adding a blog from a senior executive, manager, designer—or even the CEO.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn384

UNDERSTANDING
BLOGS

Syndication
One neat feature that many blogs provide is syndication, which lets avid readers
monitor their favorite blogs using a program called a feed reader. To use a feed
reader, you provide links to all your favorite blogs and then keep an eye out for
updates. The reader periodically checks these blogs and alerts you to new posts,
saving you from having to check every blog 94 times a day to see if there’s fresh
content. If you follow blogs regularly, feed readers are the most practical way to
stay current with your friends in the blogosphere.

WORD TO THE WISE

The Hazards of Blogging
There’s something about the first-person nature of a blog that
sometimes lures people into revealing much more information
than they should. Thanks to reckless moments of blogging,
lovers have discovered their cheating spouses, grandmothers
have read memorable accounts of their granddaughters’ nights
on the town, and well-meaning employees have lost their jobs.

The dangers of impulse blogging are particularly great in the
workplace. In most countries, companies can fire employees
who make damaging claims about a business (even if they’re
true). Even famously open-minded Google ditched Mark Jen
after he blogged a few choice words about a Google sales
conference that he claimed resembled a drunken frat party.
The notable part of his story is that he didn’t set out to un-
dermine Google or publicize his blog. In fact, only his close
friends and family even knew he had a blog. Unfortunately, a
few Google-watching sites picked up on the post and sent the
link around the Internet.

There are many more stories like this, where employees
have lost their jobs after revealing trade secrets, admitting

to inappropriate on-the-job conduct (for example, posting
risqué at-work photos or bragging about time-wasting games
of computer solitaire), or just complaining about the boss.

To protect yourself from the hazards of blogging, remember
these rules:

• “Anonymous” never is.

• If you plan to hide your identity, adopt a pseudonym, or
conceal personal details, remember the first rule.

• Funny is in the mind of the beholder. Your humorous
work-related stories will be seen in a different light when
read by high-powered executives who lack your finely
developed sense of irony.

• Think before you write. There’s a fine line between
company secrets and information in the public domain.

• There’s no going back. Although many blogging tools
let you edit or remove old posts, the original versions
can stick around in search-engine caches for eternity
(see page 328).

Although most blogs work with feed readers, some don’t. To work with a reader,
blogs need to provide a feed (Figure 12-2), a computer-friendly format of recent
blog posts. Readers interpret the feeds and cull important information from them,
like the post’s title, description, date, and text. They display that information for
your reading pleasure, without forcing you to make a separate trip to the blog itself.

If you click a feed link or icon (like the one shown in Figure 12-2), you’ll see the feed
itself, with its list of recent posts (Figure 12-3).

CHAPteR 12: ADDING A BLOG 385

UNDERSTANDING
BLOGS

FiGURE 12-2
Most blogs have a feed link
somewhere on the home
page. Look for an orange
radar icon, like the one
shown here, or the word
“feed,” “syndication,”
“subscribe,” or “RSS”
(which is shorthand for
the technology that feeds
use).

You can subscribe to a feed by right-clicking the feed icon and copying the URL
(choose “Copy link address” or “Copy shortcut”—the exact wording depends on
your browser). Then, open your feed-reading program, select “Add a new feed”
(here again, the wording might differ depending on your reader), and paste the link.

If you don’t have a feed reader of your own, there’s no shortage to choose from.
Here are three of the most popular:

• Feedly (http://feedly.com)

• The Old Reader (http://theoldreader.com)

• NewsBlur (http://newsblur.com)

The best readers let you keep up with your favorite blogs on multiple platforms. For
example, they let you browse the blogs you follow by visiting a website (on your
desktop computer) or using an app (on your mobile phone or tablet). They also keep
track of what you read, no matter where you read it.

 NOTE  Most feed readers start out free but charge a monthly fee for premium features like better blog
searching and the ability to add more than a hundred feeds.

http://feedly.com
http://theoldreader.com
http://newsblur.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn386

UNDERSTANDING
BLOGS

FiGURE 12-3
Different browsers present
feeds in different ways. In
Chrome (top), you’ll see
the feed’s raw code (XML,
a distant relative of HTML).
But visit the feed page
with Firefox or Internet
Explorer, and your browser
creates a nicely formatted
post list (bottom).

Some web browsers include their own built-in feed readers. Although they’re far
less powerful than dedicated readers, they might be enough to satisfy a casual
blog-browser:

• Internet Explorer lets you subscribe to a feed in much the same way you
bookmark a site. First, visit a blog’s feed page (Figure 12-3, bottom) by clicking

CHAPteR 12: ADDING A BLOG 387

UNDERSTANDING
BLOGS

the feed icon or link on a blog. Then click the “Subscribe to this feed” link at
the top of the page. Now you can get a list of recent posts quickly and at any
time from the Favorites Center (click the Favorites star in the top-right corner
of the browser window).

• Chrome doesn’t have a feed reader, but you can easily get a plug-in that offers
basic feed-reading features. Try the one at http://tinyurl.com/chromefeeds.

• Firefox has a live bookmarks feature that tracks feeds. Figure 12-4 shows how
it works.

• Safari once had feed-reading features, but Apple tossed them out in recent
years. It now recommends a separate feed reader service instead.

FiGURE 12-4
Top: Firefox asks you how you want to
store your feed bookmark. You can use
its Live Bookmarks feature or a separate
feed-reading program, if you’ve in-
stalled it (just pick it from the list). Click
the “Always use” setting if you don’t
want to see this options page again, and
then click the Subscribe Now button.

Bottom: You can’t tell a live bookmark
from an ordinary one on the Bookmarks
toolbar, but click it and you’ll see a
menu of current blog posts, which
Firefox updates automatically. You still
need to check the live bookmark to see
if there’s a new post, but you don’t need
to visit the original site.

http://tinyurl.com/chromefeeds

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn388

UNDERSTANDING
BLOGS

 TIP  Most blogs let you subscribe by email, which means you get new postings delivered to your inbox. If
you follow just a few blogs and they aren’t too busy, email subscriptions can avoid the hassle of setting up a feed
reader.

Blog Hosting Options
Before you set up your own blog, it helps to understand the different kinds of blog-
making options out there. There are really two types of blogs:

• Self-hosted blogs. If you want the greatest amount of control over your blog,
you might be interested in hosting it entirely on your own. To do this, you need
to pick the blogging program you want to use, find a web host that supports
it, and then configure everything. This approach gives you unlimited flexibility
(and possibly better performance), but it also requires a bit more work to get
off the ground.

By far the most popular example of blogging software is WordPress (http://
wordpress.org), although you can also experiment with the CMS software de-
scribed in the note at the bottom of this page.

• Hosted blogs. To post using a hosted blog, you simply sign up with a blog
provider and start writing. Adding a blog entry is as simple as filling out a form
in your browser. You never need to hassle with installing a program or figure
out how to upload content, because the blog provider manages your files for
you. You don’t even need to have a website. Hosted blogs are a great bet for
new bloggers, because they’re completely painless.

Examples of hosted blog providers include Blogger (www.blogger.com), Word-
Press (http://wordpress.com, not http://wordpress.org, which is where you get
the free blog-hosting program), and TypePad (www.typepad.com).

In this chapter, you’ll spend your time using one blogging tool, called Blogger. Blog-
ger is tremendously popular—in fact, it consistently ranks in the list of most-visited
websites (http://mostpopularwebsites.net/1-50). The advantages to Blogger are
that it’s simple to use yet remarkably powerful, with support for group blogging,
personalized domain names, customized templates, and a variety of add-on features.
These attributes make Blogger the best candidate for all-around blogging champ.

 NOTE  A number of website-creation tools called content management systems (CMSes) let you build ordi-
nary blogs and other types of websites. Two popular examples are Drupal (http://drupal.org) and Joomla (www.
joomla.org). Typically, these products suit businesspeople who need to set up complex web applications—say, a
sprawling ecommerce store or a web magazine with a team of contributors—without building everything from
scratch.

http://wordpress.org
http://wordpress.org
www.blogger.com
http://wordpress.com
http://wordpress.org
www.typepad.com
http://mostpopularwebsites.net/1-50
http://drupal.org
www.joomla.org
www.joomla.org

CHAPteR 12: ADDING A BLOG 389

GETTING
STARTED WITH

BLOGGER

POWER USERS’ CLINIC

Why You Might Want to Self-Host
Some die-hard blogging fanatics prefer self-hosted blogs,
which offer a few unique advantages that Blogger can’t match.
Here are some examples:

• Censorship-proof. When you use a free blogging service
like Blogger, Google is in control of your content. If other
users complain that your blog has offensive content or
pornography, Google can force prospective readers to click
through a warning page before they reach your posts. And
if Google decides that you’re breaking copyright laws or
encouraging criminal activity, it can vaporize your blog
without warning. Furthermore, some censorship-crazy
countries like China block Blogger’s sites, which means
that no one in those countries can see your blog (unless
you pay for a custom domain name, as described in the
box on page 408).

• Linked websites. Thanks to HTML’s linking power, it ’s
easy enough to send readers from your website to your
blog and back again. They don’t even need to know that
they’re changing web servers. However, if you host both
your website and blog on the same server, you gain some
unique advantages. They can use the same domain name,
they can share content (like pictures), and they can benefit

each other in the search engine rankings because Google
sees them as part of the same site.

• Complete control. Some blogs involve multiple authors
and huge amounts of traffic. Their scope and popularity
rival traditional newspapers. (Two popular examples are
the news and gossip sites Gawker Media, at www.gawker.
com, and the Huffington Post, at www.huffingtonpost.
com.) The creators of this sort of site need complete
control over every fine detail to craft search engine
campaigns and advertising strategies. Clearly, in this
echelon, a free blog service just won’t do.

These features don’t come without a cost. Self-hosted blogs
are more complicated to set up and manage, and you need to
pay a monthly hosting fee. But if you’re still interested, start
out with WordPress (http://wordpress.org), the favorite of
hard-core technogeeks everywhere. (You can read a whole
book’s worth of WordPress coverage in WordPress: The Missing
Manual.) And if you’re still not sure, don’t be afraid to embrace
Blogger—or any blogging service. Your choice won’t limit your
success, as there are mind-blowingly popular blogs on all the
blogging platforms mentioned in this chapter.

Getting Started with Blogger
Blogger is one of the most commonly used blogging services. It provides the easiest
way to start a blog, and it’s chock-full of nifty blog management tools. Once upon
a time, Blogger’s premium features required a small yearly contribution. But all
that changed when Google bought Blogger. Now all of Blogger’s features are free.

Setting up a blog on Blogger is ridiculously easy. In the following sections, you’ll
learn how to create a blog, add posts, and take charge of a few neat features.

 TIP  You can also check out the official catalog of Blogger help at http://help.blogger.com and the discus-
sion boards at http//productforums.google.com/forum, where bloggers share tips, ask questions, and vent their
frustrations.

www.gawker.com
www.gawker.com
www.huffingtonpost.com
www.huffingtonpost.com
http://wordpress.org
http://help.blogger.com
http//productforums.google.com/forum

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn390

GETTING
STARTED WITH

BLOGGER
Creating a Blog
Before you create your blog, it’s a good idea to assess your goals and decide exactly
what type of content you plan to showcase. Although you can create a blog with
random thoughts or a chronicle of daily life, the most successful blogs have a clear
voice and purpose. They attract a loyal audience with targeted, topic-specific posts.

Once you know how you want to position your blog, you’ll be able to choose a snappy
name and suitable URL. Start with these steps:

1. Go to www.blogger.com.

This is the home page for the Blogger service.

2. If you have a Google account, enter your login information and click Sign
In. If not, click “Get started” to create an account.

By this point, you almost certainly have a Google account. In this book, you’ve
used it for Google Analytics, the Google Webmaster Tools, and Google+ Com-
munities. Even if you’ve ignored all these useful services, you may have picked up
a Google account to keep track of videos on YouTube or to write emails on Gmail.

 NOTE  You need to create an account only once. However, you can create multiple blogs for the same account.

Once you log in, Google takes you to the Blogger dashboard (Figure 12-5).

FiGURE 12-5
The Blogger dashboard
lists all the blogs you’ve
created (right now, you’ve
got none). Underneath
that, in the “Reading list”
section, Blogger lists all
the blogs you’ve asked it
to follow.

www.blogger.com

CHAPteR 12: ADDING A BLOG 391

GETTING
STARTED WITH

BLOGGER NOTE  When you follow a blog in Blogger, it shows you a list of new posts every time you log in, and it
keeps track of which ones you’ve read. However, people rarely use this feature anymore, because dedicated feed
readers (page 385) work so much better.

3. Click New Blog.

Google asks for three key pieces of information (Figure 12-6).

FiGURE 12-6
To create a blog, you need
to specify a name for it, a
web address, and a tem-
plate. As you type in the
address you want, Google
checks to see if it’s avail-
able. If it isn’t, you need to
try something else.

4. Supply the title and URL you want your blog to have.

A blog title is just like a web page title—it’s the descriptive bit of text that ap-
pears in a browser title bar.

The URL is the really important part, because you don’t want to change this
later on and risk losing your loyal readers. It’s the address that eager web fol-
lowers use to find your blog. Google lets you use just about any URL, so long as
it ends with .blogspot.com. Although other bloggers have already taken some
of the most obvious names, it’s still reasonably easy to create short-and-sweet
blog names like http://secretsandchocolate.blogspot.com or http://wildrich-
man.blogspot.com.

If you want to use a custom domain name for your blog, which lets you use your
own URL, you first need to create a blog with an ordinary .blogspot address.
The box on page 408 explains the process.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn392

GETTING
STARTED WITH

BLOGGER 5. Choose a template for your blog.

When you create a blog, you choose a preset template, and Blogger formats
your posts using that template’s color, graphics, and layout. If you change your
template later on, Blogger adjusts all your posts to match the new style.

Blogger gives you just a few starter templates to choose from. But fear not—
once you create your blog, you can modify your template’s formatting or swap
in something completely different.

6. Click the “Create blog!” button.

Blogger displays a congratulatory message and brings you back to the dash-
board (Figure 12-7).

FiGURE 12-7
Your new blog (A Cheese
Maker’s Story) shows up in
your dashboard.

7. It’s time to create your first post. Click the “Create new post” button (the
one with the pencil icon) or the “Start posting” link.

You can return to manage your blog any time by going to www.blogger.com.
For now, continue with the next step to create your first blog entry.

www.blogger.com

CHAPteR 12: ADDING A BLOG 393

GETTING
STARTED WITH

BLOGGER
8. Enter the title for your blog post, and then type the content of your post

into the large text box (see Figure 12-8).

Don’t worry about all the fancy frills in the editing window just yet—you’ll learn
about those in the next section.

 NOTE  A blog entry can be as long or as short as you want. Some people blog lengthy stories, while others
post one or two sentences that simply provide a link to an interesting news item (or, more commonly, to a post
from another blogger).

FiGURE 12-8
Blogger’s post editor is
like a mini word processor
(top). A bar on the right
holds extra options. To see
them, point to the side of
the page (bottom).

9. Categorize your posts with one or more keywords.

People search your blog by keyword. For best results, always use the same
keywords to identify the same types of posts. For example, every time you talk
about your pet hogs, add the label pig.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn394

GETTING
STARTED WITH

BLOGGER
To supply a keyword, point to the sidebar on the right (see Figure 12-8), click
Labels, and then type your keyword into the text box. To supply more than one
keyword, separate them with commas.

 NOTE  Keywords can have spaces. So “American Idol” is a valid keyword. But for best results, keep your
keywords as short and simple as possible.

10. Optionally, decide to defer your post’s publication.

If you don’t want your post to appear right away, click Schedule, choose “Set
date and time,” and then pick a date in the future. Blogger waits until then to
add your post to the blog.

11. Decide whether you want people to make comments on your post.

Normally, you do—and that’s Blogger’s standard setting. But if you don’t, point
to the bar on the right, click Options, and then change the “Reader comments”
setting to “Don’t allow.”

12. Click the Publish button to add the new post to your blog.

If, instead of publishing right away, you want to take some time to think over
your post, click Save. That way, Blogger saves the text you just typed and keeps
it waiting for you the next time you return to your blog. (Page 398 explains how
you can find an unposted entry and edit it.)

 TIP  Blogger automatically saves a draft of your post as you type, just in case you run into Internet troubles
(or you accidentally close the browser window). However, it saves your entry only every few minutes. Clicking
Save stores your current draft immediately.

13. Optionally, share your work on Google+.

When you publish a new post, Google invites you to publicize your work on
the Google+ social network. If you have a thriving network of followers, you
might want to explore this option (click Share). Otherwise, click Cancel to get
on with your blogging.

Next, Google takes you to the blog management page, which lists your recently
written posts. Right now, there’s just one entry in the list: the new post you
just finished.

14. Click the “View blog” button to take a look at your handiwork.

Now is a great time to check out what your post looks like. Figure 12-9 shows
an example of what you’ll see.

CHAPteR 12: ADDING A BLOG 395

GETTING
STARTED WITH

BLOGGER

FiGURE 12-9
This blog shows two recent
posts (in reverse chrono-
logical order, so the most
recent one appears first).
On the right, a sidebar
provides information
about the author, along
with links to recent posts.

Formatting Your Posts
So far, you’ve seen how to post text on a blog. But Blogger is pretty flexible when
it comes to customizing your blog. You can add all sorts of fancy design elements,
from highlighted text to graphics. Best of all, Blogger lets you run rampant with the
HTML markup. You just need to know your way around the Blogger editor.

To do some customizing, start a new post by clicking the “Create new post” pencil
button. Choose your post title and type in some content. Next, select some text
and try out some of the buttons in the toolbar above the text box (see Figure 12-10).
Behind the scenes, Blogger uses inline styles (page 80) to format your post.

Blogger’s editor, called the visual composer, is designed to mimic a word processor.
However, if you’re itching for some HTML action, click the HTML button above the
toolbar over the edit window. Now you can add elements and other HTML goodies
directly. Click the Compose button to switch back to the WYSIWYG view.

 TIP  To get a glimpse of what your post will look like once it’s on your blog, you don’t need to publish it.
Instead, click the Preview button to open a new tab that shows what you’ll see based on the formatting you’ve
applied so far.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn396

GETTING
STARTED WITH

BLOGGER

FiGURE 12-10
The toolbar buttons in
Compose mode give you
a few basic but powerful
formatting choices. You
can change your post’s
font, resize the text, add
bold or italic characters,
create simple lists, and
add pictures.

Remember, this sort of formatting is a one-off. To consistently change the way com-
mon elements appear in your posts (like post titles, the blog text, the author byline,
and so on), you need to modify your blog’s template (page 401). This approach is
akin to using a style sheet on a large website: By editing your template, you create
a set of formatting rules that customizes the look of your blog.

CHAPteR 12: ADDING A BLOG 397

BLOG
MANAGEMENTBlog Management

Once you create your blog, you can perform any of the following tasks:

• Add new posts.

• Edit existing posts.

• Review comments left by other people.

• Change your blog settings.

You do most of this work on the blog management page (Figure 12-11). To get there,
head to www.blogger.com, find the blog you want to work with in the list, and then
click the adjacent “Go to post list” button (it appears next to the pencil button, and
its icon looks like a page of paper).

FiGURE 12-11
This page puts a number of blog
management tasks in one place.
Choose what you want to do by
clicking one of the links on the left.
Right now, you’re in the Posts sec-
tion, so the page lists all the posts
on your blog.

www.blogger.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn398

BLOG
MANAGEMENT

 NOTE  After you publish a new post, Blogger takes you to the blog management page.

There’s a lot of stuff packed into this page. In the following sections, you’ll explore
its nooks and crannies.

Managing Posts
The post list is one of the most useful parts of the blog management page. (If you
aren’t there already, click Posts in the sidebar.)

You don’t see the actual content of your posts in the list, but you can see some
key details, including each post’s title, its keywords, its author, and the number of
views and comments it’s collected so far (Figure 12-12). You can also check on a
post’s status—whether it’s live on your site or saved for the future. The word “Draft”
appears next to posts you’ve saved but not yet published. The word “Scheduled”
appears next to posts set for upcoming publication, using the scheduling feature
described on page 394.

If you point to a post, Blogger displays some useful links, as you can see in the
“Bored By Life” post in Figure 12-12. These links let you quickly edit, view, or delete
any post. If it’s a published post, you’ll also see a Share link you can click to promote
your post to friends on Google+.

FiGURE 12-12
The post list packs a lot of
info into a small space. But
the most useful feature
just might be post editing:
the ability to fix up a
published post or pick up
where you left off with
a draft.

Want to be a blog-editing whiz? Using the post list, you can perform bulk operations,
which are tasks that act on several posts at a time. Start by clicking the checkbox
next to each post you want to change (it appears in the first column on the left),

CHAPteR 12: ADDING A BLOG 399

BLOG
MANAGEMENT

and then specify an action. Here are three quick bulk operations you can apply once
you select at least one post:

• Publish the posts. Click the Publish button on draft or scheduled posts to
make them live now.

• Unpublish the posts. If you have second thoughts about one or more posts,
click the “Revert to draft” button to turn them into drafts. Blogger stores the
content so you can work on it later, but it won’t show up on your blog.

• Add or remove a keyword. Click the “Label selected posts” button, which
has a tiny picture of a tag on it. This opens a list of keywords you use on your
blog. Click a keyword to apply it to the selected posts. Click it again to remove
it from the selected posts.

• Delete the posts. To clear out the garbage, click the trash can icon.

Tweaking Common Settings
Now that your blog is up and running, take some time to fine-tune a few settings. In
the following steps, you’ll add a description for your blog, choose how many posts
you want to display on your home page, and set the time zone to make sure your
posts get the right date stamp. Along the way, you’ll get a look at some of the many
Blogger settings under your control.

1. On the management page, in the sidebar on the left, click the Settings link.

You’ll see several submenus, each of which has its own group of settings. Initially,
Blogger displays the Basic section, which includes some of the most commonly
tweaked options.

2. Find the Description setting and then click Edit. Type in a description for
your blog.

This text appears on your home page, usually just under your blog title, though
the exact spot depends on your template. Try to keep the description to a
sentence or two that hints at the flavor of your blog. Two good descriptions
are “The sober confessions of an unlicensed meat handler,” and “An on-again,
off-again look at my life and adventures.”

3. Click the “Save changes” button at the bottom of the page.

When you save your settings, your changes take effect immediately. But before
you check out your blog, there’s more work to do.

4. Take another look at the Settings section in the bar on the left. Click the
“Post and comments” submenu.

Blogger displays a hodgepodge of settings for posts and comments.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn400

BLOG
MANAGEMENT

5. In the “Show at most” box at the top, choose how many posts you want to
appear on your blog’s home page (Figure 12-13).

You can ask Blogger to show a certain number of posts, or the posts for a
specific number of days. For example, you could tell Blogger to display your 12
most recent posts, no matter when you published them (type 12 in the “Show at
most” box). Or you could ask Blogger to show your last 30 days’ worth of posts
(type 30 in the “Show at most” box), and then choose “days” instead of “posts.”

For best results, don’t crowd your front page with too many entries. If you
post daily, stick to a small number of posts or to topics from the current week.
Ordinarily, Blogger shows just your seven most recent posts.

FiGURE 12-13
Here’s how to configure
your blog to show two
weeks’ worth of posts.

6. Click the “Save settings” button at the top of the page.

You’re not quite finished.

7. Under the Settings section (in the bar on the left), click the “Language and
formatting” submenu item.

Choose your language and a time format.

8. Specify your time zone in the Time Zone list, and pick a date format from
the Date Header Format list.

Blogger dates every post at the beginning or end of your entry, depending on
your template. By setting the time zone, you won’t need to manually set the
date every time you create a post.

CHAPteR 12: ADDING A BLOG 401

BLOG
MANAGEMENT

9. Click Save Settings.

To see how these changes look, click the “View blog” button.

GEM IN THE ROUGH

Group Blogging
Having trouble keeping your blog up to date? If you want
to be part of the blogosphere but just can’t manage to post
more than once a month, consider sharing the effort with
some friends. Look for a natural reason to band together—for
example, colleagues can create a blog to discuss a specific work
project, and families can use one to keep in touch (if they’re
not already addicted to Facebook). On a larger scale, group
blogging lets like-minded people create a blog that’s greater
than the sum of its parts. Two wildly popular, trend-setting
group blogs are Lifehacker (http://lifehacker.com), which posts
do-it-yourself productivity tips you can apply to real life, and
the Daily Kos (www.dailykos.com), which provides left-leaning
political news and analysis.

Creating a team blog in Blogger is easy. First, go to your blog
management page, click the Settings link on the left, and then

click Basic. Scroll down to the “Permissions” section, find the
Blog Authors box, which lists all the people who are authorized
to contribute to your blog, and then click the “Add authors”
link to add your collaborators.

You need to supply just one piece of information—the email
address of the blogger you want to enlist. Blogger sends an
invitation to each potential blogger. To accept the invitation,
the recipient clicks a link in the email message (and creates a
Google account, if the blogger-to-be doesn’t have one).

All blog authors have the ability to post entries on your blog.
Additionally, you can give some bloggers administrator status,
which means they can add more bloggers themselves (and
delete existing ones).

Customizing Your Template
Templates are keenly important in Blogger. They not only reflect your blog’s visual
style (irreverent, serious, technical, breezy, and so on), but they also determine its
ingredients and how those ingredients appear on the page. Fortunately, Blogger
lets you change many of your template’s components. For example, you can move
the About Me box to a new position, modify its appearance, or remove it entirely.

You can also add new sections, like a set of links that point to your favorite fellow
bloggers, or a sidebar of targeted Google ads (page 415). You can even get more
radical and replace your template entirely, even if you’ve been posting for years.
Blogger retrofits all your old posts to the new template, so your thoughts, both old
and new, remain available for eager readers.

To control these details, click the Template link in the bar on the left side of the blog
management page (Figure 12-11). Blogger shows a thumbnail-sized preview of your
blog’s template, along with its mobile view (the simplified template that kicks into
action if a visitor browses your site on a smartphone). You also get options that let
you customize your template or choose a new one.

To change your template to something completely different, scroll down. You’ll find
many more template choices, with odd names like Awesome and Ethereal. Most
templates come in several different color schemes. If you see something you want

http://lifehacker.com
www.dailykos.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn402

BLOG
MANAGEMENT

to try out on your blog, click the template thumbnail for a preview. If you like what
you see, click the “Apply to Blog” button to make it the face of your blog.

To really get the look you want, you need to customize your template. There are
three ways to do that:

• Change the formatting settings. These choices let you pick fonts, text colors,
and column widths.

• Change the layout. You can rearrange your blog, remove parts you don’t want,
or add new types of content. For example, you can quickly throw in a list of links,
a poll for your readers, a slideshow, or a Facebook sharing link.

• Edit your template’s HTML. Use this approach to customize the raw HTML in
your template. If you aren’t afraid to muck around in the markup, you can do
anything.

You’ll see how to use all these features in the following sections.

REFORMATTING A TEMPLATE
When you choose a template, it applies a combination of formatting settings. But
if you peek under the hood, you can tweak most of them to get exactly what you
want. Here’s how:

1. If you aren’t already looking at the template settings, click the Template
link on the left side of the blog management page.

2. Click Customize.

Blogger opens a two-part page, with a pile of formatting tools at the top and
a preview of your blog at the bottom (see Figure 12-14).

Blogger splits the formatting tools into several categories:

• Templates lets you pick a whole new template, though it limits you to the
same few templates you saw when you created your blog, so there’s not
much point to this option.

• Background lets you choose a set of themed background colors and a
background picture. For the background picture, you can upload your own
creation, or you can pick from a wide selection of premade backgrounds
organized into categories like “Abstract,” “Food & Drink,” and “Travel.”

• Adjust Widths lets you set the maximum width (in pixels) of your blog’s
main column and sidebars. Blogs use adjustable layouts that shrink to fit a
browser window, along with a maximum-width limit that keeps page com-
ponents from growing ridiculously big. Page 248 describes this type of layout.

• Layout lets you switch between a few basic layouts. You can have a simple,
single column of content, add a sidebar on either or both sides, or pump up
the footer with room for extra widgets (like your blog archive and author
information).

CHAPteR 12: ADDING A BLOG 403

BLOG
MANAGEMENT

• Advanced has the most interesting formatting controls. Start by using
Blogger’s scrolling list to pick the detail you want to format (Page Text,
Links, Blog Title, Post, and so on), and then use the controls on the right to
change its font and colors. The font options are particularly impressive. Not
only do they support common web fonts like Arial, Verdana, and Georgia,
but they also include a library of free Google fonts, implemented using
CSS’s hot new embedded fonts feature (page 103).

FiGURE 12-14
Ready for a change? Here
you’re giving your blog a
new background, a wider
single-column layout,
fancy fonts (note the
heading in particular), and
a matching color scheme.

3. Click the “Apply to Blog” button to make your changes permanent (at least
until you need your next formatting fix).

Or, if you don’t like the changes you made, click “Back to Blogger” to abandon
them.

ADDING, DELETING, AND REARRANGING GADGETS
The focus of your blog is the series of posts that runs down the middle of the page.
However, every blog includes extra blocks of content, positioned in a sidebar next
to your posts or in a footer at the bottom of the page. Examples include an About
Me box, a Blog Archive box (which lists your most recent posts, organized in a tree

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn404

BLOG
MANAGEMENT

diagram by month), and the Google Friends list (which lists the Google+ people fol-
lowing your blog). Blogger calls these ingredients gadgets, and it gives you complete
control to move them, add new ones, or remove existing ones. Here’s how:

1. On the blog management page, click the Layout link on the left.

Blogger displays an outline of your blog’s current structure, showing you the
location of your current gadgets (Figure 12-15).

FiGURE 12-15
You can drag any gadget
to one of the carved-out
regions of a page. Your
possibilities depend on the
layout you selected in the
template designer (page
403). You may be able
to choose from a left or
right sidebar, a top header
region, and a bottom
footer region. Here you’re
relocating the About
Me section to a more
prominent place: after the
blog title but before the
list of posts.

2. Move your gadgets around.

Initially, your page displays whatever content blocks your template defines.
However, you have plenty of ways to mix things up. The easiest change you can
make is to move a gadget. Simply drag it to a new place (Figure 12-15).

3. Add new gadgets.

If you want to add a gadget, click one of the “Add a Gadget” links in the preview.
Blogger displays a pop-up list with a wide choice of handy add-ons. Click one,
and Blogger previews it for you. If you like what you see, click the plus-sign
button (+) to pop it into your page, and then drag it to any spot you want.

Some gadgets are plain—blocks of ordinary text, lists, pictures, and links, for
example (see Figure 12-16). But others are more interesting. Here are some
examples:

CHAPteR 12: ADDING A BLOG 405

BLOG
MANAGEMENT

• Blog List catalogs the blogs you follow or admire, complete with links. Link
List does the same thing, but for websites rather than blogs.

• Search Box adds a Google search box that visitors can use to search the
posts in your blog.

• Popular Posts lists the most visited posts on your blog, so new readers
can find them quickly and check them out. This feature is wildly popular on
news sites. Recent Comments is similar, but it displays the most recently left
comments for any post. It lets readers quickly see what others are saying.

• AdSense displays the money-making Google ads described on page 415.

• Slideshow shows a rotating gallery of your pictures, culled from a photo
service like Picasa, Flickr, or Photobucket.

• Poll lets you survey your readers and tally their votes.

FiGURE 12-16
This blog has three new
gadgets on the right: an
ad box, a list of links, and
a list of popular posts.

4. Configure or remove your existing gadgets.

To change a gadget’s settings, point to it and then click Edit in the gadget box.
Your options depend on the gadget. For example, the Blog Archive gadget

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn406

BLOG
MANAGEMENT

displays a calendar of previous blog entries. You can change the order of the
entries, the way Blogger groups the posts, or the way it formats the dates. If
you edit the Blog List gadget, you can add or remove the blogs you link to.

To remove a gadget, click the Edit link, and then click Remove. One detail you
can’t remove is the NavBar, the thin strip that appears at the top of your blog.
Visitors who view your blog can use it to travel from one blog to another, sign
up for their own blog, or (most usefully) search your blog for keywords. The
good news is that, although you can’t remove the NavBar, you can assign it a
color so that it matches your template and blends in with the scenery.

5. When you finish adding and arranging gadgets, click the “Save arrange-
ment” button.

Alternatively, you can click Preview to see what your blog will look like when
you commit to the changes, or click Clear Edits to abandon your changes and
go back to the way things were.

EDITING THE HTML IN A TEMPLATE
The tools you’ve used so far give you a lot of control over your blog’s appearance,
but there’s one more frontier for die-hard bloggers who want unrestricted control
over their pages: your template’s HTML markup. Using the skills you’ve learned
throughout this book, you can change virtually any element there.

This is obviously more work than using Blogger’s template designer, so why take
this extra step? There are a few good reasons:

• You want to use an entirely new template. Blogger includes only a small
set of templates for you to choose from. You can find more online (search for
“blogger template”).

• You want to use advanced CSS formatting. Blogger doesn’t give you much
design control beyond fonts and colors. If you want to change something else—
tweak margins and padding, for example, or add borders or set a background
picture—you need to dig into the template and modify its style sheet.

• You want no-holds-barred customization. Adding gadgets is a powerful
system, but it doesn’t give you the complete, fine-grained control that editing
the HTML does. Of course, sometimes too much control makes life unneces-
sarily complicated.

Blogger’s templates are really just HTML documents that define the look of your
blog pages. At first glance, this seems a little unusual—after all, a modest blog has
dozens of pages, and you have only a relatively simple template! The trick is that
the template defines special replaceable regions. When a visitor requests a page
in your blog, Blogger starts with your template and fills in the appropriate content
wherever it finds special codes.

For example, if Blogger finds this odd-looking code:

<title><data:blog.pageTitle /></title>

CHAPteR 12: ADDING A BLOG 407

REVIEWING
COMMENTS

It replaces the highlighted element above with your blog’s title. The final HTML file
it creates for your home page actually contains this text:

<title>A Cheese Maker's Story</title>

To change the HTML in your template, follow these steps:

1. If you aren’t already looking at the template settings, click the Template
link on the left side of the blog management page.

2. Click Edit HTML.

You see a text box with the full HTML for your template, codes and all. You
can change some details right away, like the formatting rules in the inline style
sheet. But if you want to add new content or rearrange the page, you need to
understand Blogger’s template codes. You can get that information at http://
tinyurl.com/295vg5.

3. When you finish making changes, click Save Template.

Blogger updates your blog to use the new template immediately.

4. If you like the results, consider making a backup of your work.

Once you alter your template, you should back it up before you make any more
changes. Otherwise, you could muck up your template and have no way to get
back to the version you like.

To make a backup, click the Template link on the left side of the blog-
management page, and then click the Backup/Restore button in the top-right
corner of the page. Finally, click the “Download full template” button, and then
pick a safe storage location on your computer.

If you need to restore a backup you’ve made previously, the process is similar.
First, click Template, and then click the Backup/Restore button. Next, click
the Browse button or the Choose File button (the wording depends on your
browser) to find the backup file on your computer. Once you select the right
file, click Upload to transfer it back to Blogger.

Reviewing Comments
Ordinarily, Blogger lets visitors comment on your posts. That means your readers
can add their own thoughts and follow-ups, and Blogger displays them along with
your posts.

To leave a comment, a visitor must have a Google account or an OpenID account
(a standard that many blogging services and websites use). Blogger imposes this
restriction to reduce comment spam—distracting comments, usually posted by au-
tomated programs, that advertise the spammer’s products. Fortunately, Blogger has
your back. It intercepts comments that look like spam and moves them to a special
holding zone. It’s then up to you to review these comments and decide whether to

http://tinyurl.com/295vg5
http://tinyurl.com/295vg5

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn408

REVIEWING
COMMENTS

let them through. To do that, go to the blog management page, click Comments (on
the left), and then click Spam underneath. Blogger lists the quarantined comments
from all your blog posts. If you find a valid comment, select it and click Not Spam.
And if you’re drowning in junk comments, click Select All, and then click Delete to
clear away the clutter.

POWER USERS’ CLINIC

Giving Your Blog a Custom Domain Name
Even though there’s nothing wrong with a .blogspot.com
URL, there’s a good reason to get a custom domain name for
your blog. No matter how much you love Blogger right now,
someday you might move on to a different service. It’s always
easier to make this transition if you don’t need to tell all your
readers to update their bookmarks and head to a completely
new web address.

To use a custom domain name with Blogger, you first need to
buy one from a domain seller, as you learned to do in Chapter
9. Then you can configure your domain name to point to Blog-
ger’s web servers.

Of course, you probably don’t want Blogger to take over
your entire domain, because you want room for a traditional
website, too. One good solution is to add a subdomain to

a domain you own. For example, if you have a website at
www.deviousweevils.org, you might want to host your blog
at the subdomain blog.deviousweevils.org. This you can do.
Unfortunately, it’s not possible to connect a subfolder of your
website to Blogger, so give up your dreams of having your blog
appear at www.deviousweevils.org/blog. For that, you need a
self-hosted blog, like WordPress (page 389).

Even after you configure your custom domain, your blog’s
.blogspot.com address will remain in service, and all your files
will stay on Blogger’s web servers. You’re just creating a new
way for fans to find your blog.

To make this change, follow Blogger’s instructions at http://
tinyurl.com/n2zsbl. You’ll need the help of your web host, but
the instructions cover all the technical issues you need to know.

The comment spam feature isn’t as good at catching objectionable comments left by
real-life people. If your blog discusses controversial topics, you might want to impose
stricter regulations to prevent unhinged commenters from attacking one another.
You can wrangle comments in two ways: by deleting them or by moderating them.

Deleting the Junk
The first approach is to delete objectionable comments after the fact. To do this,
go to the blog management page and click the Comments link in the sidebar on the
left. Blogger lists all the comments left on all your posts, in reverse chronological
order (so new comments top the list, no matter how old the post is). If you find a
comment you don’t like, you have three ways to dispatch it, as shown in Figure 12-17.

• Delete removes the comment immediately.

• Spam deletes it immediately and alerts Blogger that a spammer is at work
(which may get the commenter’s ID blacklisted)

http://tinyurl.com/n2zsbl
http://tinyurl.com/n2zsbl

CHAPteR 12: ADDING A BLOG 409

REVIEWING
COMMENTS

• Remove content deletes the text of the comment but leaves the record of the
comment on the blog post, with the user’s ID and the message “This post has
been removed by the author.” Sometimes, this approach can shame unruly
commenters into better behavior, and it prevents people from criticizing you
for sneaky censorship.

 TIP  Just as you can edit multiple posts at once with a bulk action, so you can delete an entire batch of
troublemaking comments. To do so, tick the checkbox next to each one, and then click the Delete, Spam, or
“Remove content” button above the list (see Figure 12-17).

FiGURE 12-17
When you point to a comment,
Blogger displays a set of relevant
links.

The only problem with deleting comments is that you have to log on regularly, and
your edits take place after the fact. If you don’t have the time to keep checking or
you want to make sure no one gets a chance to post inflammatory remarks (even
briefly), you need a different approach.

Moderating Comments
Your other option is to moderate the comments, allowing them on your blog only after
you give them your personal thumbs-up. Moderating comments imposes extra work,
but in some situations it’s the only way to lock out undesirable comments—particu-
larly if you have a popular blog on a hot topic. Here’s how you moderate comments:

1. On the blog management page, click the Settings link on the left.

2. Click “Posts and comments.” Scroll down to the section of comment settings.

Blogger gives you a surprisingly thorough set of options to control comments.
For example, you can control whether anonymous readers can post comments
(ordinarily they can’t), or you can switch off comments entirely. But the most
interesting option is the one that controls moderation.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn410

REVIEWING
COMMENTS

 NOTE  Regardless of whether you allow anonymous readers or use comment moderation, you should always
keep the “Show word verification” option switched on. This forces readers to type in a word from a picture before
they can post their comments. Annoying as it sometimes is, this technique cripples automated comment-posting
software that leaves the worst comment spam.

3. Change the “Comment moderation” setting from Never to Always (or, op-
tionally, to Sometimes).

If you pick Always, there’s no chance of a bad comment making it onto your
blog. You need to approve everything. This is the safest choice, but it can make
for a lot of work.

The Sometimes option is an interesting compromise. It lets readers post com-
ments freely when your blog entry is new, which is when most comments come
in, but it switches to moderated comments after a certain number of days. This
model works well because spammers are far more likely to comment on old
postings than your readers are. The standard setting is two weeks, but you can
choose a different number of days. Reduce the number to fight comment spam
more aggressively, or increase it to give your readers more time to speak their
mind without hassle.

If you choose Always or Sometimes, the “Email moderation requests to” box
appears. Optionally, type your email address here if you want Blogger to notify
you whenever someone posts a comment.

4. Click the “Save settings” button.

Now you’re ready to try the system out. First, log out of Blogger. To test the
moderating system, sign back in with a different Google account or as an anony-
mous visitor (if your blog lets anonymous readers leave comments). You could
leave a comment while you’re logged in as the blog owner, but Blogger will
assume you don’t need to second-guess yourself and skips the moderation step.

5. Post a new comment.

To leave a comment, click the Comment link at the end of a blog entry. Add
a comment and your account information, and then click Publish to make it
official. Blogger is smart enough to know that the blog uses moderation, so it
displays a message explaining that the comment won’t appear until the blog’s
owner (that’s you) approves it.

6. Review your comments.

To look at new comments, log in as the blog owner again, head to the blog
management page, click the Comments link, and then click the “Awaiting mod-
eration” link underneath. You’ll see just the comments that await your approval.

CHAPteR 12: ADDING A BLOG 411

REVIEWING
COMMENTS

GEM IN THE ROUGH

Promoting Your Blog
You need to promote your blog just as you do any other website.
Although you can use all the techniques you learned in Chapter
11, there are some others that are unique to the blogosphere.
Here are some important tips to get you started:

• Add a blogroll to your site. A blogroll is really just a
set of links to blogs you like. But blogrolls also make
a statement. They say, “These are the people I like” or
“This is the crowd I want to be associated with.” To use a
blogroll, add a Blog List gadget.

• Participate with others. Bloggers are an open-minded
bunch. If you leave an insightful comment in response
to someone else’s blog entry, odds are good that at least
some readers will head over to your blog to see what
else you have to say.

• Make it easy for people to share your post. You need to
capitalize on the enthusiasm of your visitors. If you blog
about a truly fascinating piece of gossip or news, readers
might just decide to tell all their friends about it—if you
make it easy enough. To encourage this impulse, add the
Share It gadget, which adds links that visitors can use to
quickly recommend your post on Facebook or Twitter.

• Promote your feed. Feeds, discussed on page 384, work
with feed readers. True blog aficionados love them
because they can track dozens or even hundreds of blogs
at a time. Blogger’s software lets you create a feed, and
it’s worth promoting your feed to your regular readers.
To see your feed, click the “Subscribe to Posts (Atom)”
link on your home page. To add the familiar orange radar
icon, which makes this option more obvious, add the Feed
gadget to your blog.

• Use BlogThis. A huge number of blog posts simply
call attention to interesting news stories, scandalous
gossip, or funny pictures that appear online. If you’re an
infrequent blogger, linking to these stories is a great way
to beef up your blog. Using a nifty tool called BlogThis, you
can create a new blog entry that links to an existing web
page with a single click. You can do this two ways—add
the Google Toolbar to your browser, which has a button
for just this purpose, or add a link to your Bookmarks or
Favorites menu that does the same thing. For the full
details, check out http://tinyurl.com/3n4hvu.

http://tinyurl.com/3n4hvu

413

CHAPTER

13

If it’s not for sale on the Web, it’s probably not for sale at all. It’s no secret that
the Internet is a global bazaar with more merchandise than a decade’s worth of
garage sales. Web surfers generate huge amounts of traffic hunting for travel

discounts, discussing hot deals, and scouring eBay for bargains. So how can you
get your share of web capital?

One obvious option is to sell a real, tangible product. The Internet abounds with
specialty shops hawking art, jewelry, and handmade goods. But even if you have a
product ready to sell, you need a few specialized tools to transform your corner of
the Web into a bustling ecommerce storefront. For example, you’ll probably want
a virtual shopping cart, which lets visitors collect items they want to buy as they
browse. And when they check out, you need a secure way to accept their cash—usu-
ally by way of a credit card transaction. In this chapter, you’ll learn how to implement
both of these features on your site using PayPal’s merchant tools.

Even if you aren’t looking for a place to unload your hand-crafted fishbone pencils,
your website can still help fatten your wallet. In fact, just about any website can
become profitable, either by selling ad space or by recommending other compa-
nies’ products. In this chapter, you’ll use two of the Web’s most popular affiliate
programs—Google AdSense and Amazon Associates—to collect some spare cash.

 NOTE  Not a U.S. citizen? Don’t worry—all the money-making ideas in this chapter use companies that
provide services worldwide. Google, Amazon, and PayPal let you rake in the cash no matter where you live.

 Making Money
with Your Site

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn414

MONEY-
MAKING THE

WEB WAY Money-Making the Web Way
The Web offers many paths to fiduciary gain. Here are some of the most popular:

• Donations. It sounds crazy, but some websites badger visitors for spare
change. Donations might work if your site provides some truly valuable and
unique content (see Figure 13-1). Otherwise, save yourself the bother. Don’t be
seduced by logic like “If 1,000 visitors come to my site and every one pays just
10 cents….” They won’t.

 TIP  If you think that your website offers some unique, practical information, and you think your visitors
might be tempted to cough up a few cents in appreciation, you can add a Donate button to your page using
PayPal (page 442). Consider including a message like “Buy me a beer/cup of coffee” above the Donate button
to make the virtual transaction feel like a real-world tip (and to emphasize that you’re hoping to collect spare
change, not the next payment on your car loan).

FiGURE 13-1
Sites that offer free
programs are some of
the most likely to ask for
a handout. But even the
best websites have trouble
making real money this
way. Here, Paint.net asks
for spare change but
hedges its bets by selling
ad space, too.

• Advertisements. The most popular way to make money on the Web is by sell-
ing small pieces of web page real estate. Unfortunately, it’s also a great way
to exasperate your visitors, especially if the ads are distracting, unrelated to
your site, or simply take up too much space. Not long ago, ads were the worst
thing you could do to web pages. Fortunately, in the 21st century, monitors are

CHAPteR 13: MAKING MONEY WITH YOUR SITE 415

GOOGLE
ADSENSE

bigger, and companies like Google provide targeted, unobtrusive ads that fit
right in with the rest of your page.

• Affiliate programs. Rather than plaster ads across your site, why not put in a
good word for a company you really believe in? Many affiliate programs give
you a commission for referring customers to their sites. For example, if you
review gourmet cookbooks, why not include links to those books on Amazon’s
website? If an interested reader buys a book, Amazon’s associate program forks
over a few dollars.

• Sell stuff. If you have your own products to sell, the Web is the perfect medium,
since the cost to set up shop online is much smaller than it is in the real world.
You can build a slick store, complete with product pictures and a shopping cart,
with surprisingly little work. (And if you don’t have your own products to sell,
you can whip up some simple customized goods at CafePress, as described in
the box on page 442.)

• Pay-for-content. If you have really great content, you can ask for cash before
letting your visitors into your site. Warning: This is even harder to pull off than
asking for donations, because visitors need to take a huge leap of faith. It’s a
technique used by established media companies like the Wall Street Journal
and by hucksters promising secret ways to conquer the real estate market or
get free camcorders.

 NOTE  Pay-for-content is the only money-making scheme you won’t learn to pull off in this chapter. That’s
because in order for it to work, you need a way to authenticate visitors—in other words, you need to be able to
identify visitors to tell whether they’ve paid you or not. This requires some heavy-duty programming (or the
ability to pay a company for the service).

Google AdSense
Even if you don’t have a product to sell, you still have one valuable asset: the atten-
tion of your visitors. The good news is that a huge number of companies are ready
to pay for those eyes.

Some of these companies pay you a minuscule fee every time someone visits a
page that carries their ad, while others pay you only when a reader actually clicks
an ad, or when a visitor both clicks an ad and buys something. Fortunately, you
don’t need to waste hours checking out all these options, because Google has an
advertising program that handily beats just about every other system out there. It’s
called Google AdSense.

The AdSense program requires you to display small text, image, or video advertise-
ments on your pages. You sign up, set aside some space on one or more pages, and
paste in some Google-supplied HTML (see Figure 13-2). Google takes care of the
rest, filling that space with one or more ads every time someone requests your page.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn416

GOOGLE
ADSENSE

FiGURE 13-2
This website nestles
a box of three Google
AdSense ads alongside a
scrumptious recipe. The
ads blend into the scenery
perfectly because they
have a similar visual style
(the same background
color and font), and be-
cause the content matches
the article. Google calls
this grouping of ads an
“ad unit.” You choose the
ad layout and the number
of ads you want per page,
so it’s up to you whether
you want to slip a few ads
in quietly or have them
dominate your page.

Just displaying Google AdSense ads doesn’t get you anything, but whenever a visi-
tor clicks one of those ads (and travels to the advertiser’s website), you earn a few
cents. When your total reaches $100, Google mails you a check or sends the cash
straight to your bank account.

There’s no way to know for sure how much money an individual AdSense click is
worth. That’s because Google advertisers compete for keywords by bidding on them,
and keyword prices can fluctuate over time. Google does let you know how much
your clicks were worth (in total) when it pays you. A typical click nets you about 10
cents, but per-click prices often range from a few pennies to several dollars.

Before you become an AdSense devotee, you should know what makes AdSense
different from other ad programs. Here are some of its top advantages:

• AdSense ads are relevant. Google automatically scans your site and picks ads
based on your content. So if you have a site devoted to SpongeBob SquarePants,
Google provides ads hawking SpongeBob DVDs, inflatable dolls, and birthday
gear. Using content-based ads is far, far better than aggravating your visitors
with offers for completely unrelated products, like high-tech spy cameras. Even
better from a profit perspective, these “targeted” ads dramatically increase

CHAPteR 13: MAKING MONEY WITH YOUR SITE 417

GOOGLE
ADSENSE

the chance that a visitor will click an ad, netting you a click-through fee. And if
you’re worried about a competitor’s site turning up in an advertisement, you
can tell Google to filter it out (see page 421).

• AdSense ads blend in with the scenery. Google gives you a range of layout and
color options for its ads, so you can match the design and slick color scheme
of your site.

• Google provides fair payment. Google charges advertisers different amounts
of money for different keywords. Some advertising providers pay their members
the same amount for any click-through and swallow the extra money. Not Google.
It pays you according to the current value of the keyword, which guarantees
that you always get a competitive rate.

• There are no startup charges. The AdSense program is free.

 TIP  Don’t try to cheat AdSense. Devious web developers have tried to game the system by clicking their
own ads over and over again, or even firing up automated programs to do that for them. The problem is that
Google uses various techniques to spot suspicious usage patterns. If it sees a ridiculous number of clicks over a
short period of time, all originating from the same computer, it’s likely to spot the deception and ban your site
outright.

Signing Up for AdSense
When you’re ready to get started with AdSense, follow these steps:

1. Go to the AdSense home page (www.google.com/adsense).

If you’re not already logged in with your Google Account, click “Sign in.” Use the
same account you use for other Google services, including Gmail, the Webmaster
Tools, and Google Analytics. After you sign into your Google account, you still
need to explicitly sign up for the AdSense program.

2. Click the “Sign up” link or the “Get Started Now” button to join up with
AdSense.

Clicking either one starts the AdSense enrollment process. Next, Google starts
gathering account information.

3. Enter your site URL and identify its language (Figure 13-3). Then click
Continue.

Google insists on checking out your site before it places ads there. If your website
is still in the planning stage and you haven’t picked a domain yet, you’ll need
to sign up for AdSense later. (However, Google will let you add more websites
to your AdSense account after you create it.)

 TIP  You can learn much more about the specifics of Google’s ad program by visiting www.google.com/
adsense. There’s also a great, not-too-detailed walkthrough at www.google.com/services/adsense_tour.

www.google.com/adsense
www.google.com/adsense
www.google.com/adsense
www.google.com/services/adsense_tour

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn418

GOOGLE
ADSENSE

FiGURE 13-3
Google asks you to fill out
two pages of information
before you can sign up for
AdSense. The bottom of
this page includes a long
list of rules about how
you can use AdSense and
the types of sites Google
allows into the program
(see the box on page 420
for a recap).

4. Fill in your contact details (Figure 13-4).

When applying for AdSense, you need to indicate whether your account is for
an individual (you, personally) or a business (your registered business). This
determines the kind of tax information Google needs to collect. Registered
businesses based in the U.S. need an EIN (Employer Identification Number). U.S.
citizens applying as individuals need to give Google a Social Security number.
Citizens of other countries may need to apply for a U.S. Taxpayer Identification
Number—see www.google.com/adsense/taxinfo for the lowdown.

Finally, fill in your name, address, and phone number.

 NOTE  Google won’t pay you until it gets your tax details. To help make the process less painful, it guides
you to the correct tax form and lets you submit it online. However, Google won’t prompt you for tax information
until you collect at least $10 in advertising revenue.

www.google.com/adsense/taxinfo

CHAPteR 13: MAKING MONEY WITH YOUR SITE 419

GOOGLE
ADSENSE

FiGURE 13-4
In the final step, Google
needs to know exactly who
you are. Get this info right,
because you can’t change
it later on.

5. Once you finish, click “Submit my application.”

Now you need to wait for Google to approve your application. This usually takes
a couple of days, during which someone at Google takes a quick look at your site
to confirm that it exists and that it isn’t promoting illegal activity (for example,
offering pirated copies of Windows 10). Once this is done, you’ll get a message
confirming that Google has activated your AdSense account.

The AdSense Window
Now that you have an AdSense account, you’re ready to design some ads and put
them on your site. Go to www.google.com/adsense and log in with your email ad-
dress and password. Google opens the AdSense page, which displays a summary
of your recent earnings. You can switch to a different AdSense page using the tabs
at the top of the window (see Figure 13-5).

www.google.com/adsense

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn420

GOOGLE
ADSENSE

UP TO SPEED

AdSense Rules
Google enforces a handful of rules that your website has to
follow. Many are common sense, but it’s still worth taking a
quick look at them.

• You can’t put the Google ads in email messages or pop-
up windows; the temptation for spammers to abuse the
system that way is just too great.

• You can’t put ads on pages that don’t feature any “real”
content. This includes error, login, registration, welcome,
and under-construction pages. You definitely can’t create
pages that include nothing but ads.

• You can’t try to obscure parts of an ad (for example, by

placing other elements over them using a style sheet rule).
The entire content of an ad needs to be visible.

• You can’t click your own ads, or use automated programs
to do that for you. Finally, you can’t entice your visitors to
click your links using threats or incentives.

• Your website can’t include excessive profanity, copyrighted
material, pornography, content about hacking high-tech
security systems, advocacy for illegal drugs, hate speech,
or anything related to gambling.

To read the full AdSense policy, visit www.google.com/
adsense/policies.

FiGURE 13-5
Use the tabs at the top of
the AdSense window to
switch to another page.
Initially, you begin on
the Home tab, where you
configure your AdSense
account and review the
money you’ve made so far.

www.google.com/adsense/policies
www.google.com/adsense/policies

CHAPteR 13: MAKING MONEY WITH YOUR SITE 421

GOOGLE
ADSENSE

These pages include the following:

• Home. This page gives you some critical summary information, including the
amount of money you’ve made today, and notifications about any problems
that prevent your ads from running (called alerts).

You’ll also see some additional links in the panel on the left. For example, you
can view your payment history, which lists each check Google mailed you (click
Payments), and you can update the account information you supplied when you
registered, such as your mailing address and tax information (click “Account
settings”). Or click Resources to browse the AdSense blog, chat with others
in AdSense’s help forum, and watch some inspiring success stories on video.

• My ads. This is your starting point for creating AdSense ads—it’s where you
specify your ads’ display format and get the code you need to insert into your
web pages.

• Allow & block ads. Here you manage one of AdSense’s most advanced fea-
tures: filtering out the ads you don’t want. For example, you can tell Google to
refrain from showing ads in certain categories or from specific websites. The
idea here is twofold: to bar your competition and to ensure that your visitors
see ads relevant to them. (If the ads aren’t useful, your visitors are less likely to
click, and your earnings will plummet.)

• Performance reports. These reports help you assess the success of your ads.
You start out with a graph that charts how much money you made over the
last week. You can customize this graph by changing options and playing with
filters until you find exactly the data you need. And if you want to do some
heavy-duty analysis, you can download the numbers in an Excel-friendly CSV
format in a single click.

 NOTE  No matter which report you run, Google won’t tell you what each individual click was worth or which
particular ad caught a reader’s eye. Instead, it gives you an estimate of the click value on a given day (what Google
calls the CPC, or cost-per-click). Google displays other useful information, too, like the percentage of times your
visitors clicked your ads (called the CTR, or click-through rate). For example, a click-through rate of 2 percent
means that if your page was requested 100 times, an ad on the page was clicked just twice.

Creating an Ad
Google provides different types of ads, from plain two- or three-word text links to
video boxes. However, most ads are of two types:

• Text ads. These are brief, text-only pitches, like the ones you saw in Figure 13-2.
They typically include a title (which is also a link), followed by a line or two of
text, and may include the advertiser’s website name at the bottom.

 NOTE  Text ads are still the most popular type of Google ad. They’re particularly adept at blending into page
backgrounds, which means less irritation for your visitors (which is good) but fewer clicks (which is not so good).

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn422

GOOGLE
ADSENSE

• Display ads. These ads are actually images that range in size from banner
strips to large squares. Image ads are more obtrusive than text ads, but they’re
steadily gaining in popularity. If your web page already has plenty of pictures,
image ads look particularly good—for example, you’ll often see them blending
in at the side of a news article.

Before you can create the right ads, you need a basic idea of where you plan to put
them. Consider whether you want a vertical or horizontal strip of ads, and how wide
or long that bar should be. Figure 13-6 previews just a few of your layout options.

FiGURE 13-6
Ads come in a variety of
shapes and sizes, from
squares to vertical and
horizontal strips. That
means you can always
find an ad design to fit
your layout. Here are two
text ads (“Book a Hotel
Tonight”) and two display
ads, out of the many
orientations and sizes
available.

When you’re ready to dive in and build your first ad (which Google calls an ad unit),
follow these steps:

1. Click the “My ads” tab at the top of the page.

This opens the “My ads” section, which lists all the ads you’ve created. Right
now, the list is empty.

CHAPteR 13: MAKING MONEY WITH YOUR SITE 423

GOOGLE
ADSENSE

2. Click the “New ad unit” button, which appears under the Content→“Ad
units” heading.

Now it’s time to fill in the information for your ad.

3. Choose a name for your ad.

This name doesn’t actually appear in the ad; it just makes your life easier as you
manage ads. After you create your ad, you can call it up by name (for example,
Travel Page Ad) and modify it. This saves you the trouble of rebuilding your
ad from scratch.

4. Choose the size of the ad box from the “Ad size” list (Figure 13-7).

Google always packages AdSense ads in boxes. A box can include one or sev-
eral ads. The format you choose determines whether you’ll get a vertical stack
of ads or a horizontal row. It also determines how many ads you see at once
(from one to five).

 TIP  To get a closer look at a specific ad size, click its Preview link. Google opens a window that shows a
sample ad at that size.

Google provides one special size option, called Responsive. Choose this, and
Google supplies just enough ads to fill the width of the containing element. For
example, say you create a <div> that’s 140 pixels wide. Choose the Responsive
ad size, and Google might give you a block of ads that’s 120 pixels wide (be-
cause that fits inside the 140-pixel width) and 240 pixels tall (because that’s
a standard height for an ad block with that width). But the real reason to use
Responsive ad sizes is if you’re creating a layout that changes based on the size
of the browser window, such as the proportional layouts discussed on page 245.

Say, for example, you have a column that has a proportional width of 30% of
the browser window. If you use the Responsive ad size and a viewer makes the
window wider, Google fetches a bigger ad block to match. If you have a fixed
layout (page 242), on the other hand, you already know exactly how much
space is available for your ad, so you don’t need to use the Responsive ad size.

5. Select a type of ad from the “Ad type” list.

Choose whether you want to use text ads, display ads, or a mix of the two (the
preselected choice). Generally, image ads stand out more than text ads, but
you need to balance two conflicting goals: your desire to make money by at-
tracting clicks with eye-catching ads and your desire to minimize distraction
by choosing less obtrusive ads.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn424

GOOGLE
ADSENSE

FiGURE 13-7
Google recommends a
small set of common ad
sizes. You pick the one
that fits your layout best.
For more choices, click
the drop-down list above
the gallery and choose
the type of ad layout you
want (such as Horizontal,
Vertical, or Custom Size,
the latter if you want to
specify the exact dimen-
sions yourself).

6. Customize your ad’s colors, borders, and fonts in the “Text ad style” sec-
tion (optional).

You can choose from a ready-made color palette, like Minimalist (black and gray
text on white) or Neon (purple on black). But if you want to make the colors in
your buttons match the colors on your site, click the “Create ad style” button
(Figure 13-8). For example, you might want the ad box’s border or background
color to blend in with the background on your page.

To change the colors of an ad, modify the color codes in the boxes underneath
the list of color palettes. You can also choose a font family (from a very limited
list) and font size. When you finish, make sure your custom style has a name
and then click Save.

 NOTE  The color and font settings apply to text ads. If you choose to use display ads only, you can skip this
section because the settings won’t have any effect.

CHAPteR 13: MAKING MONEY WITH YOUR SITE 425

GOOGLE
ADSENSE

FiGURE 13-8
As you change your ad’s
colors, font, and borders,
Google previews the
results in a single-ad
format.

 TIP  If you don’t change Google’s standard ad colors, your ad box will have the same background color as
your web page (because it’s transparent) and no border. For advice on how to choose custom HTML colors, see
page 90.

7. Choose a channel in the “Custom channels” section (optional).

If you create a half-dozen ads and scatter them on different pages throughout
your site, you don’t know which ones are making you money. Google’s ad sales
report shows you only the total number of clicks for all the pages on your site.
Many site owners want more detail about which ads are working. Enter Google’s
channels feature.

To track the performance of individual ads, you place each ad in a separate,
virtual “channel,” which tallies ad clicks. Google lets you create reports that
compare channels so you can tell which ads perform best.

To create a new channel, click “Create new custom channel,” which opens a
window asking you to name the channel.

Once you create a channel, you can assign an ad to it by clicking the tiny “in-
clude” link next to the channel name. (Click it again to stop tracking an ad.)

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn426

GOOGLE
ADSENSE

 TIP  Channels are a great way to try out different ad strategies and see which ad format and placement work
best. You can add multiple ads to the same channel to track them as a group, or you can create a separate channel
for each ad.

8. Choose a backup ad.

When you first put an ad on a page, Google doesn’t yet know what ads are a
good match for your content, so it temporarily keeps that space blank. If you
don’t like that, you have two options. You can choose a solid color, in which case
Google fills the ad with that color only. The idea is to use a color that matches
the background of your page, so the “ad” disappears entirely. Your second op-
tion is to specify a URL for a page you want to place there. Until the real ads
are ready, that content appears on your page.

9. Click “Save and get code.”

Once you do, a window pops up with the JavaScript code for your ad (see
Figure 13-9).

FiGURE 13-9
You’ll notice that the Ad-
Sense code doesn’t include
HTML. Instead, it’s a script
that uses the JavaScript
programming language
(which you’ll learn about
in Chapter 14). Every time
a visitor views a page that
contains an AdSense ad,
the script runs. It fetches a
relevant ad from Google’s
web servers and inserts
the ad’s HTML into the
page, in the same spot as
the script block.

10. Copy your ad code, and then click Close.

Select all the code in the text box, right-click the markup, and then choose
Copy. You can now paste the code into one or more pages, as described in the
next section.

CHAPteR 13: MAKING MONEY WITH YOUR SITE 427

GOOGLE
ADSENSE NOTE  If you need to modify your ad later, log back into Google AdSense, click the “My ads” tab, and find

your ad in the list. When you click the ad, Google displays its details and lets you edit them. Most changes—say,
altering the ad box color scheme—take effect immediately. However, if you want to change the format of your
ad box, you need to get new code and paste it into your pages, because the size of your ad will change.

Placing Ads in Your Web Pages
After Google creates your ad script, you’re ready to pop it into your web page.
Horizontal strips are the easiest to position; you simply paste the entire script right
where you want the ad to appear.

Here’s an example that places ads at the bottom of a page:

<!DOCTYPE html>
<html>
<head>...</head>
<body>
 <h1>A Trip to Remember</h1>
 <p>
 After returning from my three-month travel adventure ...</p>
 <p>I hope you enjoy these pictures as much as I do.</p>
 <p>See pictures from ...</p>

<script async src="//pagead2.googlesyndication.com/pagead/js/adsbygoogle.js">
</script>
<!-- Travel Page Ads -->
<ins class="adsbygoogle"
 style="display:inline-block;width:300px;height:250px"
 data-ad-client="ca-pub-5867479552859050"
 data-ad-slot="1245776735"></ins>
<script>
(adsbygoogle = window.adsbygoogle || []).push({});
</script>

</body>
</html>

Figure 13-10 shows the result.

Positioning vertical ads requires a little more work, but it’s easy once you learn the
trick. The challenge is flowing the rest of your page content beside the vertical ad.
As you learned in Chapter 8, you can use style sheet rules to float content on the
side of a page.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn428

GOOGLE
ADSENSE

FiGURE 13-10
This page displays a 728 x
90-pixel horizontal banner ad.
Notice how the background
color of the ad matches the
background color of the heading,
thanks to the custom colors you
specified (page 424).

To use the style sheet approach, begin by wrapping your ad script in a <div> ele-
ment. Here’s an example featuring the content you saw in Figure 13-10:

<!DOCTYPE html>
<html>
<head>...</head>
<body>
 <h1>A Trip to Remember</h1>

 <div class="floatRight">
 <script async src="//pagead2.googlesyndication.com/pagead/js/adsbygoogle.js">
 </script>
 <!-- Travel Page Ads -->
 <ins class="adsbygoogle"
 style="display:inline-block;width:300px;height:250px"
 data-ad-client="ca-pub-5867479552859050"
 data-ad-slot="1245776735"></ins>
 <script>
 (adsbygoogle = window.adsbygoogle || []).push({});
 </script>
 </div>

CHAPteR 13: MAKING MONEY WITH YOUR SITE 429

GOOGLE
ADSENSE

 <p>After returning from my three-month travel adventure ...</p>
 <p>I hope you enjoy these pictures as much as I do.</p>
 <p>See pictures from ...</p>
</body>
</html>

Notice that the <div> element (which has no formatting on its own), uses the style
sheet class floatRight. In your style sheet, use the rule below to make the <div>
section float using the float attribute (see page 232):

.floatRight {
 float: right;
 margin-left: 20px;
}

Figure 13-11 shows the result.

FiGURE 13-11
A 120 x 600-pixel vertical
banner (shown here, par-
tially) can fit several ads
or one very tall ad. If you
make them long enough,
visitors get the chance to
click an ad even as they
scroll down the page.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn430

GOOGLE
ADSENSE

UP TO SPEED

How AdSense Creates Targeted Ads
Every time you serve up a web page that contains Google
ads, the AdSense script sends a message to Google’s web
server asking for ads. This message includes your ad prefer-
ence information and your unique client ID. (Your client ID is
something like pub-5876479552359052; you can see it in the
script Google produces.)

The first time Google receives this request, it realizes that it
hasn’t examined your page yet, and it doesn’t know what
types of ads are best suited for it. So it sends you a block of
generic ads (or your alternate content, if you chose that feature,
as described on page 426). Google also adds your page to a
list of pages it needs to visit. Sometime in the next couple of
days, the Google bot heads over to your site and analyzes its
content. From that point forward, you’ll see ads based on the
content of your page.

If 48 hours pass and you still aren’t getting targeted ads,
there could be a problem. One of the most common mistakes
is putting ads on pages that don’t have much text, in which

case Google can’t figure out what your site is really all about.
Remember, AdSense considers only a single page—the one
with the ad in it—when it checks out your site. You can run into
another potential problem if you put your ad on an inaccessible
page. For example, the Google bot can’t get to any page that’s
not on the Internet—pages on your desktop computer or local
network just won’t cut it. Likewise with password-protected
pages. Some websites block robots through exclusion rules
(see page 326), which stops the Google bot cold.

Finally, remember that Google may create ads that aren’t ap-
propriate for your site. For example, you might be discussing
the pros and cons of the programming language Python, and
Google might respond with a promotional ad for a pet store.
Often, Google will figure out this sort of problem on its own,
both by analyzing your pages and by discarding ads that
don’t generate many clicks. But you may be able to help it
rule out some inappropriate options using the ad-blocking
feature. To get started, log into AdSense and click the “Allow
& block ads” tab.

Google-Powered Searches
Google gives you another way to please your visitors (and earn some cash in the pro-
cess). You can add a search box to your pages, letting visitors launch Google queries
right from your site. Even better, you get the earnings for any ads they click in the
search results—a feature Google calls (rather unimaginatively) AdSense for Search.

From your AdSense account, you can easily add a Google search box to your site:

1. Log into your AdSense account, and then click the “My ads” link.

This is the same place you create ads, but you want to go to a different subsec-
tion to build your search box.

2. In the panel on the left, click Search to see its subcategories. Click the
“Custom search engines” link, and then click the “New custom search
engine” button.

Now you can fill in the information for your search box.

CHAPteR 13: MAKING MONEY WITH YOUR SITE 431

GOOGLE
ADSENSE

3. Name the search.

The name lets you retrieve your customized search box, tweak your settings,
and get new code, without starting from scratch.

4. Choose the search type.

Choose “The entire web” to create a search box that uses the familiar Google
search engine we all know and love.

Choose “Only sites I select” to restrict the search to a limited set of sites. You
can use this feature to limit searches to your site only.

5. If you choose to limit the search, fill in a list of searchable sites in the “Se-
lected sites” box (Figure 13-12).

You can enter individual pages (as in http://www.NewTravelDiaries.com/trip_
arctic.html), an entire folder (http://www.NewTravelDiaries.com/trips), or your
whole site (as in http://www. NewTravelDiaries.com), which is the most common
choice. If you need to enter multiple URLs, put them on separate lines in the box.

 NOTE  Even when you limit searches to your website, Google polls its standard, centralized catalog of web
pages—it just limits the results it displays to the pages from your site. If Google doesn’t have your pages in its
catalog (either because you just created the site or because Google doesn’t know your site exists), these pages
won’t turn up in any searches, no matter how you customize the search box. For a refresher about getting Google
to notice you, see page 320.

FiGURE 13-12
Usually, when you pick
“Only sites I select,” you
enter just one site in the
“Selected sites” box—
yours. That way, visitors
can search your pages
without being tempted
to go to another site on
the Web. For example, if
you have dozens of pages
of travel stories, a visitor
could home in on the page
she wants by searching for
“funny story about rubber
chicken in Peru.”

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn432

GOOGLE
ADSENSE

6. Fill in the Keywords box (optional).

Google automatically adds any keywords you include here to your visitors’
searches. This gives you a way to design a search box that’s targeted to certain
types of content. For example, if your site is all about golf, you might include the
keyword golf. That way, if a visitor searches for tiger, the search returns pages
about Tiger Woods, not the African savanna.

7. Check the SafeSearch box, if you want to switch it on.

SafeSearch filters profanity and sexual content from search results. You’ll find
SafeSearch useful in three situations: First, it’s de rigueur for children’s sites.
Second, it’s useful if you want to shield your guests from possibly offensive
search results. And finally, it’s handy if your website deals with a topic that
shares some keywords with adult-only sites. For example, if you create a breast
cancer awareness page, you don’t want someone to type “breast exam” into
your web search box and dig up the wrong goods.

8. Tweak the country and language settings on the page, if they apply to you.

These settings identify your website’s language and geographic location. As
you probably know, Google has country-specific pages that can tweak search
results, providing them in different languages or giving priority to local sites.

9. Optionally, click the plus-sign (+) box next to the “Custom channels” sec-
tion, and pick a custom channel.

You can place your search box in a specific channel, just as you can an ad. This
technique is useful if you have a Google search box on more than one website,
and you want to track ad clicks separately for each domain. See page 425 for
more about channels.

10. Click the plus-sign (+) box next to the “Search box style” section so you can
tailor the appearance of the Google search box (optional).

There’s not a lot to change here. You can alter the size of the search box and
the placement of Google’s logo, and choose between a white, black, and dark-
gray background.

11. Optionally, click the plus-sign (+) box next to the “Ad style” section so you
can customize how Google displays ads in its search results.

This way, the ads can blend in with your site’s color scheme. This feature is
almost the same as the color palettes for AdSense ads (page 424).

12. Optionally, click the plus-sign (+) box next to the “Search results” section
so you can customize how Google shows its search results.

Google gives you a few minor options for tweaking the placement of its logo.
But more important, you can choose where Google puts the search results with
the “Display results” setting. You have three choices:

CHAPteR 13: MAKING MONEY WITH YOUR SITE 433

AMAZON
ASSOCIATES

• Choose “on a Google page in the same window” to replace the current
page with Google’s standard search results page.

• Choose “on a Google page in a new window” to have the browser open
a new window with the search results in it. Visitors usually find pop-up
windows annoying, but this technique is handy if you want to make sure
your visitor doesn’t leave your website.

• Choose “on my website using an iframe” to keep your visitors on your
website, and show the search results alongside your content. This is every-
one’s favorite option, but it requires slightly more work because you need
to create two pages: one with the search box, and one that holds the search
results. Google gives you some markup to place on each page.

To use this option, you need to supply the URL for your search results page
(for example, http://www.NewTravelDiaries.com/searchresults.html). Don’t
worry if you haven’t created this page yet—you can create and upload it
when you finish with the search box. You also need to tell Google how wide
the search results should be. The standard option is 800 pixels, which is
a good choice if you don’t plan to pad the sides of your search page with
extra content (like ads or a menu bar). Google will inject the search results
into your page dynamically, in the same way that it inserts an ad every time
you view an AdSense page. If you have other content you want to show on
the page, you can place it above the search results.

13. Click the “Save and get code” button.

The final setup page includes the markup for your complete, customized search
box (see Figure 13-13) in a <form> element. (Page 487 has more about forms in
HTML.) As with the AdSense code, you can paste this HTML into any web page.

If you chose to use a search results page on your own site, you’ll get a second
box with the markup you need to create that page. It consists of a <div> element
and some JavaScript code, and works in much the same way as the AdSense
code. You simply place the <div> element where you want the search results
to appear.

Amazon Associates
As popular as ads are with website owners, they have one serious drawback: They
clutter up your pages. Once you perfect a design with carefully chosen pictures
and style sheets, you might not want to insert someone else’s ad. And although
Google ads aren’t as visually distracting as other ads can be, like animated banners
or pop-up windows, they still chew up valuable screen space. If you can’t bear to
disturb your web page masterpieces, you might be interested in a subtler option.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn434

AMAZON
ASSOCIATES

FiGURE 13-13
This example includes the
markup for the custom
search box (top) and
the search results listing
(bottom). As tempting as
it may be, resist the urge
to change the search box
markup, as Google strictly
forbids the practice.

Amazon Associates is the Web’s longest-running affiliate program. If you have a
personal site with a “favorite books” page, or if you just refer to the odd book here
and there, you might be able to make some extra money by signing up as an affiliate.

The basic idea is that you provide links to book pages and other product pages on
Amazon’s website. For example, if you write a blurb about a great recipe, you could
add a link to the Amazon page that sells the cookbook you’re quoting. The link
itself is a nice feature for your site, because it lets visitors branch out and possibly
get more information about the topic at hand. But the best part is what happens if
a visitor decides to buy the book. You wind up making a healthy commission of 4
percent of the book’s sale price.

CHAPteR 13: MAKING MONEY WITH YOUR SITE 435

AMAZON
ASSOCIATES NOTE  Amazon commissions aren’t just for books. You can provide links to pretty much everything for sale

on Amazon (except items that other retailers, like Target and Office Depot, sell). But Amazon Associates limits how
much you can make on non-book items. For example, with personal computers, you’re capped at a maximum
$25 commission per item. You can also earn more than 4 percent for some category types (like MP3 downloads)
or if you sell a certain number of items per month. These rules change from time to time, so make sure you scour
the Amazon Associates website carefully to get the lowdown.

Signing Up as an Associate
Signing up for the Amazon Associates program is even easier than joining AdSense.
Just follow these steps:

1. Go to http://affiliate-program.amazon.com, click the “Join now” button,
and then log in with your Amazon email and password.

To join the associates program, you need an Amazon account. If you don’t have
one, click “I am a new customer” to create one.

2. Enter your personal information, and then click Next

Amazon needs your name, address, and telephone number.

3. Enter your website information and then click Next.

You need to supply a website name, URL, and brief description (see Figure 13-
14). You also need to answer a long list of questions about how many visitors
you get, how you attract traffic, how you heard about Amazon Associates, how
you make money from your site (if you do), and so on.

4. Use your phone number to confirm your identity.

Enter your phone number and then click “Call me now.” An Amazon robot will
call you and recite a unique number. You must then type this number into the
box on the signup page to prove it’s really your phone number.

5. Tick the box that confirms you agree to Amazon’s terms, and then click
Finish to submit your application.

Shortly afterward, you’ll get a confirmation message saying that you’re approved
on a trial basis. This email includes your unique associate ID. This number is
important, because it’s the single piece of information you need to add to all
your Amazon links to start earning commissions. You can now use the associate
tools at http://associates.amazon.com (see the next section).

In a couple of days, after someone at Amazon verifies your site and confirms
that it doesn’t run afoul of the law, you’ll get a second message confirming that
you’re in for good.

http://affiliate-program.amazon.com
http://associates.amazon.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn436

AMAZON
ASSOCIATES

FiGURE 13-14
To become an Amazon as-
sociate, you need to supply
some basic information about
your site. Don’t skip this step,
because someone from Amazon
will take a quick look at your
site before she approves you for
the program.

6. If you’d like to tell Amazon how to pay you right now, click Specify Payment
Method Now.

You can choose your preferred form of payment even before Amazon officially
accepts you into its program. Your choices include payment by check, Amazon
gift certificate, or direct deposit to a U.S. bank account. Amazon doesn’t send
checks until you make at least $100, and it charges you a $15 processing fee.
Other payment types kick in once you reach $10, and they don’t involve any fees.

Generating Associate Links
Once you have your associate ID, you can create associate links, the hyperlinks that
send your visitors to Amazon. The trick is formatting the URLs the right way.

You add your associate ID to the very end of the associate link. For example, the
first email Amazon sends includes an example of the associate link to its home page.
It looks like this:

http://www.amazon.com?tag=prosetech-22

CHAPteR 13: MAKING MONEY WITH YOUR SITE 437

AMAZON
ASSOCIATES

In this example, the associate ID is prosetech-22. (Replace it with your own ID to
create a link for your website.) If someone follows this link and buys something, you
earn a 4 percent commission.

Here’s how you link to the Amazon page using an anchor element:

Visit Amazon and
help me save up to buy a Ferrari.

PRODUCT LINKS
You get better commissions with links that lead directly to a specific product. Amazon
offers several associate link formats, and here’s one of the simplest:

http://www.amazon.com/dp/ASIN/?tag=AssociateID

And here’s a specific example:

http://www.amazon.com/dp/0141181265/?tag=prosetech-22

You customized two details in this link, the ASIN (Amazon Standard Item Number) and
the associate ID. The ASIN is 0141181265 (which leads to the book Finnegans Wake)
and the associate ID is prosetech-22. Figure 13-15 shows you where to find an ASIN.

FiGURE 13-15
Every item in the Amazon
catalog has a unique ASIN,
which you can find in the
Product Details section
of that product’s page.
For books, the ASIN is
the same as the 10-digit
ISBN number (high-
lighted), which is the book
industry’s way of uniquely
identifying products.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn438

AMAZON
ASSOCIATES

Here’s an example of a complete link:

The development of the modern personal computer was first presaged in Joyce's

Finnegans Wake.

That’s all you need.

 NOTE  If a visitor follows a link to a specific Amazon product but goes on to buy something completely
different, it’s all good—you still get the same 4 percent commission.

ADVANCED LINKS
Amazon has a set of specialized tools that help you generate links. Using them, you
can create a range of snazzy links. Your options include:

• Links with thumbnail pictures

• Links to product categories (like equestrian magazines or bestselling kitchen
gadgets)

• Ad banners that advertise a specific Amazon department

• Amazon search boxes that let visitors perform their own queries

Even if you don’t want these fancier links (and if your life isn’t dedicated to selling
books, you probably don’t), there’s still good reason to build links with the tools
Amazon provides: its links have built-in tracking, so you can determine how many
people see each link.

 NOTE  Amazon tracking is very clever. Essentially, it embeds an <a> element within the link that requests
a tiny 1-pixel image from Amazon’s servers. When someone requests a page that contains one of these links, the
browser automatically fetches the invisible picture from Amazon. When Amazon sees the request for the invisible
picture, it knows someone saw the link, and it records a single impression (page view) in its tracking database.

Here’s how you use Amazon’s link-building tools:

1. Go to http://affiliate-program.amazon.com and log in.

This takes you to the Amazon Associates home page, which offers a variety of
reports for checking your sales progress to date, as well as tools for building links.

 TIP  For detailed information about the more ambitious things you can do with Amazon Associates, click
the Get Started Now button. You can also get invaluable advice from other associates by visiting the discussion
forums—look for the Discussion Boards link at the bottom of the menu bar on the left.

http://affiliate-program.amazon.com

CHAPteR 13: MAKING MONEY WITH YOUR SITE 439

AMAZON
ASSOCIATES

2. Click the “Links & Banners” tab. Then, in the pop-up menu, choose Product
Links.

Amazon lets you build many types of links. Product links point to individual
items on Amazon’s site. They’re generally the most useful. But if you plan to go
Amazon-crazy, feel free to explore all the other types of links.

3. In the search box, type the ASIN for your product, and then click Go.

If you don’t know the ASIN, select what you think is the most appropriate cat-
egory, and then type in the product name. When you click Go, Amazon searches
for the product and lists the results (see Figure 13-16).

FiGURE 13-16
When you build a link,
you can search for the
specific product you want.
This search works in more
or less the same way as
a search from Amazon’s
home page.

4. Click the Get Link button next to the product you want to link to.

You’ll see a page that shows you the product and previews the link you’re about
to create.

5. Choose the type of link you want by clicking one of the tabs on top (Figure
13-17).

You start out at the “Text and Image” tab, which creates a detailed box that
includes a product picture and price. To create a plain text link, click the Text
Only tab. To create a clickable book cover image, click the Image Only tab.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn440

AMAZON
ASSOCIATES

FiGURE 13-17
As you choose your link
options, Amazon previews
the result. You can choose
to make a text-and-image
link (top) or a plainer,
easier-to-integrate text-
only link (bottom).

6. Customize the appearance of your link.

You can pick the text and background colors. You can also choose whether your
page opens the product-page link in a new browser window, how big the image
is, what price information the product box includes, and what colors it uses.

7. Put the link on your page.

As you configure your link, Amazon puts the matching HTML in a text box un-
derneath. When you perfect your link’s appearance, copy that HTML and paste
it in one of your web pages.

When you create a text link, Amazon creates an anchor element that looks fairly
complex. (As described earlier, the anchor element contains an invisible ele-
ment that lets Amazon track how many times it displays the link.)

However, like all anchor elements, it’s relatively easy to put this element where you
want it. Just pop it into an existing paragraph, like this:

CHAPteR 13: MAKING MONEY WITH YOUR SITE 441

AMAZON
ASSOCIATES

<p>Lewis Carroll's work as a mathematician may have driven him insane,
as his famous book
The Hunting of the Snark

attests.</p>

 NOTE  Amazon puts the full title of the book inside the anchor element. This might make your link a little
longer than you intend, because it might include information about the edition or a byline. If that happens, just
edit the title down.

Amazon sends you monthly emails to let you know how much you’re earning, but if
you can’t stand the suspense, you can log into Amazon Associates any time. Click the
Reports tab (Figure 13-18) to get detailed information on how much you’re earning
per day, week, month, or quarter.

FiGURE 13-18
Amazon provides many
different types of reports.
To get a fascinating look at
the items your visitors are
buying, click Orders Report
in the menu on the left.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn442

PAYPAL
MERCHANT

TOOLS

DESIGN TIME

Sell Your Custom Designs
It’s no secret that the Web is full of small-scale businesses
selling handmade and custom goods. You can expand your
product offerings beyond those from Amazon, but it might take
some effort. Depending on what you want to sell, you might
need to search out the right wholesalers or craftspeople, or
just build a woodworking shop in your basement. But if you
have something a bit simpler in mind, like customized clothes,
mugs, hats, magnets, posters, buttons, iPhone cases, or yoga
mats, then CafePress (www.cafepress.com) and Zazzle (www.
zazzle.com) are your new best friends.

Both sites let you design your own goods and offer them for
sale on a personalized section of the website (no HTML coding
required). The genius of CafePress and Zazzle is that they let
you use your own artwork. If, for example, you want to create
a custom beer mug, you aren’t limited to typing in a cheesy
message and picking a preset font. Instead, you can upload
your own graphics file (whether it ’s a digital picture or a
Photoshop masterpiece), and slap that on the side of your
product. Of course, life isn’t perfect.

On many products, CafePress and Zazzle limit where you
can place your pictures. For example, you can put graphics
on the front and back of most clothes, but you can’t fill the
whole surface or wrap around the sides. (Zazzle’s shoes are
an eye-catching exception. They let you wrap graphics along
the entire outer surface.)

Once you create a design, you can order one for yourself or
peddle it to an audience of millions by sending your visitors
to an automatically generated store page on the CafePress or
Zazzle site. If someone buys an item, you get a small cut of the
price, and CafePress or Zazzle processes the payment, prints
the item, and ships it to your customer.

If you’re interested in the idea but still in search of some inspi-
ration, head to Zazzle and click the Search button without typ-
ing in a product name. You’ll see a list of everything they offer,
organized so that the bestsellers come first. Timely t-shirts with
corny graphics, sophomoric slogans, or a reference to politics
or current events are always among the most popular items.

PayPal Merchant Tools
Unless your website is wildly popular, ads and other affiliate programs will net you
only spare change. If you have all-consuming dreams of web riches, you need to
actually sell something.

You don’t need to go far to run into self-made Internet commerce kingpins. A
surprisingly large number of people have made their living with creative products.
Examples include t-shirts with political catchphrases, empty bottles of wine with
R.M.S. Titanic labels, and collectable toys from a relative’s basement. Your path to
a thriving e-business might involve little more than buying tin spoons from Honest
Ed’s and decorating them with macramé.

No matter how good your goods, you need a way to sell vast quantities of them
easily and conveniently. Very few people will go through the hassle of mailing you
a personal check. But if they can make an impulse purchase with a credit card, your
odds of making a sale improve significantly.

www.cafepress.com
www.zazzle.com
www.zazzle.com

CHAPteR 13: MAKING MONEY WITH YOUR SITE 443

PAYPAL
MERCHANT

TOOLS
Accepting credit cards isn’t the easiest thing in the world to do. You can do so two ways:

• Open a merchant account with a bank. This is the traditional way businesses
accept credit cards. Requirements vary from country to country, but you may
need a business plan, an accountant, and some up-front capital.

• Use a third-party service. A number of companies accept credit card pay-
ments on your behalf in exchange for a flat fee or a percentage of the sale. In
this chapter, you’ll learn how to use one of the best—PayPal.

Unless you have a large business, the second option is always better because of the
additional risks that accompany web-based sales.

First of all, the Internet is an open place. Even if you have a merchant account, you
need a secure way to accept credit card information from your customers. That
means the credit card number needs to be encrypted (scrambled using a secret
key) so that Internet eavesdroppers can’t get at it. Most webmasters don’t have a
secure server sitting in their basement, and many web hosts charge extra for the
privilege of using theirs.

Another problem is that when you conduct a sale over the Web, you don’t have
any way to collect a signature from the e-shopper. This makes you vulnerable to
chargebacks (see the box on page 444).

 NOTE  PayPal is a staggeringly large Internet company that offers its payment services in nearly 200 countries.
If you were to rank banks by the sheer number of accounts they hold, PayPal (with roughly 150 million account
members) would be one of the largest banks in the world.

Signing Up with PayPal
Once you sign up with PayPal, you can accept payments from customers across the
globe. Here’s how you go about it:

1. Head to the PayPal website (www.paypal.com) and click the Sign Up link
on the home page.

This takes you to PayPal’s Sign Up page.

2. Choose your country and language.

3. Choose the type of account you want to create (Personal, Premier, or Busi-
ness), and then click the Get Started button in the corresponding box.

A personal account is ideal if you want to use PayPal to buy items on sites like
eBay using your credit card or with funds from your bank account. You can also
accept money transfers from other PayPal members without having to pay any
fees. However, there’s a significant catch: Personal accounts can’t accept credit
card payments. As a result, customers who want to do business with you need
to have money in their PayPal accounts (which they get by selling something
and receiving a PayPal payment, or by transferring money into their account
from a linked bank account).

www.paypal.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn444

PAYPAL
MERCHANT

TOOLS

FREQUENTLY ASKED QUESTION

Understanding Chargebacks
What’s a chargeback?

Credit card companies issue a chargeback when a cardholder
asks them to remove a charge from their account. The buyer
may claim that he never made the purchase in the first place
or that the seller didn’t live up to his end of the agreement. A
chargeback can occur weeks or months after someone buys
an item.

From the buyer’s point of view, a chargeback is relatively
easy. He simply phones the credit card company and reverses
the transaction. The money you made is deducted from your
account, even though you already shipped the product. If you
want to dispute the buyer’s claim, you’re in the unenviable
position of trying to persuade a monolithic credit card company
to take your side. Many small businesses don’t dispute charge-
backs at all, because the process is too difficult, expensive,
and unsuccessful.

However, when you use a third-party service, the odds tilt in
your favor. If the buyer asks for a chargeback, the chargeback

is made against the third-party company that accepted the
payment (like PayPal), not you. And even though PayPal isn’t
as large as the average multinational bank, it’s still a major
customer of most credit card companies, which means it has
significant clout to fight a chargeback.

The end result is that buyers are less likely to charge back items
when they pay through PayPal. And if they do, PayPal gives
you the chance to dispute the chargeback. It even lets you
contact the buyer to see if there’s a simple misunderstanding
(for example, to check whether you sent the item to the wrong
address). And if you’re really paranoid, you can use PayPal’s
Seller Protection policy, which, if you take a few additional
steps (like retaining proof of delivery), insures you for up to a
$5,000 loss. For more information about how PayPal handles
chargebacks, check out www.paypal.com/chargeback. To learn
about PayPal’s Seller Protection program, refer to www.paypal.
com/SellerProtection.

A premier account is the best way to run a small business. You can send money
(great if you crave a rare movie poster on eBay) and accept any type of pay-
ment that PayPal accepts, including both credit and debit cards. You also get
to use PayPal’s ecommerce tools. However, PayPal charges you a fee for every
payment you receive, an amount that varies by sales volume but ranges from
1.9 percent to 2.9 percent of the payment’s total value (with a minimum fee of
30 cents). That means that on a $25 sale, PayPal takes about $1 off the top. If
you accept payments in another currency, you surrender an extra 2.5 percent.
To get the full scoop on fees and to see the most current rates, refer to www.
paypal.com/fees.

A business account is almost identical to a premier account, except that it al-
lows multiple logins. This is the best choice if you have a large business with
employees who need to use your PayPal account to help you manage your site.

4. Enter your email address and choose a password, and then fill in your name,
address, and phone number.

Make your password complex; you don’t want a malicious hacker guessing it
and using your PayPal account to go on an electronic buying binge.

www.paypal.com/chargeback
www.paypal.com/SellerProtection
www.paypal.com/SellerProtection
www.paypal.com/fees
www.paypal.com/fees

CHAPteR 13: MAKING MONEY WITH YOUR SITE 445

PAYPAL
MERCHANT

TOOLS TIP  As a general rule, guard your PayPal account information the same way you guard your bank PIN. If
you’re really paranoid, don’t use your PayPal account to buy items on other websites. Don’t use your credit card
to do so either—electronic eavesdroppers can snag your info and then head out on a first-class cruise to Ibiza.

5. Finally, click “Agree and Create Account” to complete the process.

PayPal sends you an email confirmation immediately. Click the link in the mes-
sage to activate your account, and then you can start creating PayPal buttons
and shopping carts to collect payments (see below for details).

Accepting Payments
PayPal makes creating ecommerce web pages ridiculously easy. One way is to add
a Buy Now button to any page on your site:

1. Go to www.paypal.com and sign in.

You start out on a page that summarizes your account history, including recent
purchases and credits.

2. Scroll down until you see the “Selling tools” link near the bottom of the
sidebar on the left. Click it.

You’ll see a variety of tools for collecting money, as explained in Figure 13-19.

FiGURE 13-19
For a simple way to put PayPal on
your site, nothing beats a button.
You can create a basic Buy Now
button, a button for a shopping cart,
a donation button, or a subscription
button, among other options.

www.paypal.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn446

PAYPAL
MERCHANT

TOOLS
3. Click the Create Button link.

PayPal displays the page where you configure your button’s appearance and
set the price of your product (Figure 13-20).

FiGURE 13-20
Here you specify the
necessary info for a Buy
Now button.

4. Choose Buy Now as the button type.

PayPal has plenty more types of buttons. You’ll create a shopping cart button
on page 449.

5. Give your item a name and, if you want to keep track of it, a product code.
Then supply the price and currency.

Don’t worry about locking out international visitors when you set your currency.
Credit card companies are happy to charge Canadian customers in U.S. dollars,
U.S. customers in euros, and European customers in rupees. Just choose the
currency you think your buyers expect to see.

6. If you want to let customers specify options for the products they buy, fill
in the information in the “Customize button” box.

You can collect extra buying information from your buyers in three nifty ways:

• “Add drop-down menu with price/option” lets you give buyers a list
of options for your product, each with a different price (see Figure 13-21).
For example, you could let a buyer choose between a plain, premium, or
organic tin of hamster food.

CHAPteR 13: MAKING MONEY WITH YOUR SITE 447

PAYPAL
MERCHANT

TOOLS
• “Add drop-down menu” gives your buyers a list of options, but without

changing the product’s price. For example, you could use a list like this to
let buyers choose the color of the embroidered undergarments they’re
about to buy.

• “Add text field” adds a text box where buyers can type in anything. Use
this if you need to collect information that varies, like the name your buyer
wants engraved on a magnetic screwdriver.

FiGURE 13-21
With a drop-down list of
options, you can collect
additional information
about the type of product
your visitor wants. This
is useful if you offer the
same item in multiple
sizes or colors (as shown
here). To add another color
to the list, click the “Add
another option” link under
the current set of options.
After you click Done,
PayPal updates the button
preview on the right to
show you what the list will
look like.

7. To change the appearance of a button, click “Customize appearance.”

PayPal gives you limited options for the button’s size and text.

The standard Buy Now button is perfectly usable but a little plain. If you cre-
ated a nicer button picture, upload it to your site, and then supply the URL for
it here. (You can always change the HTML that PayPal generates if you want to
use a different button later on.)

8. Scroll down and fill in any additional options you want.

PayPal gives you a heap of extra payment possibilities. You can add a flat fee
for shipping and a percentage for sales tax. You can instruct PayPal to track
how many items you have in stock and to stop selling your product when it’s
sold out—all you do is fill in the number of items you currently have.

And PayPal has an entire section of advanced possibilities, like whether you
need a buyer’s address (PayPal assumes you do), if you want your customers

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn448

PAYPAL
MERCHANT

TOOLS
to fill in additional comments with their payments (ordinarily they can’t), and
where PayPal should send visitors after they complete or cancel a payment
(you can send shoppers to a specific URL on your site, rather than to PayPal’s
generic pages).

9. Click Create Button.

PayPal displays a text box with the markup for your customized Buy Now but-
ton. Copy and paste the markup into your web page.

When you create a Buy Now button, PayPal puts everything inside a <form> element
(explained on page 489). Here’s an example of a button for a pair of handmade
origami socks:

<form action="https://www.paypal.com/cgi-bin/webscr" method="post">
 <input type="hidden" name="cmd" value="_s-xclick" />
 <input type="hidden" name="hosted_button_id" value="633788" />
 <table>
 <tr><td>
 <input type="hidden" name="on0" value="Choose a Color" />
 Choose a Color</td></tr><tr><td>
 <select name="os0">
 <option value="Yellow">Yellow</option>
 <option value="Green">Green</option>
 <option value="Tomato">Tomato</option>
 <option value="Chartreuse">Chartreuse</option>
 </select>
 </td></tr>
 </table>
 <input type="image" border="0" name="submit" alt=""
 src="https://www.paypal.com/en_US/i/btn/btn_buynowCC_LG.gif" />
 <img src="https://www.paypal.com/en_US/i/scr/pixel.gif" alt=""
 width="1" height="1" />
</form>

If you added any options, you’ll see <select> and <option> elements in the HTML
that define the relevant list boxes (page 490). The form also includes the Buy Now
button. Clicking it sends the form to PayPal. You can change the button’s src at-
tribute (bolded in the listing above) to point to a different image file. PayPal inserts
the invisible tracking image (pixel.gif in the example above) after the code for the
Buy Now button. (This tracking technique is the same one Amazon uses.)

 TIP  As long as you don’t tamper with the <input> fields and you keep everything inside the <form> tags,
you can tweak the markup PayPal creates for you. For example, you can add other elements to the form or gussy
it up with a style sheet. Or you might want to change the layout by removing the invisible table (represented by
the <table>, <tr>, and <td> elements) that PayPal uses to organize your button and your options.

CHAPteR 13: MAKING MONEY WITH YOUR SITE 449

PAYPAL
MERCHANT

TOOLS
So what happens when a shopper clicks the Buy Now button and submits this form?
The action attribute in the very first line of the code above tells the story: The browser
sends the buyer’s information to PayPal using the action URL (which is https://www.
paypal.com/cgi-bin/webscr). As it does, it uses a secure channel to prevent Internet
eavesdroppers—that’s why the URL starts with “https” instead of “http.”

Notice that this form doesn’t include key pieces of information, like the product name
or price. That’s a safety measure designed to prevent troublemakers from tamper-
ing with the markup in your web page and paying you less than your products are
worth. When PayPal receives the form data, it retrieves the hidden ID value (633788
in the example above), and looks it up in its giant, private database of products to
identify the relevant product, price, and seller (you).

In fact, the PayPal markup doesn’t provide any information about the item you’re
selling. You put the item name, picture, description, and price into your web page
(probably before the Buy Now button). Here’s an example:

<!DOCTYPE html>
<html>
<head>...</head>
<body>
 <h1>Handmade Origami Socks</h1>
 <p>
 You've waited and they're finally here. Order your own
 pair of origami socks for only $26.95 and get them in time
 for the holidays. What better way to show your loved ones how
 poor your gift giving judgement really is?</p>
 <form action="https://www.paypal.com/cgi-bin/webscr" method="post">
 ...
 </form>
</body>
</html>

Figure 13-22 shows the result. This example displays the standard PayPal ordering
page, but you can customize it with your own logo (see the next section).

Building a Shopping Cart
PayPal’s Buy Now button gives you a great way to make a quick sale. But if you
dream about an ecommerce empire, you need to create a store where visitors can
collect several items at once and pay for them all at the same time.

To give your buyers this kind of convenience, you need a shopping cart, which is a
staple of ecommerce websites. The good news is that you don’t need to program
your own cart—you can use a prebuilt one from PayPal, which integrates smoothly
into your website.

https://www.paypal.com/cgi-bin/webscr
https://www.paypal.com/cgi-bin/webscr

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn450

PAYPAL
MERCHANT

TOOLS

FiGURE 13-22
Top: The Buy Now button
waits patiently on your
page.

Bottom: Clicking the Buy
Now button starts a secure
checkout process using
PayPal. Your visitor can
pay for an item by credit
card, and you both get
an email confirming the
transaction. Then it’s up to
you to fulfill your end of
the deal.

Creating a PayPal shopping cart is remarkably similar to creating a Buy Now button
(so if you haven’t tried that, you might want to play around with it before you go any
further). The basic idea is that you create a separate “Add to Cart” button for each
item you sell. You get many of the same options you did with the Buy Now button.
For example, you can set a price, product code, shipping charges, and so on. The
difference is that when visitors click an “Add to Cart” button, PayPal doesn’t send
them straight to a checkout page; it displays a shopping cart page in a new window.
Visitors can keep shopping until they have everything they want. Then they click a
Checkout button to complete their purchase.

CHAPteR 13: MAKING MONEY WITH YOUR SITE 451

PAYPAL
MERCHANT

TOOLS
To show you how this works, the following example uses the page pictured in Figure
13-23 as a starting point. This example also shows a great use of style-based layout.
Check out the downloadable samples—available from the companion site at http://
prosetech.com/web—to try it out for yourself.

FiGURE 13-23
Right now, this BrainFood page
has a great list of products
but no way for your visitors
to make an impulse purchase.
You can change that by adding
a PayPal shopping cart button.

CREATING A CUSTOM PAGE STYLE
Before you create your shopping cart, you can take an extra step to really personalize
your payment page. If you’re happy with the PayPal standard, feel free to skip to the
next section. But if you’d like to have your company logo appear on the shopping
cart pages, keep reading.

1. If you’re not already there, head to www.paypal.com and sign in.

2. Scroll down and click the “Seller preferences” link at the bottom of the
panel on the left.

This brings you to a page with a pile of information about your preferences. In
this case, you’re interested in the “Selling online” section.

http://prosetech.com/web
http://prosetech.com/web
www.paypal.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn452

PAYPAL
MERCHANT

TOOLS
3. In the “Selling online” section, find the “Custom payment pages” setting,

and click the Update link next to it.

This takes you to a page that lists all the page styles you’ve created. At first,
you start off with only a single style—the PayPal standard, which sports a basic
PayPal logo.

4. Click Add to create a new page style.

PayPal displays a set of options that let you define how your page looks and
functions.

5. Fill in whatever information you want to customize on your payment page.

First, type a descriptive title into the Page Style Name box to help you remember
which style is which.

Next, use the Header Image URL to point to the picture you want to appear in
the top-left corner of the shopping cart page. You can use an image that’s up
to 750 pixels wide and 90 pixels high, and you need to upload it to your web
server. Optionally, you can supply a Logo Image URL to set a similar picture for
the order summary page (make this one 190 x 60 pixels).

 NOTE  Because PayPal’s shopping cart is a secure page, when you use a custom logo, the shopper may get
a message informing her that there are some insecure items on the page (namely, your picture). To prevent that
from happening, talk to your web hosting company about putting your picture on a secure (HTTPS) server.

You can specify color codes for the Header Background Color, Header Border
Color, and Background Color settings. This part is optional; leave it out if you’re
happy with the standard white.

6. Click Save to store your page style.

Before you commit, you can click Preview to take a sneak peek at what the
payment page looks like.

7. Select your new page style, and then click Make Primary.

All your visitors will see your customized page when they check out.

BUILDING THE SHOPPING CART BUTTONS
Now you’re ready to build the buttons that add items to your customer’s cart. Here’s
how:

1. If you’re not already there, head to www.paypal.com and sign in.

2. Scroll down and click the “Selling tools” link on the left.

You’ve been here before.

www.paypal.com

CHAPteR 13: MAKING MONEY WITH YOUR SITE 453

PAYPAL
MERCHANT

TOOLS
3. Click the “Create button” link.

A shopping cart functions a bit differently from the Buy Now button you built
before, but you still need to supply the same product and price information.

4. For the button type, choose “Shopping cart.”

PayPal displays a page where you configure the “Add to Cart” button for a
single item.

5. Give your item a name and, if you want to keep track of it, a product code.
Then supply the price, currency, and any other relevant information.

These settings are exactly the same as those for a Buy Now button.

6. Click Create Button.

You’ll see a text box with the markup for your customized “Add to Cart” button.
Copy the markup and paste it into your web page. But remember, this “Add to
Cart” code applies to a single, specific product. If you have more than one item
on a page (as in the BrainFood example), you need to create multiple buttons. To
do so, click “Create similar button” and return to step 3. When you finish building
all the buttons and copying them into your page, continue with the next step.

7. Create a View Cart button.

Your shopping cart wouldn’t be complete without a button that lets shoppers
see what’s in their carts (and then head to the virtual checkout counter). To
create one, click the “Create a View Cart button” link.

You have virtually no options for the View Cart button, as its purpose is pretty
straightforward. You can use the standard View Cart button or supply a URL
that points to a button of your own design. Once you make your selection, click
Create Button, and then copy the markup into your page along with all the other
buttons. Figure 13-24 shows the result.

Withdrawing Your Money
PayPal safely stashes all your payments in your PayPal account (which is like a
virtual bank account). You can see the balance at any time. Just log in and click the
My Account tab.

If you earn a small amount of money, you may be happy leaving it with PayPal so you
can buy other stuff on a variety of websites, from eBay to Etsy. But if you’re raking
in significant dough, you’ll want to transfer some of it to the real world.

The most common approach is to send the money to your bank account. To do this,
you need to give PayPal your bank account information. PayPal waives its transfer
fee as long as your withdrawal meets a certain minimum (like $150). However, your
bank may apply an electronic transaction fee. Depending on the country you live in,
PayPal may offer other withdrawal options, too. For example, it may let you transfer
money to a debit card or a credit card.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn454

PAYPAL
MERCHANT

TOOLS

FiGURE 13-24
Top: Here’s the revised
BrainFood page, with
shopping cart buttons.

Bottom: After clicking a
few “Add to Cart” buttons,
here’s the shopping cart
page your visitors will see
(in a separate window).
All they need to do is click
Check Out to complete a
purchase.

To get started with any of these approaches, log in, click the My Account tab, and
then click the Withdraw link underneath and follow the instructions.

Interactivity and
Multimedia

PART

4

CHAPTER 14:

 JavaScript: Adding Interactivity

CHAPTER 15:

 Dynamic Buttons and Menus

CHAPTER 16:

 Audio and Video

457

CHAPTER

14

JavaScript is a simplified programming language designed to beef up web pages
with interactive features. It gives you just enough programming muscle to add
some fancy effects, but not enough to cause serious damage to your site if your

code goes wonky. JavaScript is perfect for creating pop-up windows, embedding
animated effects, and modifying the content on your web page. On the other hand,
it can’t help you build a hot ecommerce storefront; for that, you need the PayPal
tools described in Chapter 13 or a server-side programming platform (see page 458).

The goal of this chapter isn’t to teach you the details of JavaScript programming—it’s
to give you enough background so you can find great free JavaScript code online,
understand it well enough to make basic changes, and then paste it into your pages
to get the results you want.

 NOTE  In fact, you’ve already used JavaScript (perhaps unwittingly) in some of the examples in this book.
You used it to track visitors to your site with Google Analytics (page 332), to fetch a suitable block of ads for your
AdSense-enabled web page (page 427), and to grab a list of your recent tweets to show on your site (page 362).
In all these cases, you used a block of ready-made JavaScript code (or a reference to a ready-made JavaScript
file). You got the benefits of JavaScript interactivity without needing to write a line of code yourself. Now you’ll
learn how JavaScript actually works.

Understanding JavaScript
The JavaScript language has a long history; it first hit the scene with the Netscape
Navigator 2 browser in 1995. Internet Explorer jumped on the bandwagon with

 JavaScript: Adding
Interactivity

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn458

UNDERSTANDING
JAVASCRIPT

version 3. Today, all modern browsers run JavaScript, and it’s become wildly popular
as a result.

Here’s what JavaScript can do:

• Dynamically insert new content into a web page or modify an existing HTML
element. For example, you can display a personalized message to your visitors
(“Hello, Joe!”) or make titles grow and shrink perpetually (see the example on
page 477).

• Gather information about the current date, your visitor’s browser, or the text
your visitor types into a form. You can display any of this information on a web
page or use it to make decisions about what your page does next. For example,
you could stop visitors from going any further in your site until they type in an
email address.

• React to events that take place in a browser. For example, you can add JavaScript
code that runs when a page finishes loading or when a visitor clicks a picture.

• Talk to a program running on a web server. JavaScript can poll the server for
a recent stock quote, for example, or for a bunch of records from a company
database. This is one task you won’t see covered in this chapter, because it
requires some serious programming mojo to write the non-JavaScript code
that runs on the web server.

It’s just as important to understand what JavaScript can’t do. JavaScript code is
sandboxed, which means that a browser locks JavaScript-containing pages into a
carefully controlled place in your guests’ computer memory, known as a sandbox. As
a result, the code can’t perform any potentially risky tasks on your visitor’s computer,
like sending orders to a printer, opening files, running other programs, reformatting
a hard drive, and so on. This design ensures good security.

 NOTE  JavaScript is thoroughly different from the Java language (although the code sometimes looks
similar, because the two share some code-writing rules). Java is a full-fledged programming language, every bit
as powerful—and complicated—as languages like C# and Visual Basic.

Server-Side and Client-Side Programming
To understand how JavaScript fits into the web universe, it’s important to understand
the two types of programming on the Web.

When you use a search engine like Google or go to an ecommerce site like Amazon,
you connect to a high-powered piece of software known as a server-side applica-
tion, which runs on a web server. When you visit one of these sites, you send the
server-side program information, like the keywords you want to search for or the
book you want to buy. The program, in turn, consults a massive database and spits
out some HTML that creates the page you see in your browser.

Server-side applications rule the web world, because there’s virtually nothing they
can’t do. However, they’re difficult to program. Not only do developers need to worry

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 459

UNDERSTANDING
JAVASCRIPT

about getting server-side programs to generate HTML for a browser, but they also
need to make sure the programs can run all kinds of complex code and tap giant
databases—all the while ensuring that the site runs just as well when millions of
people view it as it does when only one person visits it. This is hard work, and it’s
best handled by the poor souls we call programmers.

Client-side applications, on the other hand, use a completely different model. They
embed small, lightweight programs inside an ordinary HTML page. When a browser
downloads the page, the browser itself runs the program (assuming your security
settings or compatibility issues haven’t disabled the program). Client-side programs
are much less powerful than those on the server side—they can’t reliably poll the
huge databases stored on web servers, for example, and for security reasons they
can’t directly change most things on your computer. However, they’re much simpler
to create.

 NOTE  The distinction between server-side and client-side programs is sometimes muddied by the fact that
top-flight websites use both. For example, Amazon uses fine-tuned JavaScript for its pop-up menus and “Look
Inside” feature, which lets you browse a book. However, all the serious stuff, like tracking orders, processing credit
cards, and storing customer reviews, happens on the web server.

The Evolution of JavaScript
JavaScript started out life as a bit of a toy. It wasn’t as powerful as a full-fledged pro-
gramming language or browser plug-in like Flash. Professional coders sneered at it.

However, JavaScript had simplicity on its side. Hobbyists loved the fact that you
could embed basic instructions (like “scroll that heading from left to right” or “pop
up an ad for fudge-flavored toothpicks in a new window”) right inside your web
pages. And even web novices who didn’t know all the ins and outs of the JavaScript
language could copy a cool script from a free website, paste it into a page, and get
instant gratification.

But these conveniences paled next to JavaScript’s real winning feature: its universal-
ity. Today, JavaScript runs on any browser and on virtually every device, including
tablets, smartphones, and Apple devices that don’t support Flash. And you never
need to install JavaScript or configure it—it just works. That makes it the safe choice
for any type of site, from an ecommerce storefront to a FreeCell clone. These days,
when big companies create web applications, they use one of a variety of server-
side programming platforms (including ASP.NET, PHP, JSP, Perl, Ruby, Node.js, and
more) but stick with ordinary JavaScript to power the client-side parts.

This trend is accelerating with HTML5. The latest version of the HTML language
comes bundled with a pile of next-generation standards that extend JavaScript. In
fact, that’s a large part of the reason why HTML5 attracted so much attention and
went from outsider status to an accepted standard in record time. When HTML5
is finalized and implemented in modern browsers, developers will be able to use
JavaScript to locate a web surfer’s geographic location, draw dynamic graphics, and

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn460

JAVASCRIPT 101
even take control of webcams and microphones. So consider the time you spend
learning JavaScript today an investment in the future of your web page-building skills.

JavaScript 101
Now that you’ve learned a bit about JavaScript and why it exists, it’s time to dive in
and start creating your first real script.

The <script> Element
Every JavaScript program starts with a <script> block you slot somewhere into an
HTML document. Really, you have only two options:

• The <body> section. Put scripts you want your browser to run right away in
the <body> section of your HTML. The browser runs your script as soon as it
reaches the <script> element. Usually, JavaScript fans put their scripts at the
end of the <body> section. That way, you avoid errors that might occur if you
use a script that relies on another part of the page, and the browser hasn’t read
that section yet.

• The <head> section. If you place an ordinary script in the <head> section of
your HTML, it runs immediately, before the browser processes any part of the
markup. However, it’s more common to use the <head> section for scripts that
contain functions (see page 467). Functions don’t run immediately—instead,
you summon them when your visitor takes some kind of action on a page, like
moving a mouse.

 NOTE  You can place as many <script> blocks in a web page as you want.

A typical script block holds a series of programming instructions, wedged in between
the opening <script> tag and the closing </script> tag. To get a handle on how
these instructions work, consider the following example, which displays a JavaScript
alert box on your page:

<!DOCTYPE html>
<html>
<head>
 <title>JavaScript Test</title>
</head>
<body>
 <h1>You Will Be Wowed</h1>
 <p>This page uses JavaScript.</p>
 <script>
 alert("Welcome, JavaScript coder.")
 </script>
</body>
</html>

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 461

JAVASCRIPT 101
This script pops up a window that displays a message, as shown in Figure 14-1. When
you click OK, the message disappears, and it’s back to life as usual for your web page.

FiGURE 14-1
Because you positioned the <script> element for
this page at the end of the HTML markup, the browser
displays all the HTML first and then pops up the
alert box. If you put the <script> element at the
beginning of the <body> section (or in the <head>
section), the alert box would appear earlier, while
the page is still blank. The browser would then wait
until you clicked OK in the box before reading the rest
of the HTML page and displaying its contents.

You’re probably wondering exactly how this script works its magic. When a browser
processes it, the script runs all the code, going one line at a time. In this case, there’s
only one line:

alert("Welcome, JavaScript coder.")

This line uses a built-in JavaScript function called alert. A function is a piece of code
that performs a certain well-defined task and that you can use over and over again.
JavaScript has many built-in functions, but you can also build your own.

JavaScript’s alert() function requires one piece of information, known as an argu-
ment in programmer-speak. In this case, that piece of information is the text you
want the alert box to display. If you want to see an ordinary number, say 6, you
could type it in as is—that is, you don’t need to put it in quotes. But with text, there’s
no way for a browser to tell where text starts and stops. To compensate for this in
JavaScript, you put text inside single quotation marks (') or double quotation marks
("), as in the previous example.

 NOTE  Programmers call a distinct piece of text used in a program a string. “The friendly fox,” “a,” and
“Rumpelstiltskin” all qualify as strings.

That’s it. All this simple script does is call JavaScript’s alert() function. (Spend
enough time around programmers and JavaScript fans, and you’ll soon learn that
“call” is the preferred way to describe the action that triggers a function.) The

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn462

JAVASCRIPT 101
alert() function does the rest, popping up a pre-sized window that displays an
exclamation-point logo and whatever message you typed in. The box stays onscreen
until your visitor clicks OK.

 NOTE  To write this script, you need to know that there’s an alert() function ready for you to use—a fact
you can find out on one of the many JavaScript tutorial sites.

Based on what you now know, you should be able to change this script to:

• Display a different message (by changing the argument).

• Display more than one message box, one after the other (by adding more lines
in your <script> block).

• Display the message box before your browser displays the web page (by chang-
ing the position of the <script> block).

It’s not much to keep you occupied, but the alert() function does show you how
easily you can get started using and changing a simple script.

GEM IN THE ROUGH

Dealing with Internet Explorer’s Paranoia
If you run the alert example above in the Firefox browser, you’ll
find that everything works seamlessly. If you run it in Internet
Explorer, you won’t get the same satisfaction. Instead, you’ll
see a security warning in a yellow bar at the top of the page.
Until you click that bar and then choose Allow Blocked Content,
your JavaScript code won’t run.

At first glance, IE’s security warning seems like a surefire way to
scare off the bravest web visitor. But you don’t need to worry;
the message is just part of the quirky way Internet Explorer
deals with web pages that you store on your hard drive. When
you open the same page over the Web, Internet Explorer won’t
raise the slightest objection.

That said, the security warning is still an annoyance while
you’re testing your web page, because it forces you to keep ex-

plicitly telling the browser to allow the page to run JavaScript.
To avoid the security notice altogether, you can tell Internet
Explorer to pretend you downloaded your page from a web
server. You do this by adding a special comment called the
Mark of the Web. You place this comment immediately after
the <html> element that begins your page:

<html>
<!-- saved from url=(0014)about:internet
-->

When IE sees the Mark of the Web, it treats the page as though
it came from a web server, skipping the security warning and
running your JavaScript code without hesitation. To all other
browsers, the Mark of the Web just looks like an ordinary
HTML comment.

BROWSERS THAT DON’T SUPPORT JAVASCRIPT
It’s rare, but some browsers will recognize the <script> element but refuse to run
your code. This can happen if a browser doesn’t support JavaScript (for example, a
dusty text-only browser like Lynx) or if JavaScript has been switched off (which is
possible in paranoid corporate environments, but still very rare).

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 463

JAVASCRIPT 101
To deal with the occasional situation like this, you can use the <noscript> element,
which lets you supply alternate HTML content. You place the <noscript> element
immediately after the closing </script> tag. Here’s an example that displays a
paragraph of text for browsers that lack JavaScript support:

<script>
 alert("Welcome, JavaScript coder.")
</script>

<noscript>
 <p>Welcome, non-JavaScript-enabled browser.</p>
</noscript>

Variables
Every programming language includes the concept of variables, which are temporary
containers that store important information. Variables can store numbers, objects,
or pieces of text. As you’ll see throughout this chapter, variables play a key role in
many scripts, and they’re a powerful tool in any programmer’s arsenal.

DECLARING VARIABLES
To create a variable in JavaScript, you use the var keyword, followed by the name
of the variable. You can choose any name that makes sense to you, as long as you’re
consistent (and avoid spaces or special characters). This example creates a variable
named myMessage:

var myMessage

You’ll often want to create a variable and fill it with useful content all in the same
step. To store information in a variable, you use the equal sign (=), which copies
the data on the right side of the equal sign into the variable on the left. Here’s an
example that puts some text into myMessage:

myMessage = "Everybody loves variables"

Remember, you need to use quotation marks whenever you include a text string.
In contrast, if you want to copy a number into a variable, you don’t need quotation
marks:

myNumber = 27.3

JavaScript variables are case-sensitive, which means a variable named myMessage
differs from one named MyMessage. This detail seems innocent enough, but it’s the
source of plenty of headaches (see the box on page 464).

MODIFYING VARIABLES
One of the most useful things you can do with numeric variables is perform opera-
tions on them to change your data. For example, you can use arithmetic operators
to perform mathematical calculations:

var myNumber = (10 + 5) * 2 / 5

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn464

JAVASCRIPT 101

TROUBLESHOOTING MOMENT

Phantom Variables
To make matters a little confusing, JavaScript lets you refer
to variables you haven’t yet declared. Doing so is considered
extremely bad form and is likely to cause all sorts of problems.
However, it’s worth knowing that these undeclared variables
are permissible, because they’re the source of many an
unexpected error.

For example, a common mistake is to declare a variable (say,
bodyWeight) but then refer to it with a slightly different
name (like bodyWght) or slightly different capitalization
(like BodyWeight). In this situation, you’ve unwittingly

created two variables. The usual result is a page that behaves
strangely—for example, a page that performs a calculation but
gets the wrong answer.

There’s no easy way to defend yourself against this sort of
mistake. If you suspect you have a variable with multiple
personalities, you can add undefined variable checks to your
code. Essentially, this means you check whether a suspect
variable has been defined before you attempt to use it. You can
read more about this technique at http://tinyurl.com/undef-js.

These calculations follow the standard order of operations (parentheses first, then
multiplication and division, then addition and subtraction). The result of this calcu-
lation is 6.

You can also use operations to join together multiple pieces of text into one long
string. In this case, you use the plus sign (+):

var firstName = "Sarah"
var lastName = "Smithers"
var fullName = firstName + " " + lastName

Now the fullName variable holds the text “Sarah Smithers.” (The " " in the code
above tells JavaScript to leave a space between the two names).

AN EXAMPLE WITH VARIABLES
Although you’d need to read a thick volume to learn everything there is to know
about variables, you can pick up a lot from a simple example. The following script
inserts the current date into a web page. The relevant lines of code are numbered
for easy reference.

 <!DOCTYPE html>
 <html>
 <head>
 <title>JavaScript Test</title>
 </head>
 <body>
 <h1>What Day Is It?</h1>
 <p>This page uses JavaScript.</p>

http://tinyurl.com/undef-js

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 465

JAVASCRIPT 101
 <p>
 <script>
1 var currentDate = new Date()
2 var message = "The current date is: "
3 message = message + currentDate.toDateString()
4 document.write(message)
 </script>
 </p>
 </body>
 </html>

Here’s what’s happening, line by line:

1. This line creates a variable named currentDate.

It fills the variable with a new Date object (see number 3 below). You’ll know
JavaScript is creating an object when you see the keyword new. (You’ll learn
more about objects on page 474; for now, it’s enough to know that they come
with built-in functions that work more or less the same way as the functions
you learned about earlier.)

2. This line creates a new variable named message.

It fills the variable with the beginning of a sentence that announces the date.

3. This line adds some new text to the end of the message you created in line 2.

The text comes from the currentDate object. The tricky part is understanding
that the currentDate object comes with a built-in function, toDateString(),
that converts the date information it gets from your computer into a piece of
text suitable for display in a browser (see Figure 14-2). Once again, this is the
kind of detail you can only pick up by studying a good JavaScript reference.

4. This line uses JavaScript’s document object, which has a function named
write().

The write() function displays a piece of text on a web page at the current
location. The final result is a page that shows your welcome message (see
Figure 14-3).

Scripts can get much more complex than this. For example, they can use loops to
repeat a single action several times or make decisions using conditional logic. You’ll
see examples of some of these techniques later in this chapter, but you won’t get a
blow-by-blow exploration of the JavaScript language—in fact, that would require a
small book of its own. If you want to learn more, check out a book like JavaScript:
The Missing Manual (O’Reilly).

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn466

JAVASCRIPT 101

FiGURE 14-2
Some web page editors
help out when you write
JavaScript code. For
example, Expression Web
displays a drop-down
menu that shows you all
the functions an object
provides. Although there
probably isn’t enough con-
text for you to determine
how to use the date object
the first time out, it’s a
great way to refresh your
memory later on.

FiGURE 14-3
The document.write() command inserts text directly into a page,
wherever you position the script block. In this case, the command
displays the current date.

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 467

JAVASCRIPT 101

UP TO SPEED

Spaces and Line Breaks in JavaScript
JavaScript code is quite tolerant of extra spaces. In this chapter,
most of the examples use some sort of indenting to help you
see the structure of the code. But, as with HTML, you don’t
absolutely have to add these spaces.

The only rule in JavaScript is that every code statement needs
to be on a separate line. You can get around this limitation
by using the line-termination character, which is a semicolon
(;). For example, here’s how you can compress three code
statements onto one line:

alert("Hi"); alert("There"); alert("Dude");

Each semicolon designates the end of a code statement. This
strange convention comes from the Bizarro world of the C and
Java programming languages.

If you don’t want to put more than one code statement on the
same line, you don’t need the semicolons. However, they can
clarify your code, and they may help you catch certain types
of mistakes. Web experts almost always use semicolons, and
you’ll find them in most any script that you download from
the Web.

Functions
So far, you’ve seen scripts that use only a few lines of code. More realistic JavaScript
scripts can run to dozens of lines, and if you’re not careful, they can grow into a
grotesque tangle that leaves the rest of your page difficult to edit. To control the
chaos, smart JavaScripters almost always use custom functions.

A function is a series of code instructions you group together and give a name. In
a way, functions are like miniature programs, because they can perform a series of
operations. The neat thing about them is that once you create a function, you can
use it over and over again.

DECLARING A FUNCTION
To create a JavaScript function, start by deciding what your function should do (like
display an alert message), and then choose a suitable name for it (like ShowAlert-
Box). As with most things in the programming world, function names can’t have any
spaces or special characters.

Now you’re ready to put the ShowAlertBox <script> block in the <head> section of
your page. But this <script> block looks a little different from the examples you’ve
seen so far. Here’s a complete function that shows an alert box with a predefined
message:

<script>
 function ShowAlertBox() {
 alert("I'm a function.")
 }
</script>

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn468

JAVASCRIPT 101
To understand what’s going on here, it helps to break down this example and con-
sider it piece by piece.

Every time you declare a function, you start with the word function, which tells
JavaScript what you’re up to:

function

Then you add the name of your function, followed by two parentheses. You’ll use the
parentheses later to send extra information to your function, as you’ll see shortly:

function ShowAlertBox()

At this point, you’ve finished declaring the function. All that remains is to add the
code to the function that actually makes it work. To do this, you need the funny
curly braces shown in the alert box function above. The { brace indicates the start
of your function code, and the } brace indicates the end of it. You can put as many
lines of code as you want in between.

One tricky part of function writing is the fact that JavaScript sets notoriously loose
standards for line breaks. That means you can create an equivalent JavaScript func-
tion and put the curly braces on their own lines, like this:

<script>
 function ShowAlertBox()
 {
 alert("I'm a function.")
 }
</script>

But don’t worry—both functions work exactly the same way.

 TIP  You can put as many functions as you want in a single <script> block. Just add them one after the
other.

CALLING A FUNCTION
Creating a function is only half the battle. On their own, functions don’t do anything.
You have to call the function somewhere in your page to actually run the code. To
call a function, you use the function name, followed by parentheses:

ShowAlertBox()

 NOTE  Don’t leave out the parentheses after the function name. Otherwise, browsers will assume you’re
trying to use a variable rather than call a function.

You can call ShowAlertBox() anywhere you’d write ordinary JavaScript code. For
example, here’s a script that displays the alert message three times in a row to re-
ally hassle your visitors:

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 469

JAVASCRIPT 101
<script>
 ShowAlert()
 ShowAlert()
 ShowAlert()
</script>

This is the same technique you used to call the alert() function earlier. The differ-
ence is that alert() is built into JavaScript, while ShowAlertBox() is something you
created. Also, the alert() function requires one argument, while ShowAlertBox()
doesn’t use any.

FUNCTIONS THAT RECEIVE INFORMATION
The ShowAlertBox() function is beautifully simple. You just call it, and it displays an
alert box with the message you supplied. Most functions don’t work this easily. In
many cases, you need to send specific information to a function, or take the results
of a function and use them in another operation.

For example, imagine you want to display a welcome message with some standard
information in it, like the current date. But you also want the flexibility to change
part of the message by substituting your own witty words each time you call the
function. To do so, you need a way to call a function and to supply a text string with
your message in it.

To solve this problem, you can create a ShowAlertBox() function that accepts a single
parameter, or piece of information. In this case, that parameter is the customized text
you want displayed in the alert box. To add the parameter, you must first give it a
name, say customMessage, and put it in parentheses after the function name, like so:

function ShowAlertBox(customMessage) {
 ...
}

 NOTE  Technically, the pieces of information that a function receives (in this case, that’s customMessage)
are called parameters. When you call a function that has parameters, you pass the function one value for each
parameter. The value you supply is called an argument.

In other words, the same piece of information is called a parameter from the function’s point of view and an
argument from the calling code’s point of view. Sometimes, you’ll hear the terms “parameter” and “argument”
used interchangeably, but now you know the official difference.

There’s no limit to how many pieces of information a function can accept. You just
need to separate each parameter with a comma. Here’s an example of the Show-
AlertBox() function with three parameters, named messageLine1, messageLine2,
and messageLine3:

function ShowAlertBox(messageLine1, messageLine2, messageLine3) {
 ...
}

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn470

JAVASCRIPT 101
Here’s another example that shows a finished ShowAlertBox() function. It accepts
a single parameter named customMessage, and it uses that parameter to create the
text it displays in the alert box:

<script>
1 function ShowAlertBox(customMessage)
2 {
3 // Get the date.

4 var currentDate = new Date()
5
6 // Build the full message.
7 var fullMessage = "** IMPORTANT BULLETIN **\n\n"
8 fullMessage += customMessage + "\n\n"
9 fullMessage += "Generated at: " + currentDate.toTimeString() + "\n"
10 fullMessage += "This message courtesy of MagicMedia Inc."
11
12 // Show the message.
13 alert(fullMessage)
14 }
</script>

Here are some notes to help you wade through the code:

• Any line that starts with // is a comment (see lines 3 and 6). Good programmers
include lots of comments to help others understand how a function works (and
to help themselves remember what they did during a late-night coding binge).
The browser ignores them.

• To put line breaks into an alert box, use the code \n (lines 7, 8, and 9). Each \n
is equivalent to one line break. (This rule is for message boxes only. When you
want a line break in HTML, use the familiar
 element.)

• To build the text for the fullMessage variable (lines 7 to 10), the code uses
a shortcut in the form of the += operator. This operator automatically takes
whatever’s on the right side of the equal sign and pastes it onto the end of the
variable on the left side. In other words, this:

8 fullMessage += customMessage + "\n\n"

is equivalent to this longer line:

8 fullMessage = fullMessage + customMessage + "\n\n"

Using this function is easy. Just remember that when you call it, you need to supply
one argument for each parameter, separating them with a comma. In the case of
the ShowAlertBox() function above, you only need to supply a single value for the
customMessage variable. Here’s an example:

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 471

JAVASCRIPT 101
<script>
 ShowAlertBox("This web page includes JavaScript functions.")
</script>

Figure 14-4 shows the result of this script.

FiGURE 14-4
This message is built out of several pieces of text, one of which you
supplied as an argument to the ShowAlertBox() function.

FUNCTIONS THAT RETURN INFORMATION
Parameters let you send information to a function. You can also create functions
that send information back to the script that called the function in the first place.
The key to doing this is the return command, which you put right at the end of
your function. The return command ends the function immediately and spits out
whatever information your function generates.

Of course, a sophisticated function can accept and return information. For example,
here’s a function that multiplies two numbers (the numberA and numberB parameters)
and returns the result to anyone who’s interested:

<script>
 function MultiplyNumbers(numberA, numberB)
 {
 return numberA * numberB
 }
</script>

Here’s how you use this function elsewhere on your web page:

<p>The product of 3202 and 23405 is
<script>
 var product = MultiplyNumbers(3202, 23405)
 document.write(product)
</script>
</p>

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn472

JAVASCRIPT 101
This HTML includes a single line of text, followed by a block of script code. The script
calls the MultiplyNumbers() function, gets the result (the number 74942810), and
stuffs it in a variable named product for later use. The code then uses the document.
write() command to display the contents of the product variable on the page. The
final result is a paragraph with this text:

The product of 3202 and 23405 is 74942810

To use a typical script you get from the Web, you need to copy one or more functions
into your page, and they’re likely to look a lot more complex than what you’ve seen
so far. However, now that you understand the basic structure of a function, you can
wade through the code to get a fundamental understanding of what’s taking place
(or to at least pinpoint where the action goes down).

External Script Files
Reusing scripts inside a web page is neat, but did you know that you can share
scripts between individual pages and even among different websites? You simply
put your script into an external file and then link to it from a web page. This proce-
dure is similar to the way you learned to link external style sheets back in Chapter 3.

For example, imagine you perfect the ShowAlertBox() routine so that it performs a
complex task exactly the way you want it to, but it requires a couple of dozen lines
of code. To simplify your life and your HTML document, create a new file to store
that script.

Script files are always plain text files. Usually, they have the extension .js (for JavaScript).
You put all your code inside a script file, but you don’t include the <script> element.
For example, you could create this JavaScript file named ShowAlert.js:

function ShowAlertBox()
{
 alert("This function is in an external file.")
}

Now save the file, and put it in the same folder as your web page. In your web page,
define a script block but don’t supply any code. Instead, add the src attribute and
indicate the script file you want to link to:

<script src="ShowAlert.js">
</script>

When a browser comes across this script block, it requests the ShowAlert.js file and
treats it as though the code were right inside the page. Here’s a complete HTML
test page that uses the ShowAlert.js file. The script in the body of the page calls the
ShowAlertBox() function:

<!DOCTYPE html>
<html>
<head>
 <title>Show Alert</title>

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 473

DYNAMIC HTML
 <!-- Make all the functions in the ShowAlert.js file
 available in this page. Notice there's no actual content here. -->
 <script src="ShowAlert.js">
 </script>
</head>
<body>
 <!-- Test out one of the functions. -->
 <script>
 ShowAlertBox()
 </script>
</body>
</html>

There’s no difference in the way an embedded or external script works. However,
storing your scripts in separate files helps keep your website organized and makes
it easy to reuse scripts across several pages. In fact, you can even link to JavaScript
functions on another website—just remember that the src attribute in the <script>
block needs to point to a full URL (like http://SuperScriptSite.com/ShowAlert.js)
instead of just a filename. Of course, this technique is risky because the website
owner might rename, move, or modify the JavaScript file. If you really want to use
the code, it’s far better to copy it to your own server to avoid this problem.

 NOTE  Using separate script files doesn’t improve your security one iota. Because anyone can request your
script file, a savvy web visitor can figure out what scripts your page uses and take a look at them. So never include
any code or secret details in a script that you don’t want the world to know about.

Dynamic HTML
JavaScript underwent a minor revolution in the late 1990s, adding support for a set
of features called dynamic HTML (also shortened to DHTML). Dynamic HTML isn’t a
new technology—it’s a fusion of three distinct ingredients:

• Scripting languages like JavaScript, which let you write code.

• The CSS (Cascading Style Sheet) standard, which lets you control the position
and appearance of an HTML element.

• The HTML document object model (or DOM), which lets you treat an HTML
page as a collection of objects.

The last point is the most important. Dynamic HTML sees a web page as a collec-
tion of objects. It treats each HTML element, including images, links, and even the
lowly paragraph, as a separate programming ingredient that your JavaScript code
can play with. Using these objects, you can change what each element looks like,
or even where your browser places them on a page.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn474

DYNAMIC HTML
HTML Objects
Clearly, dynamic HTML requires a whole new way of thinking about web page design.
Your scripts no longer look at your web page as a static block of HTML. Instead, they
see a combination of objects.

UP TO SPEED

Understanding Objects
In many programming languages, including JavaScript, every-
thing revolves around objects. So what, exactly, is an object?

In the programming world, an object is nothing more than a
convenient way to group some related features or information.
For example, say you want to change the picture shown in an
 element on a web page (which is useful if you want
to write a script that flashes a series of images). In JavaScript,
the easiest way to interact with an element is to use
the corresponding image object. In effect, the image object is
a container holding all sorts of potentially useful information
about what’s happening inside an element (including
its dimensions, its position, the name of the image file associ-
ated with it, and so on). The image object also gives you a way
to manipulate the element—that is, to change some
or all of these details.

For example, you can use an image object to get information
about the image, like this:

document.write("The tooltip says" +
image.title)

You can even change one of these details. For example, you
can modify the actual image that an element shows
by using this code:

image.src = "newpic.jpg"

You’ll know an object’s at work by the presence of a dot (.) in
your code line. The dot separates the name of the variable (the
first part) from one of the built-in functions it provides (called
methods), or from one of the related variables (called proper-
ties). You always put methods and properties after a period.

In the previous examples, src and title are two of the
image object’s properties. In other words, the code statement
image.src = "newpic.jpg" is equivalent to saying
“Hey, Mr. Object named Image: I have a new picture for you.
Change your src attribute to point to newpic.jpg.”

Programmers embraced objects long ago because they’re a
great way to organize code conceptually (not to mention a
great way to share and reuse it). You might not realize it at
first, but working with the image object is actually easier than
memorizing a few dozen different commands that manipulate
the image itself.

Before you can manipulate an object on your web page, you need a way to uniquely
identify it. Once you do, your code can find the object whenever it needs to. The best
way to identify an object is with the id attribute. Add this attribute to the start tag
for the element you want to manipulate and choose a unique name, as shown here:

<h1 id="PageTitle">Welcome to My Page</h1>

Once you give your element a unique ID, JavaScript can find it in your code and
act on it.

JavaScript includes a handy way to locate an object: the document.getElementById()
method. Basically, document is an object that represents your whole HTML document.
It’s always available, and you can use it anytime you want. This document object, like
any object worthy of its name, lets you take advantage of some handy properties
and methods. The getElementById() method is one of the coolest: It scans a page
looking for a specific HTML element.

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 475

DYNAMIC HTML NOTE  In the example on page 465, you saw the document object at work on a different task—displaying
information on a web page. To accomplish this feat, the script used the write() method of the document object.

When you call the document.getElementById() method, you supply the ID of the
HTML element you’re looking for. Here’s an example that digs up the object for an
HTML element that has the ID PageTitle:

var titleObject = document.getElementById("PageTitle")

This code gets the object for the <h1> element shown earlier and stores it in a variable
named titleObject. By storing the object in a variable, you can perform a series of
operations on it without having to look it up more than once.

So what, exactly, can you do with HTML objects? To a certain extent, the answer
depends on the type of element you’re working with. For example, if you have a
hyperlink, you can change its URL. If you have an image, you can change its source.
And you can apply some actions, like changing an element’s style or modifying its
text, to almost any HTML element. As you’ll see, these actions are a good way to
make your pages feel more dynamic—for example, you can change a page when a
visitor takes an action, like clicking a link. Interactions like these make visitors feel
as though they’re using an intelligent, responsive program instead of a plain, inert
web page.

Here’s how you modify the text inside the just-mentioned <h1> element, for example:

titleObject.innerHTML = "This Page Is Dynamic"

If you use this code in a script, the headline text changes as soon as your browser
runs the script.

This script works because it uses the property named innerHTML, which sets the
content that’s nested inside an element (in this case, the <title> element). Like all
properties, innerHTML is just one aspect of an HTML object you can alter. To write
JavaScript code like this, you need to know what properties the language lets you
play with. Obviously, some properties apply to specific HTML elements only, like
the src attribute of an image. But modern browsers boast a huge catalog of DOM
properties you can use with just about any HTML element. Table 14-1 lists some of
the most useful.

 TIP  To figure out what properties you can use with a specific HTML element, check out the reference at www.
w3schools.com/jsref.

Currently, the example above works in two steps (getting the object and then ma-
nipulating it). Although this two-step maneuver is probably the clearest approach,
it’s possible to combine these two steps into one line, which scripts often do. Here’s
an example:

document.getElementById("PageTitle").innerHTML = "This Page Is Dynamic"

This approach is more concise but also a bit more difficult to read.

www.w3schools.com/jsref
www.w3schools.com/jsref

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn476

DYNAMIC HTML
TABLE 14-1 Common HTML object properties.

PROPERTY DESCRIPTION

className Lets you retrieve or set the class attribute (see page 85). In other words,
this property determines what style (if any) this element uses. Of course,
you need to define this style in an embedded or linked style sheet, or
you’ll end up with the plain-Jane default formatting.

innerHTML Lets you read or change the HTML inside an element. This property is
insanely useful, but it has two quirks. First, you can use it on all HTML
content, including text and tags. So if you want to put bold text inside a
paragraph, you can set innerHTML to Hi. Special characters aren’t
welcome—you need to replace them with the character entities described
on page 63.
Second, when you set innerHTML, you replace all the content inside this
element, including any other HTML elements. So if you set the innerHTML
of a <div> element that contains several paragraphs and images, all these
items disappear, to be replaced by your new content. To modify just part
of a paragraph, wrap that part in a element.

parentElement Provides the HTML object for the element that contains this element. For
example, if the current element is a element in a paragraph, this gets
the object for the <p> element. Once you have this object, you can modify
the paragraph. Using this technique (and other similar techniques in
dynamic HTML), you can jump from one element to another.

style Bundles together all the CSS attributes that determine the appearance of
the HTML element. Technically, the style property returns a full-fledged
style object, and you need to add another dot (.) and the name of the
style attribute you want to change, as in myObject.style.fontSize.
You can use the style object to dictate colors, borders, fonts, and even
positioning.

tagName Provides the name of the HTML element for this object, without the angle
brackets. For example, if the current object represents an element,
this returns the text “img.”

USING HTML OBJECTS IN A SCRIPT
The easiest way to come to grips with how HTML objects work is to look at an ex-
ample. The web pages shown in Figure 14-5 include a paragraph that continuously
grows and then shrinks, as your code periodically tweaks the font size.

The way this example works is interesting. First of all, you define two variables in
the <head> section of your HTML. The size variable keeps track of the current size
of the text (which starts out at 10 pixels). The growIncrement variable determines
how much the text size changes each time your browser runs the code (initially, it
grows by 2 pixels at a time):

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 477

DYNAMIC HTML
<!DOCTYPE html>
<html>
<head>
 <title>Dynamic HTML</title>
 <script>
 // The current font size.
 var size = 10
 // The amount the font size is changing.
 var growIncrement = 2

FiGURE 14-5
If you were looking at
this heading in a live web
browser, you’d see that the
text is always changing
size, making it difficult to
ignore.

Next, the script defines a function named ChangeFont(). This function retrieves the
HTML object, here the <p> element holding the text that will grow and shrink. Once
again, the getElementById() function does the job:

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn478

DYNAMIC HTML
function ChangeFont() {
 // Find object that represents the paragraph
 // whose text size you want to change.
 var paragraph = document.getElementById("animatedParagraph")

Now, using the size and growIncrement variables, you define a variable that performs
a calculation to determine the new size for the paragraph:

 size = size + growIncrement

In this example, the + performs a numeric addition, because both the size and grow-
Increment variables store a number.

It’s just as easy to set the new size using the paragraph.style.fontSize property.
Just tack the letters px on the end to indicate that your style setting is measured
in pixels:

 paragraph.style.fontSize = size + "px"

If this code runs perpetually, you’ll eventually end up with text so ridiculously huge
you can’t see any of it on the page. To prevent this from happening, you add a safety
valve to the code.

Say you decide that, when the text size hits 100 pixels, you want to stop enlarging it
and start shrinking it. To do this, you write the script so that it sets the growIncre-
ment variable to –2 when the text size reaches 100. The text starts shrinking from
that point on, two pixels at a time. To detect when the message has grown too big,
you use conditional logic courtesy of the if statement. Here’s what it looks like:

 // Decide whether to reverse direction from
 // growing to shrinking (or vice versa).
 if (size > 100) {
 paragraph.innerHTML = "This Text is Shrinking"

 growIncrement = -2
 }

Of course, you don’t want the shrinking to go on forever, either. So it makes sense to
add a check that determines whether the text has shrunk to 10 pixels or less, in which
case the script goes back to enlarging the text by setting growIncrement back to 2:

 if (size < 10) {
 paragraph.innerHTML = "This Text is Growing"
 growIncrement = 2
 }

Now, here comes the really crafty bit. JavaScript includes a setTimeout() function
that lets you instruct a browser to “call this function, but wait a bit before you do.”
In this example, the setTimeout() function instructs the browser to call the Change-
Font() method again in 100 milliseconds (one-tenth of a second):

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 479

DYNAMIC HTML
 setTimeout("ChangeFont()", 100)
 }
 </script>
</head>

Because the ChangeFont() function always uses setTimeout() to call itself again,
the shrinking and growing never stop. However, you can alter this behavior. You
could, for example, add conditional logic so that JavaScript calls the setTimeout()
method only a certain number of times.

The last detail is the <body> section, which contains the actual paragraph that you
resize and a script that calls ChangeFont() for the first time, starting off the whole
process:

<body>
 <p id="animatedParagraph">This Text is Growing</p>
 <script>
 ChangeFont()
 </script>
</body>
</html>

Although the resizing-paragraph example is absurdly impractical, the technique it
uses is the basis for many much more impressive scripts. (To get the whole script
and play around with it, download it from the companion site at http://prosetech.
com/web.) For example, you can easily find scripts that animate text in various
ways, like making it sparkle, fly in from the side of the page, or appear one letter at
a time, typewriter-style.

Events
The most exciting JavaScript-powered pages are dynamic, which means they perform
various actions as your visitor interacts with them (moving his mouse, typing in text,
clicking things, and so on). A dynamic page is far more exciting than an ordinary
HTML page, which appears in a browser and then sits there, immobile.

To create dynamic pages, you program them to react to JavaScript events. Events
are notifications that an HTML element sends out when specific things happen.

For example, JavaScript gives every <a> hyperlink element an event named on-
mouseover (a compressed version of “on mouse-over”). As the name suggests, this
event takes place (or fires, to use programmer-speak) when a visitor points to an
HTML element like a paragraph, link, image, table cell, or text box. That action trig-
gers the onmouseover event, and your code flies into action.

http://prosetech.com/web
http://prosetech.com/web

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn480

DYNAMIC HTML
Here’s an example that displays an alert message when a visitor points to a link:

<!DOCTYPE html>
<html>
<head>
 <title>JavaScript Test</title>
</head>
<body>

 <h1>You Will Be Wowed (Again)</h1>
 <p>When you hover over <a href="SomePage.htm"
 onmouseover="alert('Colorless green ideas sleep furiously.')">this link
 you'll see a secret message.
 </p>
</body>
</html>

When you write the code that makes a page react to an event, you don’t absolutely
need a script block (although it’s a good idea to use one anyway, as shown in the
next section). Instead, you can just put your code between quotation marks next
to the event attribute:

...

Notice that, in this example, the text value (‘Colorless green…’) uses single quota-
tion marks instead of double quotes. That’s because the event attribute itself uses
double quotes, and simultaneously using double quotes for two different purposes
will horribly confuse your browser.

Figure 14-6 shows the result of running this script and pointing to the link.

FiGURE 14-6
In this example, the alert box doesn’t
pop up until you point to the link.

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 481

DYNAMIC HTML
To use events effectively, you need to know what events each HTML element trig-
gers. For example, almost any element can trigger an onClick event when it’s
clicked, but it takes a text box or a list box to notify you about changes with the
onChange event. Table 14-2 provides a list of commonly used JavaScript events and
the HTML elements they apply to (and you can find a more complete reference at
www.w3schools.com/jsref).

In the following sections, you’ll learn about two common scenarios that use some
of these events.

TABLE 14-2 Common HTML object events.

EVENT NAME (WITH
UPPERCASE LETTERS) DESCRIPTION

APPLIES TO THESE HTML
ELEMENTS

onClick Triggered when you click an element. Almost all

onMouseOver Triggered when you point to an element. Almost all

onMouseOut Triggered when you move your mouse away from
an element.

Almost all

onKeyDown Triggered when you press a key. <select>, <input>, <textarea>,
<a>, <button>

onKeyUp Triggered when you release a pressed key. <select>, <input>, <textarea>,
<a>, <button>

onFocus Triggered when a control receives focus (in other
words, when you position your cursor in the control
so you can type something in). Controls include
text boxes, checkboxes, and so on—see page 490
to learn more.

<select>, <input>, <textarea>,
<a>, <button>

onBlur Triggered when focus leaves a control. <select>, <input>, <textarea>,
<a>, <button>

onChange Triggered when you change a value in an input
control. In a text box, this event doesn’t fire until
you move to another control.

<select>, <input type="text">,
<textarea>

onSelect Triggered when you select a portion of text in an
input control.

<input type="text">,
<textarea>

onError Triggered when your browser fails to download an
image (usually due to an incorrect URL).

onLoad Triggered when your browser finishes downloading
a new page or finishes loading an object, like an
image.

, <body>

onUnload Triggered when a browser closes (“unloads”) a
page. (This typically happens after you enter a new
URL or when you click a link. It fires just before the
browser downloads the new page.)

<body>

www.w3schools.com/jsref

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn482

DYNAMIC HTML
Image Rollovers
One of the most popular mouse events is the image rollover. To write one, you start
by creating an element that displays a picture. Then, when a visitor points to
the image, her browser displays a new picture, thanks to the onmouseover event.
Creating an image rollover is fairly easy. All you do is get the HTML object for the
 element and then modify the src property.

But you can’t do that with a single line of code. While you could pile your entire
script into the event attribute (using semicolons to separate each line), the markup
would look confusing. A better choice is to write the code as a function. You can
then hook the element up to the function using the event attribute.

Here’s the function that swaps an image, for example. In this script, the function is
written in a very generic way using parameters, so you can use it over and over, as
you’ll see in a moment. Every time you call the function, you indicate which image you
want to change (by supplying the corresponding ID) and what new image you want
to use. Because the function uses parameters, you can use it anywhere on your page.

<script>
 function ChangeImage(imageName, newImageFile) {
 // Find the object that represents the img element.
 var image = document.getElementById(imageName)

 // Change the picture.
 image.src = newImageFile
 }
</script>

When you create an image rollover, you use two events. The onmouseover event
switches to the rollover picture, and the onmouseout event (triggered when your
visitor moves her mouse off the HTML element) switches back to the original picture.
Figure 14-7 shows the result.

<img id="SwappableImage" src="ClickMe.gif" alt=""
onmouseover="ChangeImage('SwappableImage', 'LostInterestMessage.gif')"
onmouseout="ChangeImage('SwappableImage', 'ClickMe.gif')" />

To add more rollover images, just add a new element with a different name.
The following element uses the same initial image (ClickMe.gif) but shows a differ-
ent rollover image (PleasePleaseMessage.gif) when a visitor points to the image:

<img id="SwappableImage2" src="ClickMe.gif" alt=""
onmouseover="ChangeImage('SwappableImage2', 'PleasePleaseMessage.gif')"
onmouseout="ChangeImage('SwappableImage2', 'ClickMe.gif')" />

If you want to get really fancy, you can even use the onclick event (which guests
trigger when they click an element) to throw yet another picture into the mix.

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 483

DYNAMIC HTML

FiGURE 14-7
A rollover image in action.

 NOTE  In Chapter 15, you’ll see a different way to approach image rollovers—using CSS. Although the CSS
technique doesn’t work in every situation, it’s a great tool for building basic rollover buttons.

Collapsible Text
Another nifty way to use events is to create collapsible pages. The basic idea behind
a collapsible page is this: If you’ve got a lot of information to show your visitors but
don’t want to overload them with a lengthy page, you hide (or collapse) chunks
of text behind headlines that guests can click to see the details (see Figure 14-8).

Dynamic HTML gives you many ways to trick browsers into hiding text, and the
next example shows one of the best. The technique involves the CSS display
property. When you set this property to block, an item appears in the HTML page
in the normal way. But when you set it to none, the element disappears, along with
everything inside it.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn484

DYNAMIC HTML

FiGURE 14-8
Initially, the browser hides all the body text (top),
but when you click the down-arrow image, it
displays the content for that section (bottom). You
can reveal as many sections at a time as you want.

Your first task in building a collapsible page is creating the function that hides and
then shows your content. The function requires two parameters: the name of the
open/close arrow image and the name of the element you want to hide or show.
The function actually does double-duty: It checks the current state of the section,
and then it changes that state. In other words, it automatically shows a hidden sec-
tion and automatically hides a displayed section, thanks to conditional logic. And
while the function’s doing that, it swaps the open/close image to display a different
type of arrow.

 NOTE  The practice where you reverse the current state of an item is called toggling by jargon-happy
programmers.

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 485

DYNAMIC HTML
<script>
 function ToggleVisibility(image, element){
 // Find the image.
 var image = document.getElementById(image)

 // Find the element to hide/unhide.
 var element = document.getElementById(element)

 // Check the element's current state.
 if (element.style.display == "none"){
 // If hidden, unhide it.
 element.style.display = "block"
 image.src = "open.png"
 }
 else
 {
 // If not hidden, hide it.
 element.style.display = "none"
 image.src = "closed.png"
 }
 }
</script>

The code starts out by looking up the two objects you need (the arrow and the
text block) and storing them in the variables image and element. Then it gets to
work. It looks at the current state of the paragraph and makes a decision (using an
if statement) about whether it needs to show or hide the text. Only one part of
this conditional code runs. For example, if a browser is currently hiding the image
(that is, if you set the display style to none), the function runs just these two lines
of code, skips to the bottom of the function, and then ends:

element.style.display = "block"
image.src = "open.png"

On the other hand, if the browser is displaying the image, this code gets a chance
to prove itself:

element.style.display = "none"
image.src = "closed.png"

To use this function, you need to add the element that guests click to see or
hide the text, along with the HTML element that contains the text. You can show or
hide virtually any HTML element, but a good all-purpose choice is a <div> element
because you can stuff whatever you want to hide inside it. Here’s an example:

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn486

DYNAMIC HTML
<p>
 <img id="Question1Image" src="closed.png" alt=""
 onclick="ToggleVisibility('Question1Image','HiddenAnswer1')" />
 Where has all the information gone?
</p>

<div id="HiddenAnswer1">
 <p>Now you've found it. We've decided to hide parts of the
 page in these neat little collapsible sections. That way you won't
 see everything at once, panic, and do something drastic.</p>
</div>

The first part of the markup, between the first set of <p> tags, defines the question
heading, which visitors always see. It contains the arrow image and the question
(in bold). The second part (in the <div> element) is the answer, which your code
alternately shows or hides.

Best of all, because you put all the complicated stuff into a function, you can reuse
the function to make additional collapsible sections. These sections have the same
structure but different contents:

<p>
 <img id="Question2Image" src="closed.png" alt=""
 onclick="ToggleVisibility('Question2Image','HiddenAnswer2')" />
 Can I read more than one answer at a time?
</p>

<div id="HiddenAnswer2" style="display:none">
 <p>You can expand as many or as few sections as you want.
 Once you've expanded a section, just click again to collapse it back up
 out of sight. The only rule is that when you leave this page and come back

 later, everything will be hidden all over again. That's just the way
 JavaScript and Dynamic HTML work.</p>
</div>

Notice that you have to give each and <div> element a unique ID or your
function won’t know which picture to change and which section to hide.

Optionally, you can change this page to give it a different feel but keep the same
collapsing behavior. For example, you can make the page easier to use by letting
your visitor expand and collapse sections by clicking the heading text (instead of
just the image). The easiest way to do this is to pop the image and the bold head-
ing into a <div> element and then add the onclick event attribute to it. Here’s the
change you’d make:

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 487

DYNAMIC HTML
<div onclick="ToggleVisibility('Question1Image','HiddenAnswer1')">
 <p>

 Where has all the information gone?
 </p>
</div>

You could even underline the heading text so that it looks like a link, which lets
viewers know something will happen if they click it. Use the text-decoration style
sheet property to do that (page 96).

Finally, if you want all your collapsible sections to start off as collapsed, you need to
add another script that performs this service. Here’s the <script> block you need,
which you can position at the end of your page, just before the closing </body> tag:

<script>
 // Hide all sections, one by one.
 ToggleVisibility('Question1Image','HiddenAnswer1')
 ToggleVisibility('Question2Image','HiddenAnswer2')
 ...
</script>

You could hide your collapsible sections more easily by setting the display style
property on each <div> element with an inline style rule (page 80). However, this
approach can cause trouble in the unlikely event that a visitor has turned JavaScript
off in his browser. In this situation, every section will remain permanently hidden.
By using the code approach shown here, you ensure that JavaScript-challenged
browsers will simply display all the content, including the collapsible sections. The
page won’t be as impressive, but at least nothing goes missing. This approach,
called progressive enhancement, makes sure a page works for everyone but adds
benefits where possible.

 NOTE  You’ll see more collapsible text effects when you tackle collapsible menus in Chapter 15.

Interactive Forms
HTML forms inhabit a corner of the HTML standard you haven’t explored yet. You
can use form elements to create the graphical widgets that make up forms, like text
boxes, buttons, checkboxes, and lists. Visitors interact with these components, which
are commonly called controls, to answer questions and provide information. Figure
14-9 shows an example of an HTML form in action.

HTML forms are an indispensable technology for many websites, but you probably
won’t get much mileage out of them. That’s because they’re a hallmark of server-side
web applications (page 458). In a typical form, a visitor types in information and
then clicks a Submit button. The browser then collects that information and sends it
back to the web server for further processing. This processing might involve storing

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn488

DYNAMIC HTML
the information in a database or sending back another page with different HTML
(for example, an error message if the application detects a problem).

FiGURE 14-9
Before Google will grant you
a Gmail account, you need
to submit some seriously
detailed information. These
text boxes, lists, and drop-
down menus are all part of
an HTML form.

However, a crafty JavaScript developer can still put a basic form to good use. The
difference is that instead of sending information back to a web server, the form col-
lects the data and sends it to a JavaScript routine. That JavaScript code then takes
the next step, such as performing a calculation or updating the page.

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 489

DYNAMIC HTML
FORM ELEMENTS

Every HTML form starts out with a <form> element. Because <form> is a container
element, HTML interprets everything inside it as part of your form.

<form>
 ...
</form>

Form elements are also block elements (page 30). When you create a form, your
browser adds a little bit of space and starts you off on a new line.

What goes inside your <form> element? You can put ordinary content (like paragraphs
of text) inside or outside it—it really doesn’t matter. But you should always put form
controls (those graphical components, like buttons, text boxes, and lists) inside a
<form> element. Otherwise, you won’t have any way to capture the information a
visitor types in.

To create controls, you use yet another set of HTML elements. Here’s the weird part:
most form controls use the exact same element. That element is named <input>,
and it represents information you want to get from a visitor. You choose the type
of input control using a type attribute. For example, to create a checkbox, you use
the checkbox type:

<input type="checkbox" />

To create a text box (where a visitor types in whatever text he wants), you use the
text attribute:

<input type="text" />

Every <input> element also supports a value attribute, which you usually use to set
the initial state of a control. For example, to put instructions inside a text box when
a page first appears, you could use this markup:

<input type="text" value="Enter the first name here" />

Checkboxes are a little different. You can start them off so that they’re turned on
by adding the checked attribute, as shown here:

<input type="checkbox" checked />

Not all controls use the <input> element. In fact, there are two notable exceptions.
You use the <textarea> element to grab large amounts of text—copy that spans
more than one line, like a comment a guest leaves. And you use the <select> ele-
ment to create a list from which a visitor must select an item. Table 14-3 lists the
most common controls. It doesn’t include the new form ingredients that have been
added in HTML5 (and that Internet Explorer 8 and earlier don’t recognize).

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn490

DYNAMIC HTML
TABLE 14-3 Form controls.

CONTROL HTML ELEMENT DESCRIPTION

Single-line text box <input type="text" />
<input type="password" />

Displays a box where visitors can
type in text. If you use the password
type of text box, the browser won’t
display the text. Instead, visitors see
an asterisk (*) or a bullet (•) in place
of each letter they type, hiding it
from prying eyes.

Multiline text box <textarea>...</textarea> Shows a large text box that can fit
multiple lines of text.

Checkbox <input type="checkbox" /> Shows a checkbox you can turn on
or off.

Radio button <input type="radio" /> Shows a radio button (a circle) you
can turn on or off. Usually, you have
a group of radio buttons next to one
another, in which case the visitor can
select only one.

Button <input type="submit" />
<input type="image" />
<input type="reset" />
<input type="button" />

Shows the standard clickable button.
A submit button always gathers up
the form data and sends it to its
destination. An image button does
the same thing but lets you display
a clickable picture instead of the
standard text-on-a-button. A reset
button clears the visitor’s selections
and text from all the input controls.
A button button doesn’t do anything
unless you add some JavaScript
code.

List <select>...</select> Shows a list where your visitor can
select one or more items. You add
an <option> element for each item
in the list.

A BASIC FORM
To create a complete form, you mix and match <input> elements with ordinary
HTML. Consider the page shown in Figure 14-10. It provides several text boxes where
a visitor types in numbers, and then it uses those numbers to determine the guest’s
body mass index (BMI) when he clicks the Calculate button.

Building this form is surprisingly easy. The trickiest part is creating the function that
powers the underlying calculations.

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 491

DYNAMIC HTML

FiGURE 14-10
Most visitors are concerned about what this BMI calculator
says about their health, but you can see single-line text
boxes and a submit button (labeled “Calculate” here) at
work.

This function needs several pieces of information, corresponding to the values in the
three text boxes (feet, inches, and pounds). It also needs the name of the element
where it should display the results. Here’s how the function starts:

<script>
 function CalculateBMI(feet, inches, pounds, resultElementName) {

 NOTE  You could create a CalculateBMI() function that doesn’t use any parameters. Instead, the
function could just search for all the controls on the page by name. However, using parameters is always a good
idea, because it makes your code more flexible. For example, if you decide to change the names of the controls in
your form, you don’t need to change the code inside the CalculateBMI() function, just the line of code that
calls CalculateBMI(). You’re also able to move your function to a different page, or—in a more advanced
scenario—to use it with data that you’ve retrieved from somewhere else other than a form.

The function code that follows isn’t much different from what you’ve seen before.
It begins by using a Number() function that’s part of the JavaScript standard. This
function converts the text a visitor types in to numbers that the function can use in
calculations. If you don’t take this step, you might still get the right answer (some-
times), because JavaScript can automatically convert text strings into numbers as
needed. However, there’s a catch—if you try to add two numbers and JavaScript
thinks they’re strings, it will just join the two strings into one piece of text, so 1+1

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn492

DYNAMIC HTML
would get you 11. This mistake can really scramble your calculations, so it’s best to
always use the Number() function, like so:

 inches = Number(inches)
 pounds = Number(pounds)
 feet = Number(feet)

The actual calculation isn’t too interesting. It’s taken straight from the definition of
body mass index, which you can find on the Internet.

 var totalInches = (feet * 12) + inches

Finally, the function displays the result:

 var resultElement = document.getElementById(resultElementName)
 resultElement.innerHTML =
 Math.round(pounds * 703 * 10 / totalInches / totalInches) / 10
}
</script>

Building the form that uses this function is the easy part. All you do is create the
text boxes with <input> elements and give them names you can easily remember.
In the example below, the form uses a table to make sure the text boxes line up
neatly next to one another:

<form action="">
 <table>
 <tr>
 <td>Height: </td>
 <td><input type="text" name="feet" /> feet</td>
 </tr>
 <tr>
 <td> </td>
 <td><input type="text" name="inches" /> inches</td>
 </tr>
 <tr>
 <td>Weight: </td>
 <td><input type="text" name="pounds" /> pounds</td>
 </tr>
 </table>

Finally, at the bottom of the form, you create a button that calls the CalculateBMI()
function using the form’s values. To have the button make this call, you need to
program your page to react to the onclick event. To look up a value in a form, you
don’t need the getElementById() function. Instead, you find it by name, using the
this.form object, which represents the current form:

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 493

SCRIPTS ON
THE WEB

 <p>
 <input type="button" name="calc" value="Calculate"
 onclick="CalculateBMI(this.form.feet.value, this.form.inches.value,
this.form.pounds.value, 'result')" />
 </p>
</form>

The final ingredient is the element that displays the result. In this case, because you
want the result to appear inside another paragraph, the element makes more
sense than a <div> element.

<p>
 Your BMI:
</p>

You can use all sorts of other form-related scripts. For example, you can check the
information that people enter into forms for errors before letting them continue
from one page to another. To learn more about these scripts, you need to take your
search to the Web, as described in the next section.

Scripts on the Web
JavaScript is a truly powerful tool. If you’re a die-hard alpha nerd who likes to
program your TiVo to talk to your BlackBerry, you’ll enjoy long nights of JavaScript
coding. However, if you don’t like to lie awake wondering what var howMany =
(trueTop>1?"s" :""); really means, you’ll probably be happier letting someone
else do the heavy lifting.

If you fall into the nonprogrammer camp, this chapter has some good news. The Web
is flooded with free JavaScript. Most of the time, these scripts include step-by-step
instructions that explain where to put the functions, what elements to use in your
page, and how to hook your elements up to functions using events.

However, there’s a downside to free JavaScript. As you learned at the beginning
of this chapter, JavaScript dates back to the early days of the Internet, and many
JavaScript sites are nearly as old. As a result, they may feature garish formatting,
out-of-date browser compatibility information (for example, they might warn you
that a script doesn’t work on the long-deceased Netscape browser), and old ap-
proaches that have been replaced with more modern techniques. Many JavaScript
sites are also chock-full of ads.

If these issues haven’t discouraged you, here are a few starting points for your
JavaScript search:

www.dynamicdrive.com

This site provides a set of respectable scripts that emphasize Dynamic HTML.
Some scripts create exotic effects, like glowing green letters that tumble down
the page, Matrix-style.

www.dynamicdrive.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn494

SCRIPTS ON
THE WEB

http://lokeshdhakar.com/projects/lightbox2

This site has just a single script, but it’s one of the most popular effects on the
Web. If you’ve ever clicked a picture thumbnail and had it expand to full size
(while the rest of the page goes subtly dark), you’ve seen a variation of this effect.

http://tinyurl.com/webmonkey-js

The Web Monkey site offers a small set of old but still useful JavaScript tutori-
als, which can help you get oriented in the language—and pick up a few core
techniques.

Using this list, you can dig up everything from little frills to complete, functioning
Tetris clones. But keep in mind that a script is only as good as the coder who cre-
ated it. Even on sites with good quality control, you could stumble across a script
that doesn’t work on all browsers or slows your page down to a crawl. As a rule of
thumb, always try out each script thoroughly before you start using it on your site.

 TIP  The hallmark of a good script site is that it’s easy to navigate. You’ll know you’ve found a bad script site
if it’s so swamped with ads and pop-ups that you can’t find the scripts themselves.

Finding a Simple Script
Ready to hunt for scripts online? The next series of steps takes you through the
process from beginning to end.

1. Fire up your browser and choose your site from the list above.

For this example, use www.dynamicdrive.com.

2. Choose the category you want from the site’s home page.

In this case, go to the Documents Effects category. For a sample of what else
you can find, see the box on page 495.

3. Scroll through the list of scripts in your category (Figure 14-11), and then
click one.

In this case, use the Top-Down Stripy Curtain script.

4. The next page shows an example of the script (Figure 14-12).

Once the demo is over, you’ll see a script description, the author’s name, and a
link to the script (if it isn’t already displayed on the page). Underneath all this
information are the step-by-step instructions for using the script.

http://lokeshdhakar.com/projects/lightbox2
http://tinyurl.com/webmonkey-js
www.dynamicdrive.com

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 495

SCRIPTS ON
THE WEB

FiGURE 14-11
The Top-Down Stripy Curtain script is good to go, with
support for all modern browsers.

UP TO SPEED

Script Categories
To get a handle on the types of dynamic HTML scripts available,
look through the categories at Dynamic Drive (www.dynamic
drive.com). Here’s a sampling of what you’ll find:

• The Calendars category scripts produce nifty HTML that
creates calendars—great for displaying important dates
or letting visitors plan in advance.

• The Date & Time category offers virtual timekeepers and
countdown clocks.

• The Document Effects category provides page transitions
and background effects (like fireworks or floating stars).

• The Dynamic Content category has sliding menus, sticky
notes, and scrollable panels.

• The Form Effects category includes scripts that let you
manage forms (see page 487). You can use them to make
sure visitors submit forms only once, to check for invalid
entries, and more.

• The Games category offers full-blown miniature games,
like tic-tac-toe and Tetris . These games stretch the
capabilities of JavaScript and dynamic HTML as far as
they can go.

• The Image Effects category has slideshow and image-
gallery scripts, along with images that change when
you point to them.

• The Links & Tooltips category includes fancy links that
flash, button tricks, and pop-up text boxes that capture
your visitors’ attention.

• The Menus & Navigation category provides handy
collapsible menus and navigation bars that let visitors
move through your site, like the components you’ll see
in Chapter 15.

• The Mouse and Cursor category offers scripts that change
the mouse pointer and add those annoying mouse trails
(pictures that follow the mouse pointer wherever it goes).

• The Scrollers category has marquee-style scrolling text,
like you might see in a news ticker.

• The Text Animations category scripts bring text to life,
making it shake, fly, glow, or take on even more bizarre
characteristics.

• The User/System Preference category scripts dig up
information about the browser that’s currently displaying
your page.

• The Window and Frames category has scripts for a dozen
types of pop-up windows.

www.dynamicdrive.com
www.dynamicdrive.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn496

SCRIPTS ON
THE WEB

FiGURE 14-12
Here’s the Top-Down Stripy
Curtain script in action. It
first fills the page with a
solid green foreground and
then exposes the content
underneath by removing
alternating strips of color,
some of which fall from
the top, while others rise
from the bottom. It all
happens in a flash.

5. Follow the instructions to copy and paste the different parts of the script
into your page (Figure 14-13).

You often get a set of functions you need to put in the <head> portion of your
page and then some HTML elements you need to place in the <body> section.
In some cases, you can customize the scripts—for example, you might modify
numbers and other values to tweak the script code, or change the HTML ele-
ments to provide different content.

 NOTE  Many scripts include a set of comments with author information. If they do, the standard practice
is to keep these comments in your script file, so other developers who check out your site will know where the
code came from. This practice is just part of giving credit where credit’s due. Ordinary web visitors won’t even
think to look at the script code, so they won’t have any idea whether or not you wrote the script from scratch.

JavaScript Libraries
In the years since JavaScript was first created, coders have shifted focus to JavaScript
libraries. These libraries go beyond a hodgepodge of individual scripts—they offer a
whole new set of JavaScript capabilities, extending the language so you don’t need
to write every piece of interactive code from scratch.

CHAPteR 14: JAVASCRIPT: ADDING INTERACTIVITY 497

SCRIPTS ON
THE WEB

FiGURE 14-13
The Top-Down Stripy
Curtain script has two
components. The first is a
style definition that pro-
duces the curtain’s solid-
color background. The
second part creates the
curtain itself (as a <div>
element), which disap-
pears to expose the page’s
content and includes the
code that performs the
transition. Copy both of
these components to any
page, and you’re set. (For
even better organization,
consider placing the code
in a separate JavaScript
file, as described on page
472.)

Even better, the programs you find in JavaScript libraries have been tested to ensure
that they work in all of today’s browsers—sometimes using huge reams of behind-
the-scenes code to do so. And super-smart programmers use JavaScript libraries
to build even more useful scripts and self-contained web widgets, like slideshows,
product carousels, dynamic charts, and image magnifiers. These slick scripts go far
beyond the examples you’ll find on an old-fashioned JavaScript site. For all these
reasons, professional web developers almost always use JavaScript libraries.

When you first dip your toe into the world of JavaScript libraries, the best starting
point is the wildly successful jQuery library (http://jquery.com). It’s by far the most
popular JavaScript library, playing a major or minor role in more than half of the
world’s most trafficked websites. More than a dozen other JavaScript libraries also
flourish on the Web, including MooTools (http://mootools.net) and Dojo (http://
dojotoolkit.org).

If you’ve never touched a line of programming until this chapter, JavaScript libraries
might not be for you. That’s because they’re designed for other programmers—
people who want to create their own JavaScript-fueled web pages, but don’t want
to reinvent the wheel. Mere mortals can use them, but there’s a steep learning curve.
If you’re just getting started, you can check out JavaScript: The Missing Manual
(O’Reilly), which describes JavaScript basics and the ins and outs of the jQuery library.

http://jquery.com
http://mootools.net
http://dojotoolkit.org
http://dojotoolkit.org

499

CHAPTER

15

Over the past 14 chapters, you’ve absorbed a fair amount of web wisdom. You
learned to structure web pages using HTML, clothe them with style sheets,
and breathe life into them with JavaScript. Now it’s time to reap some of

the rewards.

In this chapter, you’ll consider two common (and practical) web page components.
First, you’ll learn how to create fancy buttons—for example, ones that light up when
a guest points to them. Next, you’ll learn to build a pop-up or pop-open navigation
menu, so visitors can cruise around your site in style. These features give you the
chance to take the skills you’ve developed in CSS and JavaScript one step further. In
other words, it’s time for your hard slogging to pay off with some snazzy website frills.

Fancy Buttons
The trends and styles of web design are always changing. In the early days of the
Web, everyone used ordinary text links, like the ones you learned about in Chapter 6:

Visit Elvis

Over time, these run-of-the-mill links started to look drab. Creative webmasters
wanted more, and they decided to use small, clickable pictures, drawn to resemble
buttons, instead.

 Dynamic Buttons
and Menus

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn500

FANCY
BUTTONS

Ordinary Picture Buttons
The most straightforward approach to creating a graphical button is to wrap the
button image in an anchor, as described in Chapter 6. Here’s what that looks like:

When you use this method, HTML adds an ugly blue border around the image to
indicate that it’s a link. To get rid of the border, you set CSS’s border-style attribute
to none.

The second, alternative approach is to use the element in conjunction with
JavaScript’s onclick event attribute (page 481). Here’s what that looks like:

This method doesn’t generate an ugly blue border, so you don’t need to set the
border-style attribute, but you do need to create a JavaScript function named
GoToGraceland() and write some code to do whatever you want the button to do.
For example, a JavaScript element could change the content in other elements on
your page or perform a calculation. You used this approach with the BMI calculator
in Chapter 14 (page 491). In that example, visitors clicked a button to have JavaScript
perform an arithmetic operation and display the result.

Dynamic Picture Buttons
Pretty soon, web designers weren’t happy with text links or fancy button pictures.
They wanted more, and they used JavaScript to get it. The basic idea was to cre-
ate a new sort of button that uses the JavaScript image-swapping technique you
learned about on page 482. These dynamic buttons (also known as rollover buttons)
subtly but noticeably change when a visitor points to them. This effect tells her she’s
poised over a real, live button, and all she needs to do is click it to trigger an action,
like going to a new page.

For a while, rollover buttons were wildly popular, and virtually everyone used them.
And then leading website designers grew a bit tired of all the whirly, glowy button
effects, and they decided to strip their pages down to a leaner, classier look. They
reduced their use of rollover buttons and made the rollover effects themselves
simpler. For example, web designers might change a button’s background color
on rollover but plop ordinary HTML text on top of it instead of embedding the text
as part of the image. Not only does this create pages that are less busy and less
distracting, but it also makes them easier to maintain, because you don’t need to
generate dozens of different button pictures. Figure 15-1 shows some examples.

CHAPteR 15: DYNAMIC BUTTONS AND MENUS 501

CHOOSING
YOUR

APPROACH

FiGURE 15-1
This Amazon page uses three types
of buttons: ordinary text links in a
tinted box, text over a button-like
background, and buttons that
combine the text and background in
one image.

Choosing Your Approach
Before you create any buttons, you need to pick your approach. You have three
distinct options for building rollover buttons:

• Create a background button picture and superimpose HTML text on top of it
(Figure 15-2, top). If you use this approach, you need just two pictures, no matter
how many buttons you have: a regular button background and a highlighted

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn502

CHOOSING
YOUR

APPROACH
button background. You reuse those pictures for every button you create. That
means that you need to regenerate only two pictures if you want to change the
style or size of a button. And if you need to alter the text on a button, you don’t
need to touch your pictures at all. Web developers who choose this approach
sleep well at night.

• Create a picture for the entire button, text and all (Figure 15-2, bottom). This
approach gives you the most control and allows the most impressive effects.
However, it’s also more awkward and requires more effort, because it forces you
to create a separate pair of pictures for each button. For example, if you want
to put eight graphical buttons on your web page, you need 16 button pictures,
one for each button’s normal state and one for its highlighted (mouseover) state.

• Create a background effect with CSS style settings, and superimpose some
HTML text on top of it. This sounds even better, because you don’t need to
craft even a single image for your button. However, this choice is also more
restrictive. It means that you’ll only be able to create effects that are part of
the CSS language. And even though CSS has plenty of slick formatting features
(like rounded corners) that lend themselves to glowy buttons, older browsers,
like IE 8 and IE 9, which still constitute roughly 10% of the web browsing world,
don’t work with these features. So unless you’re willing to leave these visitors
out, you need to stick with more boring border and shading choices.

 NOTE  You haven’t learned about gradients and other cutting-edge CSS3 settings in this book because they’re
still too new to use without a carefully planned fallback strategy. If you want to learn more about the bleeding
edge, check out HTML5: The Missing Manual (O’Reilly).

FiGURE 15-2
Top: This button uses
ordinary text with a green
background that darkens
when a visitor points to it.

Bottom: This graphical
button swaps pictures
when a guest points to it.

So which strategy is right for your site? The first approach (all-picture buttons) makes
sense if you want striking effects on part of your site. For example, you might use a
few of them on your home page to direct new arrivals to different sections of your

CHAPteR 15: DYNAMIC BUTTONS AND MENUS 503

TUTORIAL:
CREATING A
ROLLOVER

BUTTON
site. But for the majority of buttons, the second and third approaches are more
convenient and easier to work with.

 NOTE  There’s another reason to prefer ordinary text superimposed on a button background: search engines
prefer it. As you learned on page 319, search engines give special weight to the text inside an anchor link. But if
you use the image-only approach, you lose the chance to get that extra bit of attention.

UP TO SPEED

Making Button Pictures
If you decide to go with button pictures, you need a way to
create them. Your options are:

• Draw them yourself. If you’re graphically inclined, you
can create button pictures by hand using just about any
graphics program (Adobe Photoshop and Adobe Fireworks
are two popular choices). However, getting buttons to look
good isn’t always easy. It’s also hard to mass-produce
them, because you need to make every button consistent:
same text position, size, color palette, and background.

• Use a button-creation website. If your artistic abilities are
feebler than those of Koko the painting gorilla, there’s an
easier option. You can use a specialized button-creation
program. These programs have no purpose in life other
than to help you create attractive buttons with the text,
colors, and backgrounds you choose. The Web teems with

a range of these tools. They usually start by asking you to
specify button details (like the text, color, background,
and so on). Once you finish, you simply click a button
and the program creates the button image (or images)
and displays them in a new page. All you need to do is
download the images and start using them on your site.
Two examples of online button-making tools include
www.buttongenerator.com and www.grsites.com/button.

• Use Expression Web. The popular web design tool has
a feature that lets you create a whole whack of button
pictures and the JavaScript code that manages them. The
chief disadvantage is that this feature relies on a slightly
cumbersome JavaScript-based approach, rather than
the CSS technique that most web designers now prefer.
To try it out, choose Insert→Interactive Button from the
Expression Web menu.

Tutorial: Creating a Rollover Button
You already know how to build links, and you know the basics of the JavaScript
image-swapping technique (described on page 482). But what you don’t yet know is
how to put it all together in a modern package—one that ensures that your buttons
look understated but cool, that loads your pictures with no annoying lag, and that
uses clever CSS tricks to keep your website free of messy JavaScript. The best way
to get a handle on these details is to build a few buttons of your own.

In this tutorial, you’ll start with a rollover button that uses a background picture and
taps CSS to manage its states. Next, you’ll see how to tweak a page to use the more
complicated picture-with-text approach. Finally, you’ll consider what you need to
make an all-CSS, no-picture button for the ultimate in convenience.

www.buttongenerator.com
www.grsites.com/button

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn504

TUTORIAL:
CREATING A
ROLLOVER

BUTTON
 TIP  As with all the tutorials in this book, you can get the files from the companion site (http://prosetech.
com/web). Look for the Tutorial-15-1 folder (which stands for “Chapter 15, first tutorial”). Inside is the Start folder,
which has the set of pages you begin the exercise with, and the End folder, which shows the solution.

The Starter Page
Figure 15-3 shows the page you start with. It uses a standard two-column layout,
like the ones you learned to make in Chapter 8. Right now, the column on the left
holds a list of ordinary links that use the <a> element. Your challenge is to turn these
links into rollover buttons.

FiGURE 15-3
This page features a stack of ordinary links
with underlined text. It’s a perfect place to
practice the fine art of button-crafting.

Structurally, this is a simple page. It uses two <div> elements, one for the list of
links on the left, and one for the main content that occupies the rest of the space.

<div class="MenuBar">
 Rollover Button 1
 Rollover Button 2
 Rollover Button 3
 Rollover Button 4
 Rollover Button 5
 Rollover Button 6
</div>

<div class="MainContent">
 <h1>Welcome.</h1>
 <p>...</p>
 <p>...</p>
</div>

http://prosetech.com/web
http://prosetech.com/web

CHAPteR 15: DYNAMIC BUTTONS AND MENUS 505

TUTORIAL:
CREATING A
ROLLOVER

BUTTON
The magic that underpins this page is all in the style sheet. First, it applies a basic
style rule to the <body> element, so that the page gets a consistent font:

body {
 font-family: Verdana,sans-serif;
 font-size: small;
}

Then, it positions the menu bar on the left side of the page, using the layout proper-
ties you picked up in Chapter 8:

.MenuBar {
 position: absolute;
 top: 20px;
 left: 0px;
 margin: 15px;
}

Another rule gives the main content extra margin space on the left, so it can’t
overlap the menu:

.MainContent {
 margin-left: 165px;
 margin-top: 30px;
 margin-right: 20px;
}

Finally, a contextual selector (page 217) picks out all the anchor elements in the
menu bar:

.MenuBar a {
 display: block;
}

This rule uses the display property to transform each <a> element from an inline
element into a block element (like a paragraph or a heading). That way, a browser
puts each link on a separate line, so you don’t need to add line breaks using the

 element.

 NOTE  Another approach is to make each <a> element a separate item in an unordered list (as represented
by the element). You can then use style sheets to format the list so that it doesn’t show the standard
bullet next to each item. Many of the dynamic, pop-up, and collapsible menus you’ll come across on the Web are
actually unordered lists on the inside.

Preparing the Button Pictures
The next step is to ready your button images. In this example, you’ve got a relatively
simple picture preparation job, because you’re using a button background with su-
perimposed text. That means you need to create an image that looks like the surface

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn506

TUTORIAL:
CREATING A
ROLLOVER

BUTTON
of a blank button, and a second image that looks like a highlighted version of the
same button (perhaps using a different shade of the same color).

You’ll find two ready-made button backgrounds in the tutorial’s Start folder: Norm-
alButtonBackground.jpg and HighlightedButtonBackground.jpg. Open them and
take a look. On their own, they don’t look like much. The NormalButtonBackground.
jpg image is a gray, shaded button face, while HighlightedButtonBackground.jpg
shows the same button in yellow.

 NOTE  Just about anyone can develop two good-looking rectangles in a drawing program. And because
you create just two buttons and no text, you won’t face the headaches of trying to get text to line up correctly in
each button (which, if done incorrectly, can create maddeningly inconsistent buttons). If you don’t want to make
your own graphics, you can take to the Web and use Google’s image-search tool to find a ready-made button
background you want to adopt.

Once you have the button images you need, you’re ready to incorporate them into
your page. Figure 15-4 shows the result you’re after.

FiGURE 15-4
Top: Here, every button has a gray shaded background.
The rollover effect swaps the gray background for a
yellow one.

Bottom: Another choice is to leave the background
blank initially, for an interesting effect.

CHAPteR 15: DYNAMIC BUTTONS AND MENUS 507

TUTORIAL:
CREATING A
ROLLOVER

BUTTON
Making the Rollover Effect
To create the rollover effect, you need to refine the styles for the <a> elements. Start
by opening the CssImageRollover.css style sheet in a text editor.

Your first step is to refine the style that formats the links. Use the text-decoration
and color properties to change the text from its standard look (underlined blue) to
something that looks more appropriate on a button:

.MenuBar a {
 display: block;

 text-decoration: none;
 color: black;

The real magic starts when you specify the background property. It grabs the image
NormalButtonBackground.jpg and puts it behind each anchor:

 background: url("NormalButtonBackground.jpg") no-repeat 0 0;

The no-repeat attribute makes sure the browser doesn’t tile the image, and the 0 0
values position the picture’s top-left corner at the top-left corner of the anchor.

Finally, the width and height properties size the anchor to match the size of the
background button (125 x 23 pixels), while the margin and padding properties sepa-
rate the buttons from one another and pad the text inside.

 width: 125px;
 height: 23px;

 margin-bottom: 5px;
 padding-top: 5px;
 padding-left: 7px;
}

Of course, none of this creates the rollover effect. To get that, you need the hover
pseudo-class (first described on page 193). It springs into action when a guest points
to an element. In this case, it changes the background picture:

.MenuBar a:hover {
 background: url("HighlightedButtonBackground.jpg") no-repeat 0 0;
}

 TIP  If you use a less button-like, more box-like background, you might want to set the text-decoration
property to underline in the hover pseudo-class. That way, the link becomes underlined when someone
points to it, making its page-navigating purpose clear. Amazon uses this trick in its pop-up menus and in the
category-browsing bar that sits across the top of some windows (for instance, the one in Figure 15-1).

This completes the example. However, you may remember that CSS defines a few
more pseudo-classes, and you can use them with your button, too. Use visited to

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn508

TUTORIAL:
CREATING A
ROLLOVER

BUTTON
control what a link looks like once a guest visits the linked page, and use active to
control what a link looks like in the brief moment when a visitor clicks it. For example,
you could shift the button slightly to the side to make it look like it’s being pushed in:

.MenuBar a:active {
 margin-left: 1px;
}

Alternatively, you could supply another background image.

Picture-with-Text Buttons
You can adapt the previous example to work with full button pictures—that is,
images that include both the button background and the button text. Figure 15-5
shows an example.

FiGURE 15-5
This page uses fancy rollover buttons that
have graphical text embedded in the image
files. Setting up this solution requires a bit
more work, because there are six picture
files to prepare—two for each button.

When you use a pile of fancy button pictures (instead of one pair of button back-
ground images), you need to use a technique called image preloading. This practice
ensures that a browser downloads all the button “state” images when it processes the
page for the first time, instead of waiting until a visitor points to a button. Although
you won’t notice the difference when you run the page from your computer’s hard
drive, preloading images makes the buttons more responsive when visitors interact
with them over the Internet, particularly if they have a slow connection, and especially
if the page holds a lot of buttons.

Web designers have tried a number of techniques for preloading images. Eventually,
they settled on packing both button images (the normal and the selected states)
into a single image file. Your style sheet dictates which part of the picture a browser
shows, so that guests see only one version of the button at a time.

CHAPteR 15: DYNAMIC BUTTONS AND MENUS 509

TUTORIAL:
CREATING A
ROLLOVER

BUTTON
Consider the buttons in Figure 15-5, which were created using an online button-
builder, in this case the one at www.buttongenerator.com. You save each pair of
button pictures as a single file, as shown in Figure 15-6.

FiGURE 15-6
This graphic combines a normal (top) and a highlighted (bottom)
button image. Your style sheet rules can grab just one part of the
picture to use as a button. Note that it doesn’t matter how much space
you put between the paired pictures, so long as you keep the space
consistent across all your picture pairs.

You can go to www.buttongenerator.com to make your own images, or you can use
the images in the Start folder for this tutorial. They are DogsButton.png (the one in
Figure 15-6), CatsButton.png, and LemurButton.png.

You can expand this double-button system into a triple-button system if you use
the active pseudo class. And some performance-mad web designers pack a whole
page worth of buttons and other graphical embellishments into a single background
image. They then use carefully targeted style rules to slice and dice the graphic and
spread it around all the elements that need it. This system ensures that a browser
loads all the button graphics from the start, and that the rollover effects work without
lag. It also simplifies your button management, because you have fewer files to keep
track of and fewer files to reference in your markup.

 NOTE  Not all button-makers can create images for different button states (unclicked, pointed to, clicked,
and visited). However, you can usually run the button generator multiple times and choose a slightly different
color scheme to create the highlighted button image.

Once you prepare some buttons, you’re ready to build an example page like the one
shown in Figure 15-5. You simply take the example you completed in the previous
step, change the links, and alter the link-formatting rules in the style sheet.

Your first task is to remove all the text (“Rollover Button 1” and so on) from your
anchors, so that the only thing a browser will display is the button images themselves.
Then you need to supply the URL of the button pictures. But here’s where things
start to get messy. In the previous example, you stored the background pictures
using two style rules. But if you want each button to use a different set of pictures,
you need a separate style rule for every button—and that’s sure to make a mess of
even the best-organized style sheet.

A better solution is to use a style rule that stores all the button information except
the picture filenames. Here’s the slightly shorter style rule for formatting anchor
elements:

www.buttongenerator.com
www.buttongenerator.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn510

TUTORIAL:
CREATING A
ROLLOVER

BUTTON
.MenuBar a {
 display: block;

 width: 115px;
 height: 18px;

 margin-bottom: 5px;
 padding-top: 5px;
 padding-left: 7px;

 background-repeat: no-repeat;
}

Now you can specify the filename for each button using an inline style. First, remove
the old set of links from the MenuBar <div>. Then, add these three links in their place:

The style rule explicitly sets the width and height of the buttons so that a browser
displays only the top part of the button file.

The final ingredient is the rule that displays the pointed-to buttons. It repositions
the view of the button image file just a shade (by using a negative number of pixels
for background-position), effectively pulling the picture up, so the top portion of
the image, which holds the button’s normal state, falls outside the top margin of
the anchor button, and the bottom portion of the image, which holds the pointed-
to button, is visible. In Figure 15-5, the highlighted button sits 23 pixels below the
normal-state button, so the style sheet rule looks like this:

.MenuBar a:hover {

 background-position: 0 -23px;
}

Picture-less Buttons
Many minimalist web designers build buttons without any pictures at all. They use
CSS properties to create a shaded box for the button and then superimpose a label
on it using HTML.

If you go this route, you have a choice. You can accept boring buttons that change
their borders, text color, background color, or underlining for a relatively modest
effect. For example, Amazon uses the basic border-adding trick as a rollover effect
in the page on Figure 15-1.

Your other choice is to use fancier CSS3 properties that some browsers will ignore.
These include properties for gradients, shadows, and rounded borders. Taken to-
gether, these features can turn an ordinary background into a reasonable facsimile
of a fancy button. The problem is that versions of Internet Explorer before IE 9 won’t

CHAPteR 15: DYNAMIC BUTTONS AND MENUS 511

FANCY MENUS
understand these properties and won’t properly display your buttons. Depending
on the properties you choose and the way you apply them, the change could be
minor or nearly catastrophic.

To try the CSS-only approach with CSS3 properties, check out the button-maker on
the CSS-Tricks site (http://css-tricks.com/examples/ButtonMaker). It lets you adjust
colors and shading to create a picture-less button (Figure 15-7).

FiGURE 15-7
To create a button at CSS-
Tricks, just play with the
sliders and click “View the
CSS” when you like what
you see. But be warned:
The curvy, shaded button
shown here turns into a
plain blue box for guests
using any version of
Internet Explorer before IE
9, which isn’t that bad.

If you’re even more ambitious, you can look at more complex JavaScript libraries
that pile on even more CSS3 frills. For example, you can find animated buttons and
medallions in the iHover library at http://tiny.cc/ihover. They include eye-popping
effects like spins and fades that superimpose graphics and text. But once again,
IE 9 fans need not apply.

Fancy Menus
When rollover buttons first came into vogue, they were wildly popular. There’s
something irresistible about a button that lights up when you point to it. You can,
however, have too much of a good thing, and stuffing too many rollover buttons on
a page is a surefire way to create an overdone turkey of a website.

In recent years, the Web has seen a small renaissance in simplicity and a trend
away from excessive rollover buttons. Part of the reason is the increasing complex-
ity of websites—quite simply, a handful of rollover buttons no longer offer enough

http://css-tricks.com/examples/ButtonMaker
http://tiny.cc/ihover

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn512

FANCY MENUS
navigational aid for today’s typically complex sites. Instead, these sites use more
detailed multilevel menus, replacing dozens of rollover buttons with a clearer, more
streamlined set of hierarchical links.

A typical menu starts with a collection of anchor elements you group together
on a page. The key is to organize these links into logical groups. For example, the
website for a company might include a group of product pages, a group of pages
with contact and location information, and another group of tech support pages.
By arranging links into groups, visitors can find what they’re looking for more easily.

So far, this menu design doesn’t require anything special. Using the linking skills
you picked up in Chapter 6 and the layout smarts you gained in Chapter 8, you can
easily create a side panel with a grouped list of links. But really neat menus add
another flourish—they’re collapsible. That means you don’t see the whole set of links
at once. Initially, you see only the group headings, like Products, Contact Informa-
tion, and Tech Support. When you click a group heading, a list of related links pops
open just underneath.

You can create collapsible menus in several ways. Some are easy, while others are
dizzyingly complex. In the following sections, you’ll learn how to build a simple col-
lapsible menu of your own, and then use a more complicated menu courtesy of a
free JavaScript site.

Do-It-Yourself Collapsible Menus
You can create a respectable menu of your own using dynamic HTML and the col-
lapsible text example from Chapter 14 (page 48). The basic idea is to use JavaScript
to hide and show specific HTML elements by changing the CSS display property.

Imagine you want to create the cool tabbed menu shown in Figure 15-8. You split the
links into three groups and display the topmost link for each group as an onscreen
tab. When a guest clicks a tab, the page shows the sublinks for that tab.

In the rest of this section, you’ll get a chance to look at the solution piece by piece.
To see the complete page, check out the SimpleTabs.htm page, available from the
companion site at http://prosetech.com/web.

THE MENU MARKUP
The design in Figure 15-8 might seem a little intimidating at first, but it consists of
only two parts: the tabs at the top of the page and the link boxes (menus) that ap-
pear underneath them when a visitor points to a tab. To make these regions easy to
deal with, so you can style and manipulate them with JavaScript, you need to wrap
them in <div> and elements, as you’ve seen throughout this book.

http://prosetech.com/web

CHAPteR 15: DYNAMIC BUTTONS AND MENUS 513

FANCY MENUS

FiGURE 15-8
Top: When this page first loads, it presents
visitors with three tabs.

Middle and bottom: As a visitor moves her
mouse over a tab box, a set of related links
appears underneath. These links “float” above
the page content.

The three tabs are grouped together in a <div> with the name TabGroup. Inside, a
separate element represents each tab, like this:

<div class="TabGroup">
 About Me
 My Store
 Really Cool Stuff
</div>

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn514

FANCY MENUS
The element is the best choice for the tabs, because they need to appear
next to one another on the same line. If you used a <div>, you’d get a line break and
some space between each element.

These elements have the descriptive class name Tab. That associates them
with the following style sheet rule, which gives the tabs the correct font and borders:

.Tab {
 font-weight: bold;

 padding: 5px;
 border-style: solid;
 border-width: 1px;
 cursor: hand;
}

This rule includes something you haven’t seen yet—the cursor property. It styles the
mouse cursor when a guest points to a link element. In this case, the cursor changes
to a hand icon (Figure 15-8, middle).

You wrap all the tabs in a <div> that uses the TabGroup class so you can put the
TabGroup <div> at a specific position on the page:

.TabGroup {
 position: absolute;
 top: 16px;
 left: 10px;
}

After you declare the tabs, it makes sense to add the floating submenus. Each
submenu is simply a box with borders and a yellow background. A group of links
sits inside the box. The <div> element makes sense here, because you want each
submenu to exist independently of the others on the page (rather than stuffed to-
gether into a single line). You also need to give each <div> element a unique ID, so
you can change its visibility based on the tab a visitor clicks.

Here are the <div> elements for the three link groups:

<div id="AboutMe" class="Links">
 My Traumatic Childhood
 My Education
 Painful Episodes
</div>

<div id="MyStore" class="Links">
 Buy Something
 Request a Refund
 File a Complaint
</div>

CHAPteR 15: DYNAMIC BUTTONS AND MENUS 515

FANCY MENUS
<div id="ReallyCoolStuff" class="Links">
 Pie Eating
 Harvesting Bananas
 Blindfolded Heart Surgery
</div>

The <div> elements float above the page, which means you need to absolutely
position them. Here’s the style rule for that:

.Links {
 position: absolute;
 top: 40px;
 left: 10px;
 border-width: 1px;
 border-style: solid;
 padding: 10px;
 background-color: lightyellow;
 font-size: small;
 display: none;
}

Along with the absolute positioning coordinates (40 pixels from the top of the
browser window, 10 pixels from the left), this style also sets a few formatting de-
tails (the border, background, padding, and text size). More importantly, it uses the
display property to explicitly hide all the submenus when the page first loads. So
even though this example stacks the submenu <div> elements one on top of the
other, you won’t ever see them that way on a page, because you won’t ever see
them all at once.

Give the <a> elements inside the floating boxes a bit of margin space so they don’t
run into one another:

.Links a {
 margin-right: 5px;
}

 TIP  If you want a menu with the tabs stacked one above the other, you can tweak this style rule to use the
display: block property, just as you did with the panel of rollover buttons on page 506.

And, finally, wrap the rest of the content for the page in a <div> element that has the
class name MainBody. Give this <div> a generous top margin, so that it clears the tabs:

.MainBody {
 margin-top: 70px;
 margin-left: 15px;
}

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn516

FANCY MENUS
These style sheet rules and and <div> elements create the basic framework
for the collapsible menus. The final step is to create a script that displays one of the
hidden <div> elements, depending on which tab your visitor selects.

THE CODE THAT SHOWS THE SUBMENUS
The code that shows each tab is similar to the code you used for the ToggleVis-
ibility() function in Chapter 14 (page 485). But in this case, you’re not interested
in hiding and showing individual sections. Instead, you want to show a single section,
depending on the tab selected, and hide everything else. Two custom functions
handle the job: MakeVisible(), which shows the submenu for a specific tab; and
ResetAllMenus(), which hides all the submenus.

Here’s a simplified version of the MakeVisible() function. As you can see, it takes
an element name, finds the element, and changes its style settings so that it ap-
pears on the page.

function MakeVisible(element){
 // Find the element and unhide it.
 var element = document.getElementById(element)
 element.style.display = "block"
}

 TIP  If you need to change a bunch of style properties, or if you just want to keep all your style sheet settings
in your style sheet (which is always a good idea), there’s another way to write this example. Instead of modify-
ing the style in the MakeVisible() function, you can switch the style. Start by creating two class-based styles in
your style sheet, one for visible tabs (say, SelectedTab) and one for hidden tabs (NonSelectedTabs). Then, in the
MakeVisible() function, change the element.className property to point to the style you need, like this:

element.className = "NonSelectedTabs"

Once you write the code for the MakeVisible() function, you’re ready to hook it up
to all the tab buttons. You have a choice here: MakeVisible() could react to either a
click using the onclick event or to a mouse pointing to the tab using the onmouseover
event. This example uses the latter approach.

About Me
My Store
Really Cool
 Stuff

The page still isn’t quite right. Although the MakeVisible() function shows the cor-
rect tabs, it doesn’t hide anything. That means that if you point to all three tabs, you
see all three groups of links at the same time, one above the other.

To hide the irrelevant tabs, you need to get a little craftier. The problem is that Make
Visible() knows what tab it’s supposed to show, but it doesn’t know the status of
the other two tabs. To find that out, your code needs to search through the rest of

CHAPteR 15: DYNAMIC BUTTONS AND MENUS 517

FANCY MENUS
the page. In this example, the basic approach is to look for any <div> element that
has the class name Links and hide it. The ResetAllMenus() function handles that:

function ResetAllMenus() {
 // Get an array with div elements.
 var links = document.getElementsByTagName("div")

 // Search the array for link boxes, and hide them.

 for (var j = 0; j < links.length; j++) {
 if (links[j].className == 'Links') links[j].style.display = "none"
 }
}

This code is a little tricky. First, the getElementsByTagName()function retrieves a
programming object called an array. An array is special because it doesn’t hold just
one object; it holds a whole group of them at once. In this case, the array named
links holds three objects, one for each <div> element on the page.

Then you use a programming construct called a for loop. It processes code a certain
number of times using a built-in counter. In this case, the counter is a variable named
j that starts at 0 and keeps increasing until it matches links.length—in other words,
until it gets to the last <div> object in the links array. Assuming the links array has
three items, your browser executes this statement three times:

if (links[j].className == 'Links') links[j].style.display = "none"

The first time, j is 0, and the code loads up the first object in the list. The second
time, j is 1, and it digs up the second object. You can guess what happens the third
time. As the code moves through this list, it checks the class name of each <div>
element. If it indicates that you found a link box, the code makes it disappear from
the page by changing its display style.

 NOTE  If the stranger aspects of JavaScript still look like Danish, don’t worry. If you’re inclined, you can learn
about JavaScript programming features like arrays, loops, and if statements from a website or a dedicated book
(like JavaScript & jQuery: The Missing Manual [O’Reilly]). Or you can keep your sanity and rely on the examples
in this book, or find great free scripts online.

Now you can fix the MakeVisible() function so that it first hides all the menus and
then reveals just the one you want:

function MakeVisible(element){
 ResetAllMenus()

 // Find the element and unhide it.
 var element = document.getElementById(element)
 element.style.display = "block"
}

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn518

FANCY MENUS
A good practice is to hide all the floating menu boxes if your guest moves his mouse
pointer off the floating link box and over the rest of the page. This suggests that the
visitor decided not to click a menu command and went back to reading the page:

<div class="MainBody" onmouseover="ResetAllMenus()">

The code in the downloadable example gets slightly fancier. It hides a selected tab’s
border and changes its background color. However, the basic approach is the same.

Third-Party Menus
If you’ve had enough fun writing your own JavaScript code, you’ll be happy to hear
that the Web is chock-full of free menu scripts. Many of them have more dazzle than
the tabbed menu in the previous example. Some of the extra features you might
find include the following:

• Multilevel menus that let visitors drill down to specific subcategories.

• Menus that let you collapse and expand subsections, so you can show all the
links that interest you.

• Ridiculously showy effects, like shaded highlighting and transparent back-
grounds.

To find a good menu, use a JavaScript sample site (page 493), or search for “Java-
Script menus” or “CSS menus” on the Web. You’ll find that there’s quite a bit more
diversity in menus than in rollover buttons. Every menu looks and behaves a little
differently. Some pop up, others slide out, and others try to emulate the look and
feel of popular programs like Microsoft Outlook.

 TIP  Stay away from menus that force you to bury your links in a block of JavaScript. Not only does this ap-
proach make it harder to edit the menus should you add or remove a link, but it also can cause problems for search
engines, which might not be able to discover (and index) all the pages on your website. Today’s webmasters put
the links in real <a> elements, which you can then stack one after the other or place inside an unordered list.

To get a glimpse of what’s out there, head over to Dynamic Drive (www.dynamicdrive.
com/dynamicindex1), which has a nifty set of menus, and a particularly interesting
one called Slashdot (www.dynamicdrive.com/dynamicindex1/slashdot.htm). Figure
15-9 shows Slashdot with the same structure as the tabbed menu you saw earlier
in this chapter.

 TIP  Before you choose a navigation bar for your own site, test drive quite a few. This section walks you
through the process, but you’ll want to compare the results with other navigation bars before you commit to one.

In the following sections, you’ll download the script for a Slashdot menu and put
it to use.

www.dynamicdrive.com/dynamicindex1
www.dynamicdrive.com/dynamicindex1
www.dynamicdrive.com/dynamicindex1/slashdot.htm

CHAPteR 15: DYNAMIC BUTTONS AND MENUS 519

FANCY MENUS

FiGURE 15-9
The Slashdot menu is
collapsible, so you can
hide the sections you
aren’t interested in. Even
better, you can thoroughly
customize its colors, icons,
and borders, which means
you can adapt it for any
site.

GETTING THE SCRIPT
To download the Slashdot menu, follow these steps:

1. Go to www.dynamicdrive.com/dynamicindex1/slashdot.htm.

This page displays a sample menu and provides instructions for using it. It also
cites browser compatibility for the menu, and the news is good—it works in
every mainstream browser.

2. Look for the download link for the sdmenu.zip file. Click it, and then save
the ZIP file somewhere on your computer.

The Slashdot menu consists of a JavaScript file, some images, and a style sheet,
all of which you’ll find in the ZIP file.

3. Unzip the contents of sdmenu.zip. Put it in your site folder on your computer,
along with the rest of your site pages.

Altogether, sdmenu.zip contains a sample page that includes the menu (index.
html) and a subfolder (sdmenu) that contains all the support files. Drag both
of these into your site folder.

You don’t need to touch the contents of the sdmenu folder (although you might
if you want to refine the menu to match your website). By carefully replacing
some of the graphics, you can modify the background of the title sections (top-

www.dynamicdrive.com/dynamicindex1/slashdot.htm

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn520

FANCY MENUS
title.gif and title.gif), the arrows (collapsed.gif, expanded.gif, and linkarrow.gif),
and the bottom border (bottom.gif). By cracking open the style sheet (sdmenu.
css), you can change the background colors, borders, and spacing for the rest
of the menu. Finally, the sdmenu folder includes a JavaScript file (sdmenu.js),
which you probably won’t edit at all.

4. Create a new web page (or start editing one that already has a set of menu
links you want to adapt into a Slashdot menu).

You could edit your index.html page (and that’s a good way to get started with
most examples). However, the Slashdot menu is straightforward and similar to
the do-it-yourself collapsible menu you created earlier, so it’s easy enough to
incorporate into a new page.

CREATING THE MENU
The first step to using the Slashdot menu is to attach its style sheet to your page and
add a reference to the JavaScript file that powers the menu. You also need a scrap
of script that creates your menu when the page loads. All three of these ingredients
go in the <head> section of your page, and here’s what they look like:

<head>
 <title>Fancy Buttons</title>
 <link rel="stylesheet" type="text/css" href="sdmenu/sdmenu.css" />
 <script src="sdmenu/sdmenu.js"></script>
 <script>
 var myMenu;
 window.onload = function() {
 myMenu = new SDMenu("my_menu");
 myMenu.init();
 };
 </script>
 ...
</head>

The script code is generic. You can copy it word-for-word into every page that uses
the Slashdot menu. The only point to note is that the menu name it uses (my_menu
in this example) must match the ID of the <div> element that contains the Slashdot
menu on your page.

You probably also want to add an embedded style sheet or link to another style
sheet in your <head> section. The example in Figure 15-9 uses three basic style rules.
One assigns a font to the page, another positions the sidebar that has the Slashdot
menu, and the third positions the main content section:

body {
 font-family: Verdana,sans-serif;
 font-size: small;
}

CHAPteR 15: DYNAMIC BUTTONS AND MENUS 521

FANCY MENUS
.MenuBar {
 position: absolute;
 top: 20px;
 left: 0px;
 margin: 15px;
}

.MainContent
{
 margin-left: 180px;
 margin-top: 30px;
 margin-right: 20px;
}

These styles are nothing new. You saw them in earlier examples.

Now it’s time to build the menu. Its structure is remarkably similar to the examples
you’ve seen in this chapter. Essentially, each collapsible section of the menu consists
of a <div> container full of anchor elements. The only added feature is the title text,
which a element at the top of the <div> provides:

<div>
 About Me
 My Traumatic Childhood
 My Education
 Painful Episodes
</div>

A typical Slashdot menu contains several collapsible submenus. You wrap them all
together in another <div> element and give it a name that matches the menu name
in the script:

<div class="sdmenu" id="my_menu">
 ...
</div>

This is enough to create the Slashdot menu with all its formatting and functionality
intact. However, you probably want to wrap the Slashdot <div> in another <div>,
one that represents the menu sidebar. That way, you can place the sidebar exactly
where you want it, without worrying about style sheet conflicts or modifying the
sdmenu.css file.

<div class="MenuBar">
 <div class="sdmenu" id="my_menu">
 ...
 </div>
</div>

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn522

FANCY MENUS
Here’s the complete markup used to create the menu in Figure 15-9:

<div class="MenuBar">
 <div class="sdmenu" id="my_menu">
 <div>
 About Me
 My Traumatic Childhood
 My Education
 Painful Episodes
 </div>
 <div>
 My Store
 Buy Something
 Request a Refund
 File a Complaint
 </div>
 <div>
 Really Cool Stuff
 Pie Eating
 Harvesting Bananas
 Blindfolded Heart Surgery
 </div>
 </div>
</div>

 NOTE  Once you perfect your website and you’re ready to take it live, remember to upload the sdmenu
subfolder and all its files.

POWER USERS’ CLINIC

The Menus and Widgets That jQuery UI Offers
Although the Slashdot menu gives your site a quick, shake-
and-bake menu, it’s probably not the best tool to underpin a
big, professional website. Instead, you might prefer to outfit
your site with the features and frills of a JavaScript library. That
way, you won’t need to continuously trawl the Web for bits and
pieces of code to improve your pages. Instead, you can use a
library’s comprehensive and unified set of tools.

For example, many web developers use jQuery, a small but wildly
popular library that extends the features of ordinary JavaScript.
jQuery offers graphical effects like fading and simple animations,
and includes plenty of time-saving shortcuts, too. One of the
most interesting things about jQuery is the way that other
web developers can extend it and add their own plug-ins. One
example is the powerful jQuery UI library, which adds a set of

slick, interactive widgets for web creators to play with. These
include autocomplete text boxes, accordion-style collapsible
panels, tabs, and a customizable menu.

If you’re one of the many web developers who use the jQuery
library, it’s worth seeing if the jQuery UI menu can help you out.
And if you’re using a different JavaScript library, like jQuery or
Dojo (page 496), you might find that it includes a similar menu
that you can use (or that someone else has created a menu
based on your JavaScript library of choice).

Here’s where life gets a bit sticky, simply because there are
so many paths to your goal: a nice-looking menu for your
web pages. To learn more about the jQuery solution, consider
reading JavaScript & jQuery: The Missing Manual (O’Reilly), or
visit the jQuery learning center at http://learn.jquery.com.

http://learn.jquery.com

523

CHAPTER

16

In the early days of the Internet, websites were about as jazzy as an IRS form. You’d
see pages filled with an assortment of plain text, links, and more plain text. Over
time, the Web matured, and web pages started to change as designers embraced

the joys of color, pictures, and tacky clip art. But when that excitement started to
wear off, it was time for a new trick—multimedia.

Multimedia is a catch-all term for a variety of technologies and file types, which
have different computer requirements and pose different web design challenges.
Multimedia includes everything from the irritating jingle that plays in the background
of your best friend’s home page to the wildly popular video clip of a cat playing the
piano. (Depressing fact: That cat has over 40 million views, and you’re unlikely to
ever create a web page that’s half as popular.)

In this chapter, you’ll learn how to put audio players and video playback windows
into your web pages. You’ll also learn to overcome the limitations of old browsers by
using a Flash fallback system, which ensures that pretty much any web-connected
computer can listen to your music and watch your videos. And finally, once you’ve
learned how to do all this on your own, you’ll see how to simplify your life by hosting
your video files on YouTube.

Understanding Multimedia
There comes a point when all new web designers want more than mere text and
pictures on their pages. Even spruced-up fonts and elegant page layouts don’t
satisfy the design envy many newcomers feel when they spot a site loaded with
sound and motion. That’s understandable: You, too, want to trick out your pages

 Audio and Video

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn524

UNDERSTANDING
MULTIMEDIA

with audio and video. But before you can jazz up your site, you need to understand
a few basics of multimedia.

Linking and Embedding
One of the key choices you make when you outfit your pages with multimedia is
whether to link to or embed the files.

Linking to multimedia content is the simplest but least glamorous approach. The
link points to an audio or video file stored along with all your other website files.
There’s really nothing to creating linked multimedia. You use the same lowly anchor
element and href attribute you used in Chapter 6. Here’s an example:

Would you like to hear Industrial Noise?

Figure 16-1 shows what happens when you click one of these babies.

FiGURE 16-1
When you click a link to a multimedia file,
your browser decides what to do. If you’re
using an older browser, or if your browser
doesn’t recognize the file format, it asks
if you want to save the file or open it in
another program (top). But if your browser
recognizes the file format, it opens a blank
page with playback controls and starts
playing the audio (bottom).

CHAPteR 16: AUDIO AND VIDEO 525

UNDERSTANDING
MULTIMEDIA

 NOTE  It makes absolutely no difference what kind of software your web host’s server runs. When someone
clicks a link to an audio file, the browser downloads the file to the visitor’s computer and plays it there, not from
the server.

Embedding multimedia is a more advanced approach. It integrates music or video
into your HTML page. As a result, you can create rich combinations of text, sound,
and video.

 NOTE  The distinction between linking and embedding multimedia is the same as the distinction between
linking to a picture (with the <a> element), and embedding it right in your page (with the element).

You use the <audio> element to embed an audio player on your page and the <video>
element to show a video on your page. These two newer elements didn’t exist until
HTML5. Before that, web developers had to fiddle around with the clunky <embed>
element, which was notoriously finicky and never managed to work for every visitor.

Today, browsers understand both the <audio> and <video> elements. Even mobile
browsers work with them. In fact, there’s just one browser still kicking around that
doesn’t know what to do with <audio> and <video> elements, and that’s Internet
Explorer 8, which commands around 3 percent of the worldwide browser market at
the time of this writing. If this worries you, don’t panic—you can create audio- and
video-enhanced pages that have a Flash-powered fallback player for ancient brows-
ers. You’ll learn how to add one on page 536.

Hosted Multimedia
One way to avoid all these browser headaches is to use hosted multimedia—audio
and video files stored on someone else’s server but displayed on your web page.
The best-known example of hosted multimedia is YouTube, a ridiculously popular
site that plays back hundreds of millions of video clips every day.

Hosted multimedia is an excellent choice if you want to include really large files,
particularly movie clips, on your page. It won’t tap out your website’s bandwidth
(page 289). Best of all, you don’t need to worry about making sure your media files
work with different browsers and operating systems, because the media hosting
service does all that work. The only drawback is that you give up a fair bit of control.
For example, if you host your videos on YouTube, you need to abide by its rules,
which restrict you from posting videos with nudity, dangerous acts, violence, or
copyrighted material. (And even if you think your video is using copyrighted mate-
rial fairly—for example, in the context of a larger work of commentary, criticism, or
satire—the copyright holder can probably persuade YouTube to yank it down unless
you pay a small army of lawyers to argue otherwise.)

Despite these conditions, YouTube is still far and away the most practical way to
share clips. You’ll learn to use YouTube on page 541.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn526

PLAYING AUDIO
FILES Playing Audio Files

The first ingredient you need to create a music-playing page is an audio file. Your
best bet is one encoded using the popular MP3 standard. That way, you can rest
assured that your page will work on the latest version of every browser in existence.

 TIP  For best results, take an audio track in an uncompressed format (like WAV) and use it to generate an
MP3 audio file. Most basic audio editors can perform this task. Audacity (http://audacity.sourceforge.net) is a free
editor for Mac and Windows that fits the bill, although you’ll need to install the LAME MP3 encoder to get MP3
support (http://lame1.buanzo.com.ar). Goldwave (www.goldwave.com) is a similarly capable audio editor that’s
free to try but sold for a nominal fee.

Here’s an example of a page that uses the <audio> element in the simplest way
possible:

<!DOCTYPE html>
<html>
<head>
 <title>A Taste of Scarlatti</title>
</head>
<body>
<h1>Relax, Music</h1>
<p>I've picked some music for you. Press the play button to listen to
Scarlatti's K. 184 sonata.</p>
<audio src="scarlatti.mp3" controls></audio>
</body>
</html>

The src attribute identifies the audio file you want to play. In this example, a browser
looks for that file in the same folder as the page. Of course, you could also put your
music file in a subfolder on your server and then use a relative path in the markup
(page 177).

 NOTE  It goes without saying that you shouldn’t put an audio file on your website unless you created it,
the content creator has given you permission, or you can verify that it’s in the public domain. Plenty of websites
provide royalty-free music you can use on your pages, so long as you give credit to the composer somewhere on
your site. For some good examples of free music catalogs, visit http://incompetech.com/music or www.bensound.
com or http://musopen.org/music.

The controls attribute tells a browser to display a basic set of playback controls.
Each browser has a slightly different version of these controls, but they always serve
the same purpose—to let your guest start and stop playback, jump to a new posi-
tion in the file, and change the volume (Figure 16-2). To try out this example, find it
on the companion site (http://prosetech.com/web), which has both the HTML page
and the corresponding MP3 file.

http://audacity.sourceforge.net
http://lame1.buanzo.com.ar
www.goldwave.com
http://incompetech.com/music
www.bensound.com
www.bensound.com
http://musopen.org/music
http://prosetech.com/web

CHAPteR 16: AUDIO AND VIDEO 527

PLAYING AUDIO
FILES NOTE  The <audio> and <video> elements must have both a start and an end tag. You can’t use empty

element syntax, like <audio />.

FiGURE 16-2
Although the playback controls look slightly different
depending on the browser, they function the same way.
This figure shows the audio player in Chrome. It provides
buttons for playing and pausing the audio, as well as
muting the sound and adjusting the volume.

Along with the basic src and controls attributes, the <audio> element offers several
other options, which you’ll read about below.

Automatic Playback
Most people like to browse the Web in peaceful silence. That means no trance-hypno-
ambient background tracks, no strange disco beats, and no sudden cymbal crashes.
This aversion to noise may be due to the fact that something like 98 percent of all
web browsing takes place on company time.

But if you like to startle and annoy people, or if you’re absolutely convinced that
your audience really does want some funky beats, you can bring on the background
music by adding the autoplay attribute, which tells a browser to start playback as
soon as it finishes loading the page. It looks like this:

<p>The music now blaring from your speakers is
Scarlatti's K.184 sonata.</p>
<audio src="scarlatti.mp3" controls autoplay></audio>
<p>I hope you didn't tell your colleagues you were working!</p>

Without autoplay, it’s up to the person viewing the page to click the Play button,
which is obviously a politer way of handling things.

If you’re really determined to annoy your visitors, you can use the <audio> element
to play background music mercilessly by adding the autoplay attribute and remov-
ing the controls attribute. This creates an automatic music player that guests can’t
shut off. The only reason to take this step is if you create your own controls, using
JavaScript. For example, you might create a JavaScript-powered button that switches

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn528

PLAYING AUDIO
FILES

off the audio, or you might use the <audio> element to play music and sound effects
for a JavaScript game embedded in the page.

 NOTE  Creating your own music players and controlling the <audio> and <video> elements with
JavaScript are two tasks beyond the scope of this book. You can learn more from the book HTML5: The Missing
Manual (O’Reilly), which demonstrates how to create custom players, or you can dive in headfirst with a custom-
player-building tutorial from the Web. (There are many, but you can find one popular article at http://tinyurl.
com/custom-player.)

Preloading Media Files
One useful HTML5 attribute for multimedia files is preload, which tells a browser
when to download a file. Set preload to auto, and the browser starts downloading
the whole media file once it opens the page, so the file’s available as soon as a guest
clicks Play. Of course, the download takes place in the background, so your visitor
can scroll around and read the page without waiting for the download to finish.

The preload attribute works with two other values, too. Use metadata to tell the
browser to grab the first small chunk of data from the file, which is enough to de-
termine some basic details, like the total length of the audio. Or you can use none,
which tells the browser to hold off on the download. You might use one of these
options to save bandwidth, for example, if you have a page stuffed full of <audio>
elements and you don’t expect the visitor to play more than a few of them.

<audio src="scarlatti.mp3" controls preload="metadata"></audio>

When you use the metadata or none values, the browser downloads the audio file as
soon as someone clicks Play. Happily, browsers can play one chunk of audio while
downloading the next without a hiccup unless you’re working over a slow network
connection.

If you don’t set the preload attribute, browsers can do what they want, and different
browsers make different assumptions. Most browsers assume auto as the value, but
Firefox uses metadata. Furthermore, it’s important to note that the preload attribute
isn’t a rigid rule, but a recommendation you give the browser—one that it might
ignore, depending on other factors. (And some slightly older versions of browsers
don’t pay attention to the preload attribute at all.)

 NOTE  If you have a page stuffed with <audio> elements, the browser creates a separate strip of playback
controls for each one. Your visitor can listen to one audio file at a time or play them all at once.

Looping Playback
Finally, the loop attribute tells a browser to start over at the beginning when play-
back ends. You can use this technique to keep your visitors happy with endlessly
looping background music:

<audio src="scarlatti.mp3" controls loop></audio>

http://tinyurl.com/custom-player
http://tinyurl.com/custom-player

CHAPteR 16: AUDIO AND VIDEO 529

SHOWING
VIDEO CLIPS

In most browsers, playback is fluid enough that you can use this technique to cre-
ate a seamless, looping soundtrack. The trick is to choose a loopable piece of audio
that ends where it begins.

Although many websites sell audio loops, you can download one for free at Flash
Kit (www.flashkit.com/loops). Flash Kit offers a large and excellent catalog of nearly
10,000 loops ranging in style from ambient to urban. They were originally designed
for Flash players, but you can also download them in MP3 format, which is what the
<audio> element requires.

 NOTE  Loops are the audio equivalent of a wallpaper tile. They’re short snippets of music specially designed
so that the beginning picks up where the end leaves off. You can play an audio loop over and over again, and the
result is a seamless background track. In a first-rate loop, the repetition isn’t immediately obvious, and you can
happily listen to it for several minutes.

Showing Video Clips
Now that you’ve conquered the challenges of audio and learned to put music into
your web pages, you’re ready to move on to the challenge of video content.

To show video content, you use the <video> element, which works for video files
much like the <audio> element works for audio files. Here’s an example that plays
an MP4 video file:

<!DOCTYPE html>
<html>
<head>
 <title>Embarrassing Party Video</title>
</head>
<body>
<h1>It's Less Fun (When the Police Come)</h1>
<p>Party was going great until the fine fellows at 24th division
came by on a noise complaint.</p>
<video src="arrest.mp4" controls></video>
<p>Click the play button to see what happened to us.</p>
</body>
</html>

Once again, the controls attribute adds a handy set of playback controls to your page
(Figure 16-3). In most browsers, these controls disappear when you click somewhere
else on the page and return when you point to the movie link.

To build this simple page on your own, download the arrest.mp4 file from the com-
panion site (http://prosetech.com/web). Create a new web page in the same folder,
and add the <video> element inside.

www.flashkit.com/loops
http://prosetech.com/web

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn530

SHOWING
VIDEO CLIPS

FiGURE 16-3
Every browser has a
slightly different style for
the video window, but
the playback buttons are
all virtually the same.
Chrome’s video player
offers the same buttons
as its audio player, plus
one—a button in the
bottom-right corner that
expands the video to fill
the entire screen.

 NOTE  If you right-click a video window that uses the <video> element, you’ll get a simple menu that
includes the option to save the video file on your computer. Depending on the browser, it may also include com-
mands for changing the playback speed, looping the video, taking it full screen, and muting the sound.

Video formats aren’t quite as simple as audio formats. That’s because you need to
consider two details: the codec, which is a sort of recipe that compresses your video,
and the container, which is the package that holds the encoded video and audio. In
the video world, there’s a dizzying range of codec-and-container combinations. To
ensure that your video plays back on the widest range of browsers, your video file
should meet two criteria:

• You should encode it with the popular H.264 codec. These days, H.264 is the
recording format of choice for most consumer devices, from smartphones to
video cameras.

• You should store it in an MP4 (also known as MPEG-4) container. You can usually
tell that you have the right type of container by looking at the file extension,
which should be .mp4.

CHAPteR 16: AUDIO AND VIDEO 531

SHOWING
VIDEO CLIPS

Follow these rules, and your video will play on the modern version of every browser.

 NOTE  Even if you have the right type of file (an MP4 file that holds H.264-encoded content), it’s probably
too big to be practical for your website. Page 532 explains a bit more about how to convert and slim down video
files.

NOSTALGIA CORNER

The Format Wars
Browser makers spent several years battling it out over dif-
ferent multimedia formats. The war over video formats was
particularly nasty, and it still hasn’t completely subsided. At
the moment, every browser supports H.264 (sometimes reluc-
tantly). However, there’s no way to know if format disagree-
ments might erupt again. For example, Google, the creator of
Chrome, has officially pledged to remove H.264 support in favor
of the free WebM codec in a future browser release (although it
now seems unlikely that that will actually happen).

If the format wars do erupt again, the <audio> and <video>
elements are ready. That’s because they both support a format
fallback system. Here’s how it works: Instead of supplying a
single source file in a single format with the src attribute,

you offer up a list of files by adding a <source> element
for each one. For example, if you have a web video in two
different formats, you add two <source> elements inside
the <video> element, one for each file. When a browser
processes your page, it scans through this list until it finds a
video in a format that it supports.

This multiple-file system is messy and awkward. It also wastes
your time and your web space, because it’s up to you to encode
each media file in multiple formats. To learn more, check out
the reference for the <source> element in Appendix B (page
572). Or read a detailed tutorial of the format fallback system
at http://tinyurl.com/vid-for-ev.

Configuring the Video Window
The <video> element has the same src, controls, preload, autoplay, and loop at-
tributes as the <audio> element. However, if you choose automatic playback, you
can make it slightly less obnoxious by throwing in the muted attribute, which shuts
off the sound on most browsers. Your guest can switch the audio back on by click-
ing the speaker icon, as usual.

The <video> element also adds three more attributes: height, width, and poster.

The width and height attributes set the size of the playback window (in pixels).
Here’s an example that creates a playback window that measures 400 x 300 pixels:

<video src="arrest.mp4" controls width="400" height="300"></video>

If you decide to supply the width and height attributes, make sure they match the true
dimensions of the video. Technically, you don’t need to add these details, because
a browser can figure out what size to make the video box when it loads the video
file. However, there’s an advantage to making these details explicit. That’s because
it forces the browser to reserve the right amount of space for the playback window
right off the bat, preserving your carefully crafted layout as the video loads (or even
if the video fails to load altogether).

http://tinyurl.com/vid-for-ev

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn532

SHOWING
VIDEO CLIPS

 NOTE  No matter what dimensions you use to size the video box, the video frame always keeps its proper
proportions. For example, if you take a 400 x 300-pixel video and put it in an 800 x 450-pixel video box, you’ll
get the biggest video frame that fits in the box without stretching, which is 600 x 450 pixels. This leaves 100
pixels on each side of the video frame, which browsers leave as blank space.

Finally, the poster attribute lets you supply an image that browsers display in place
of the video in three situations: if the browser hasn’t downloaded the first frame
of the video yet, if it couldn’t find the selected video file, or if you set the preload
attribute to none.

<video src="arrest.mp4" controls poster="police_cuffs.jpg"></video>

Preparing Video for the Web
Audio and video files exhibit some hefty differences. Most importantly, video files
are big. Even the smallest of them is many times the size of an audio recording of a
full-length Mahler symphony.

Handling this much data without trying your visitors’ patience is a true test. In the
following sections, you’ll learn how to prepare your video for the Web and let your
visitors view it.

Hosting your own video files is a task meant for ambitious multimedia mavens. The
key stumbling block is the sheer size of digital video. On a digital camcorder, every
second of video can chew through 1 to 3 MB of storage (depending on the record-
ing quality and format you use). Put together a 5-minute clip, and you’re looking at
a staggering 300 to 900 MB file. Not only is this awkward to manage, but it’s also
enough to take a bite out of any webmaster’s server and bandwidth allocations.

What can you do to make a web video both look good and perform well? You can
always use someone else’s web-ready video (or pay a video-editing company lots
of money to trim yours down to web proportions). Assuming that’s not what you
want, you have two choices:

• Record at lower quality. Many video cameras let you record using lower-quality
settings for the sole purpose of putting video on the Web. This way, you can
dodge conversion headaches and send video straight to your site.

• Lower the quality afterward. More commonly, you need to go through a long
process of re-encoding your high-quality video to convert it to a size suitable
for the Web. To do this, you need a video-editing or video-conversion program
(see the box on page 533 for tips on choosing one). It may take a bit of time to
get this approach working, because you need to pick a program, settle on the
right settings, and check your results. But once you iron out the kinks, this is
the best solution, because it gives you the flexibility to retain as much quality
as you can in your web video. It’s a particularly handy strategy if you plan to
use a hosting service like YouTube. YouTube does best with high-quality video,
because it does its own re-encoding when you upload your video files.

CHAPteR 16: AUDIO AND VIDEO 533

SHOWING
VIDEO CLIPS

UP TO SPEED

Encoding Your Media
Plenty of programs can edit and convert video files. Some are
free, while others are professional tools with prices to match.
However, there are good choices out there for even casual video
creators. If you need to edit your video (for example, snip out
pieces, add fades and transitions, or superimpose captions over
the action), you should consider a video editing tool. Two basic
choices are Windows Movie Maker, included with Windows, and
iMovie for the Mac. If you use Windows Movie Maker, however,
you’ll need one of the free conversion programs described
below to convert the final Windows Media Video file (.wmv)
into a legitimate MP4 file (.mp4).

If you already have the video you want and simply need a way
to convert it to MP4 format or compress it to a web-friendly size,
two free, open-source conversion tools can help: HandBrake
(available at http://handbrake.fr, and shown in Figure 16-4)
and Miro Video Converter (www.mirovideoconverter.com). Both
programs offer Windows and Mac versions and can convert a
wide range of formats. Miro is slightly simpler to use, while
HandBrake lets you tweak a few more advanced options for
the encoding.

Here’s how to get your video ready for the Web:

1. Film your movie.

Take a couple of lessons from video aficionados and film your video in a way
that makes it easier to compress and introduces less distortion: Keep camera
movements smooth and gradual, and don’t film complex patterns. Your com-
pressed video will look better.

If you’re using a smartphone or a tablet, remember to always film in landscape
orientation (so the long edge of the device is horizontal). In other words, you
want the picture to be short and wide, like a computer monitor or a television
screen. If you ignore this advice and film in portrait mode, you’ll be disappointed
when you play your video in a web page. That’s because the video player will
shrink down your tall, skinny video and pad the sides with oceans of black space.

2. Connect your device to your computer using a USB cable.

Other modes of transport are possible, but usually less practical. For example,
if you have a video on a smartphone, you can upload it to a web storage service
or email the video file to yourself. But because video files are so big, these ap-
proaches are often slow and awkward.

3. Copy your video file from your device to your computer.

You may have a program that automatically copies pictures and movie files to
your computer. Examples include a photo and media management program like
Adobe Lightroom, Picasa, or iPhoto (if you’re moving videos from an iPhone
to a Mac).

If you plug in your device and no program offers to perform the import, you
may need to transfer the files on your own. Fortunately, it’s a relatively simple

http://handbrake.fr
www.mirovideoconverter.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn534

SHOWING
VIDEO CLIPS

job. Just browse the folders on your device until you find a video file (look for
big files with extensions like .mp4 or .mov). Then drag one or more files to a
folder on your computer so you can work with them.

4. Use a video-editing program to snip out just the video segment you want.

Some programs let you add music or special effects at this point, too. There’s
no shortage of options here, from simple, budget-friendly editors like iMovie
and Windows Movie Maker to professional packages like Adobe Premiere Ele-
ments and Apple’s Final Cut Pro.

5. Re-encode that piece of video in a highly compressed format.

If all the format information in your program sounds like gobbledy-gook, look
for an option that clearly says “web video” when you save your clip. (If you’re
still looking for a program that can perform this sort of conversion, check out
the box on page 533.)

Technically, you make three choices in this step:

• Video format. As discussed earlier, the best choice is to create an MP4 file
encoded using the H.264 codec.

• Video dimensions. If your source video already has the dimensions you
want, you don’t need to change anything. But if you want to show a smaller
video window in your web page, you might decide to scale down your video
to match, because this reduces its file size. These days, videos are usually
recorded in a widescreen aspect ratio, and they commonly fall into one of
these pixel dimensions: 640 x 360 (usually the smallest you’ll want to go),
854 x 480, 1280 x 720 (known as 720p, or High Definition), and 1920 x 1080
(known as 1080p, or Full High Definition).

• Video quality. As with JPEG pictures, the greater the compression, the
more detail you lose. Some video conversion tools let you pick a quality
setting (Figure 16-4). Others let you choose the bitrate (the number of bits
set aside to store each second of video). The smaller the bitrate, the lower
the quality and the smaller the final video file.

Re-encoding video is time-consuming—even a speedy computer can take
several times as long as the length of the original clip. The good news is that at
the end of the process, you’ll have a more manageable web-ready file—say, a
20 MB file for a full 3-minute clip.

 NOTE  If you plan to create a website with a lot of digital audio and video, you need to reconsider your site’s
storage and bandwidth requirements (see page 291). Unlike ordinary HTML pages and web graphics, multimedia
files can grow quite large, threatening to overwhelm your space and bandwidth allotment. You can avoid this
problem by using a hosted multimedia service like YouTube, in which case the video views cost you neither web
space nor bandwidth.

CHAPteR 16: AUDIO AND VIDEO 535

FALLBACKS
FOR OLD

BROWSERS

FiGURE 16-4
Although HandBrake is
full of settings, you need
to consider changing
only a few of them. Pull
the Quality slider to the
left to create a video file
that’s smaller and of lower
quality.

Fallbacks for Old Browsers
The <audio> and <video> elements are great tools when they work, which is most
of the time. But if your page runs into an old browser that doesn’t recognize HTML5
attributes, things aren’t quite so smooth.

Usually, the only browser you need to worry about is Internet Explorer (specifically,
IE 8 and older). Even though IE 8 is more than six years old, it’s still kicking around
on ancient Windows XP computers that can’t run newer versions of the browser.
IE 8 doesn’t know anything about HTML5. If it sees the <audio> and <video> ele-
ments, it ignores them and displays the rest of your page with no playback controls
or video window.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn536

FALLBACKS
FOR OLD

BROWSERS
To deal with this situation, you need to include fallback content nestled inside the
<audio> or <video> element. That way, if a browser doesn’t understand the element,
it displays alternate content. For example, instead of showing a video player window,
your page can show a link to download the video:

<video src="arrest.mp4" controls>
 Click here to download the arrest.mpg video.
</video>

Browsers that don’t understand HTML5 (like IE 8) will act as though they saw this:

 Click here to download the arrest.mpg video.

Of course, a link isn’t nearly as good as a real video window. To compensate, you
can use another type of playback window if the <video> element fails. There are
two reliable ways to do that without HTML5:

• Use a YouTube video window. The drawback is that you’ll need to upload your
video to YouTube, as described on page 536.

• Use a Flash video player. The world has plenty of Flash players, and many of
them are free for noncommercial use. And best of all, most support H.264, which
means you don’t need to go to the work of re-encoding your files.

Either way, you need to take a bunch of markup and paste it inside the <video>
element, so that the Flash plug-in becomes the fallback for browsers that don’t
understand HTML5. You can see the HTML for a YouTube player on page 549. You’ll
find the markup for a Flash player in the next section.

UP TO SPEED

The Role of Flash
Flash is a versatile plug-in that’s slowly being replaced by
HTML5. Just a few years ago, Flash was a top tool for pro-
grammers who wanted to create rich, interactive websites
and games. Today, a mixture of HTML5 and JavaScript is more
likely to fill that role, but Flash lives on as a way to play video
without relying on HTML.

Visitors can’t use Flash unless they have a Flash plug-in in-
stalled. That said, good estimates suggest that an overwhelm-
ing 99 percent of web-connected desktop computers already
have the plug-in. The real strength of Flash is that even very
old computers are likely to have the Flash plug-in.

It might occur to you that you could add a Flash player to your
page and leave out HTML5 altogether. After all, doesn’t virtually
every computer have Flash? The problem is that Flash doesn’t
play well with mobile devices. In particular, Flash doesn’t work
at all on iPhones and iPads for reasons that are partly technical
and partly political. In other words, if you want people to see
your videos on Apple’s current crop of mobile devices, you need
to start with HTML5 and use Flash as a last resort for browsers
that don’t do HTML5.

Adding a Flash Fallback
If you’re interested in a Flash video player, your first step is to pick the one you
want to use. Two popular choices are JW Player (http://www.jwplayer.com) and

http://www.jwplayer.com

CHAPteR 16: AUDIO AND VIDEO 537

FALLBACKS
FOR OLD

BROWSERS
Flowplayer Flash (http://flash.flowplayer.org). With either one, you need to sign up
at the website and then pick a plan. You’re interested in the free plan, which gets
you the Flash player only. (You can pay money for them to host your videos and to
get extra features in the Flash player.)

For example, the process of using JW Player goes like this:

1. Visit www.jwplayer.com.

2. Click the Order Now button.

A detailed page appears with different pricing plans. Ignore the option of paying
for hosting (which gets JW Player to host your video files on its site, instead of
keeping it on your own site).

3. Under the Free option, click Get It Now.

4. Provide your email address, and then click Get Started.

JW Player sends you a confirmation email, with a link you need to click.

5. Confirm your account by clicking the link in your email.

Once you click the link, the JW Player site asks you to create a password.

6. Choose a password to complete your account registration.

Now you go to JW Player’s Publish Wizard page.

7. Click “Publish a Video Now” to get the ball rolling.

JW Player needs three pieces of information to create your Flash player (Figure
16-5).

8. Fill in the information for your video.

• Media File is the crucial detail. Identify the MP4 video file that you want to
show in your video window. Just type in its name, as you do with the <video>
element. The JW Player can then play your video as long as it’s in the same
folder as your page. If you want to get fancy, you can use a relative path,
like videos/arrest.mp4 to point to a video in a subfolder on your website.

• Poster Image is an optional image that appears in the video window be-
fore playback starts. It plays the same role as the poster attribute in the
<video> element.

• Media Title is an optional descriptive name for your video. It appears in
the middle of the video window, before playback starts. It’s also used if
you create a playlist with this video.

 NOTE  You don’t need to upload the media file or poster image. You just need to tell JW Player what their
filenames are. That way, the JW Player site can create the right markup to show the player on your page.

http://flash.flowplayer.org
www.jwplayer.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn538

FALLBACKS
FOR OLD

BROWSERS

FiGURE 16-5
In this example, you’re
about to create the
markup for a JW Player-
powered video window.
The player will show the
arrest.mp4 video that’s on
your site.

9. Click Publish Now.

The next step asks you to configure your player (Figure 16-6).

10. Choose the size of your video window. Optionally, you can specify any of
the other settings on this page.

Usually, you’ll pick Responsive, which means the player sizes itself to match
your video file. Your other choice is Fixed Dimensions, in which case you need
to set the exact height and width of the window in pixels.

You can also choose a skin for your player, which sets the color scheme and the
styling for the video box border and its controls. But because you’ve opted to use
the free version of JW Player, you’re limited to the standard black-and-gray skin.

In the Playback Options section, you can make a few more minor adjustments.
For example, you can check the Autostart setting to start playback as soon as
the browser loads the page, and Repeat to make the video loop continuously.
Make sure you set the Primary State option to Flash, not HTML5. That’s because
you want to use JW Player as a fallback only, not an all-purpose player.

11. Click Get Embed Code.

Now you’re rewarded with the markup and JavaScript code you need to put
your customized version of the JW Player on your site.

CHAPteR 16: AUDIO AND VIDEO 539

FALLBACKS
FOR OLD

BROWSERS

FiGURE 16-6
When you create the JW
Player markup, you pick
a few options to style
the video box, and the
website spits out the code
you need.

12. Copy the first <script> element and put it in the <head> section of your
web page.

The first <script> element points to a block of JavaScript code stored on the JW
Player website. Your page uses this code to create the player. Here’s an example:

<script src="http://jwpsrv.com/library/VgIvAs0OEeSUiw4AfQhyIQ.js"></script>

Part of this URL looks like a string of gibberish letters. In truth, it’s a unique
code that identifies you to the JW Player site.

13. Copy the rest of the markup, and then put it inside the <video> element in
your web page.

Once you add the <script> element, you can put the playback window wherever
you want in your page using a second block of HTML markup that the JW Player

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn540

FALLBACKS
FOR OLD

BROWSERS
site provides. It consists of an empty <div> container and a <script> element
with a bit more JavaScript code:

<div id='playernCvWpRtuIEqB'></div>
<script type='text/javascript'>
 jwplayer('playernCvWpRtuIEqB').setup({
 file: 'arrest.mp4',
 image: '//www.longtailvideo.com/content/images/jw-player/lWMJeVvV-876.jpg',

 title: 'Party arrest',
 width: '100%',
 aspectratio: '16:9',
 primary: 'flash'
 });
</script>

The code in the <script> element creates the playback window according to
the options you specified and places it in the <div> container. But you don’t see
the messy JavaScript and Flash details that make everything happen, because
the JW Player site stores them.

Remember, the JW Player is a fallback. You don’t want to use it unless the <video>
element fails. That means you need to put the JW Player inside your <video> ele-
ment. Here’s a complete page that puts the pieces together:

<!DOCTYPE html>
<html>
<head>
 <title>Embarrassing Party Video</title>
 <script src="http://jwpsrv.com/library/VgIvAs0OEeSUiw4AfQhyIQ.js"></script>
</head>
<body>
<h1>It's Less Fun (When the Police Come)</h1>
<p>Party was going great until the fine fellows at 24th division
came by on a noise complaint. </p>
<video src="arrest.mp4" controls>
 <div id='playernCvWpRtuIEqB'></div>
 <script type='text/javascript'>
 jwplayer('playernCvWpRtuIEqB').setup({
 file: 'arrest.mp4',
 image: '//www.longtailvideo.com/content/images/jw-player/
 lWMJeVvV-876.jpg',
 title: 'Party arrest',
 width: '100%',
 aspectratio: '16:9',
 primary: 'flash'
 });
 </script>
</video>

CHAPteR 16: AUDIO AND VIDEO 541

UPLOADING
VIDEOS TO
YOUTUBE

<p>Click the play button to see what happened to us.</p>
</body>
</html>

To see how the JW Player works, find an old browser that doesn’t understand HTML5,
or cheat by removing the <video> element from your page, so that it contains the
JW Player script and nothing else. That way, you’ll see the same content as ancient,
HTML5-ignorant browsers.

 NOTE  With Flash’s standard security settings, you can’t play a movie from your hard drive. That means
that if you create a test page with JW Player and you try to run it from your computer, it won’t work. You need
to upload the page to a web server (along with your video file), and then try it out.

Uploading Videos to YouTube
Before YouTube hit the scene, video clips hadn’t really taken off on the Web. They
were all-around inconvenient: slow to download, with often jerky and sporadic
playback. Today, the landscape has shifted. Web connections are faster and every
browser supports video playback through HTML5 or Flash. Ordinary people own
all sorts of digital video gadgets that can shoot short movies, from true video cam-
eras to digital cameras, smartphones, and webcams. Popular clips rocket around
the world, going from unknown to Internet sensation in a matter of hours. Family
members, adventurers, and wannabe political commentators all regularly use video
to keep in touch, show their skills, and dish the dirt.

YouTube (www.youtube.com) is at the forefront of this revolution. It currently ranks as
the world’s third most-popular site (behind Google and Facebook), and it’s held that
spot for years. And YouTube’s range of content is staggering. With a quick search,
you can turn up both amateur and professional content, including funny home videos,
product reviews and announcements, homemade music videos, clips from movies
and television shows, and ordinary people spouting off on just about any topic.

If you’re still considering options for putting your video online, there are three great
reasons to use YouTube:

• It’s easy. When you use YouTube, you don’t need to worry about converting
your video to the right format, re-encoding it to make it smaller, or adding a
Flash fallback. YouTube handles all these concerns gracefully, using HTML5 or
Flash, depending on what your visitor’s browser understands. It even encodes
your video into several different resolutions, so that people on slow connections
get a smaller video file that won’t choke up halfway through, while people on
fast connections can enjoy your video in high quality.

• It extends the reach of your website. YouTube is one of the most popular
sites on the Web. If you’re lucky, a YouTube video can increase your audience
from a few people to millions of eager clip-watchers. By putting your movies

www.youtube.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn542

UPLOADING
VIDEOS TO
YOUTUBE

on YouTube, you increase the odds that someone will discover it and possibly
visit your site afterward. For example, many of the most popular clip-makers
capitalize on their YouTube popularity by selling themed merchandise on their
sites. Others use AdSense (page 415), which includes special ad boxes that sit
unobtrusively at the bottom of the playback window.

• The bandwidth is free. If you put a video on your site, you need to worry about
the space it takes up and whether you have enough bandwidth to satisfy every
visitor. This is a particular problem if your video goes viral (becomes briefly and
instantly popular). If you have a basic shared hosting account, this attention
can crash your site.

In the following sections, you’ll see how to upload your first YouTube video and how
to embed it in one of your pages.

Preparing a Video for YouTube
Before you upload a video, it helps to understand how YouTube works and the sort
of files it expects. Here are some essential bits of YouTube wisdom:

• YouTube accepts video in virtually any format, including MPEG2, MPEG4, MOV,
DivX, WMV, WebM, AVI, and FLV. That means you probably won’t need to con-
vert your file before submitting it.

• YouTube automatically re-encodes the videos you upload so that web visitors
can watch them without teeth-gnashing delays. For this reason, YouTube recom-
mends that you upload the original version of your clip. In other words, don’t
re-encode your video. Doing so only wastes your time and lowers the movie’s
quality because YouTube re-encodes the clip anyway to prepare it for playback.

 NOTE  Depending on the length of your clip and the video format you used, your original file could be
gargantuan (easily running into hundreds of megabytes). Even though YouTube allows uploads of files up to 128
GB, videos of this size aren’t practical for everyone (they take forever to upload, for one thing). If you have a
slow web connection, or if your Internet service provider limits how much data you can transfer in a month, you
might need to ignore YouTube’s recommendation and shrink your video files before you upload them. If so, use
one of the tools described on page 533.

• YouTube plays back both standard and widescreen video. For best results, use
the largest dimensions your recording device allows. When you upload your file,
YouTube creates different copies of it at different sizes. That way, viewers get a
video optimized for their playback window, whether that’s a standard desktop-
browser window, a full-screen window, or a tiny window on a mobile device.

• Read the YouTube Help section. From time to time, YouTube changes its recom-
mendations or accepts new formats. To get the lowdown before you upload,
visit http://tinyurl.com/66onkub.

http://tinyurl.com/66onkub

CHAPteR 16: AUDIO AND VIDEO 543

UPLOADING
VIDEOS TO
YOUTUBE

Uploading a Video
Once your video’s ready, it’s time to put it online. The process is refreshingly
straightforward:

1. Go to www.youtube.com. Click the Sign In link in the top-right corner of the
page. Then log in with your Google account.

Anyone can browse and view YouTube videos (you can choose from over a bil-
lion clips at the time of this writing). But to upload your own movies, you need
a Google account. If you’ve somehow made it to this point in the book without
creating one, you need one now. Supply the usual particulars, including your
email address, password, location, and date of birth, and then sign yourself up.

2. Click the Upload button at the top of the page.

You’ll see an upload “drop box” (Figure 16-7).

FiGURE 16-7
To get started with You-
Tube, you need to drop a
video file in the big white
box (or click the big arrow
in the middle).

3. Drag and drop a file into the upload box, or click “Select file to upload” to
browse for it on your hard drive.

Either way, you can upload more than one video at a time.

As soon as you pick your clips, YouTube begins uploading them (Figure 16-8).
With the time-consuming upload process under way, you can add information
about your video at your leisure.

www.youtube.com

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn544

UPLOADING
VIDEOS TO
YOUTUBE

FiGURE 16-8
As YouTube uploads a file,
it estimates how long the
transfer will take. While
you wait, you can fill out
the descriptive informa-
tion for your video.

4. Fill in the details about your video.

You need to supply a title and description, which YouTube displays on your video
page and in its search results. You also need to specify a category for your video
and add one or more tags. When other people search YouTube using keywords
that match your category or tags, there’s a better chance that your video will
turn up in the search results.

 NOTE  Don’t worry if the information you enter isn’t perfect. You can change it anytime. Just find your video
in the My Videos section, select it, and then click Edit.

5. Choose a privacy setting (Public, Unlisted, or Private).

• Public. A public video turns up in YouTube search results, and anyone can
watch it.

• Unlisted. Anyone can also watch an unlisted video, but people will need
the right URL to find it—the video won’t turn up in an ordinary search.

• Private. If you mark a clip as private, only YouTubers you explicitly identify
can see it, and only after they log into YouTube.

6. Optionally, click Advanced Settings to configure a few more settings.

Here are some options you might find useful:

• Use the “Allow comments” and “Users can view ratings for this video” set-
tings to let people respond to your video. For example, you can ban people

CHAPteR 16: AUDIO AND VIDEO 545

UPLOADING
VIDEOS TO
YOUTUBE

from commenting (turn off “Allow comments”), or allow only comments you
approve (turn “Allow comments” on and then choose “Approved” instead
of “All”). Ordinarily, YouTube allows all comments, giving the site a raucous
community atmosphere. In some cases, it makes sense to limit comments
and ratings (for example, if you cover a sensitive topic and you’re worried
about attracting abusive comments). But the vast majority of videos on
YouTube allow comments and are heavily commented. Videos that don’t
let people opine are likely to be ignored.

• Choose a category to classify your video and help make sure it turns up in
the right searches. YouTube has categories like Comedy, Education, Gam-
ing, and News.

• Use the “Recording date” and “Video location” settings to identify when
and where you recorded your video.

• Use the “Allow embedding” setting to control whether other people can
embed your video on their web pages. But take note: If you don’t allow this,
it not only stops other people from showcasing your video; it also prevents
you from embedding your own video on your website.

7. Wait.

YouTube says it typically takes 1 to 5 minutes to upload each megabyte of video
if you have a high-speed connection, so this is a good time to get a second cup
of coffee.

While you’re waiting, you can drag another video file onto the upload page and
start uploading it as well. Or, if you’ve given up completely, click the tiny X icon
next to the progress bar to stop the upload.

Once YouTube uploads and converts your video, it replaces the progress bar
with a “Processing Done” message.

If you get really tired of waiting, consider skipping ahead to step 9. That’s right,
you can tell YouTube to publish your video even before it finishes uploading
the file. YouTube then schedules your movie for publication, which means it will
become live on the site as soon as YouTube finishes processing it.

8. Pick a thumbnail for your video from the Video Thumbnails section.

The video thumbnail is a single frame from your movie that appears in the
YouTube video window before playback starts. It also shows up when YouTube
lists your film in a search result.

As YouTube processes your video, it takes a frame grab every few seconds and
adds it as a possible thumbnail.

9. Click Publish.

Now your video is completely configured and live before the entire web world
(Figure 16-9).

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn546

UPLOADING
VIDEOS TO
YOUTUBE

FiGURE 16-9
Once you publish your
video, YouTube gives you a
link to it.

 TIP  If you want to edit the information for an already-uploaded video, remove the video, or get some
fascinating statistics about the people who’ve seen it, you need to use the YouTube video manager. Scroll down
to the bottom of the upload page and click the Video Manager button in the bottom-right corner. (Or, if you’re
somewhere else on YouTube, click the Account button in the top-right corner, click Creator Studio, and then choose
Video Manager from the menu of links on the left.

Showing a YouTube Video in a Web Page
Once your video is ready, you can watch it in several ways:

• You can search for it on YouTube.

• You can put a link on your web page that leads to your YouTube video page.
Just visit that page and copy the URL from the address bar.

• You can play it back in a YouTube window on one of your web pages. This is the
most powerful approach. It lets you combine the look and feel of a self-hosted
video with YouTube’s high performance and solid browser support.

CHAPteR 16: AUDIO AND VIDEO 547

UPLOADING
VIDEOS TO
YOUTUBE

Embedding videos is as easy as copying a snippet of HTML into your page. Here’s
what you do:

1. Go to the YouTube page for your video.

You can use the URL you got when you published your video (Figure 16-9). If
you’ve already moved on, you can browse through the videos in your account.
Click the Account button at the top right of any YouTube page, choose Creator
Studio, and then click your recently uploaded video.

2. Click the Share button underneath the video window.

It sits between your video’s title and description. When you click it, YouTube
shows a small panel of sharing information.

3. Click Embed.

This gives you the HTML markup you need (Figure 16-10), instead of a mere link.

FiGURE 16-10
Here’s the markup you need to display
this video on your web page. The code’s
crammed into a single line.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn548

UPLOADING
VIDEOS TO
YOUTUBE

4. Right-click the box with the HTML markup and choose Copy.

5. Edit your HTML page and paste in the YouTube markup.

Put the markup where you want the video window to appear (Figure 16-11).

FiGURE 16-11
Embedding lets you watch your video
in a page of your own devising.

Here’s the complete markup that creates the page in Figure 16-11:

<!DOCTYPE html>
<html>
<head>
 <title>Embarrassing Party Video</title>
</head>
<body>
<h1>It's Less Fun (When the Police Come)</h1>
<p>The following video window is brought to you by the fine people
at YouTube.</p>

CHAPteR 16: AUDIO AND VIDEO 549

UPLOADING
VIDEOS TO
YOUTUBE

<iframe width="560" height="315" src=https://www.youtube.com/embed/
iDEHv7QS0fA?rel=0
frameborder="0" allowfullscreen></iframe>

<p>Click it to start playing.</p>
</body>
</html>

To embed your video, YouTube uses the <iframe> element (page 565) to stake out
a small rectangular section of your page and insert some content there. To place
the playback window in a specific spot, put the <iframe> element inside a <div>
element, and then use style rules to position the <div>.

 TIP  To change the color of the border around your video window, start playback automatically, display the
movie in full-screen mode, or tweak several other details, you need to adjust the markup (see the bolded line in
the code above). For the complete scoop, check out http://tinyurl.com/2kxnv3.

http://tinyurl.com/2kxnv3

Appendixes
PART

5

APPENDIX A:

 Where to Go from Here

APPENDIX B:

 HTML Quick Reference

553

APPENDix

A

By this point, you’ve taken a long voyage across the Web. You began by learning
the fundamentals of site building, first by considering the HTML markup that
structures every web page, and then by using the CSS styling language to

transform the appearance of those pages. After that, you explored a range of web-
based services for your site, from search engine optimization and visitor tracking
to social media promotion and ad sales. Finally, you dipped your toe into the deep
waters of web programming with a bit of JavaScript.

So now that you’ve explored so much, where should you go next?

The obvious answer is “To your computer!” To get the most out of your new skills,
you need to practice them—starting with the tutorials in this book, and then by build-
ing websites on your own. That’s because there’s no substitute for experimentation.
The hours you spend fiddling with your markup, changing the design of a page, and
building a menu will give you a practical understanding of what works in the web
world and where the traps lie.

Another reason to take to your keyboard is to check out the websites mentioned
in this book. Using them, you can dig deeper into specialized topics and see more
examples. Don’t worry, you don’t need to search through chapter after chapter to
find these sites; they’re listed and linked on this book’s companion site at http://
prosetech.com/web.

If you’re more ambitious, there’s plenty more to learn. Here are a few other resources
you might use to make the jump from competent personal website builder to expert
web designer:

 Where to Go from Here

http://prosetech.com/web
http://prosetech.com/web

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn554

WHERE TO GO
FROM HERE

• Master CSS. The styling language of the Web offers plenty of advanced tricks
for creating slick sites. You can find many of them in the latest version of the
standard, CSS3, which is only now gaining widespread browser support. For a
gentle review of all things CSS, including an introduction to many of the newer
CSS3 features, check out CSS3: The Missing Manual (O’Reilly), or read one of
the many other books on the subject.

• Learn to program with JavaScript. When the Web was new, JavaScript was
little more than a quirky gimmick. Today, JavaScript is where all the action is.
Fancy-pants designers adorn entire pages with sliding, swooping, expanding,
and fading effects powered by JavaScript. Hardcore programmers build apps,
like browser-based versions of solitaire, using nothing but JavaScript. And many
of the newer features in CSS3 and HTML5 can’t shine without at least a bit of
JavaScript. Learning JavaScript is no small undertaking, but it unlocks worlds
of possibilities. If you’re curious, check out a book like JavaScript & jQuery: The
Missing Manual (O’Reilly).

• Brush up on HTML5. Every page you’ve seen in this book is an authentic HTML5
document. Even so, you haven’t covered all the features and frills of the latest
version of the standard. In particular, you haven’t learned anything about the
many JavaScript-powered HTML extensions that let you tap capabilities like
geolocation (finding where a visitor is in the world), web storage (saving personal
information between site visits), and browser-based drawing (to paint shapes,
text, and pictures onscreen). If you decide to learn more about JavaScript, you
might also want to explore more about these features of HTML5, which are
covered in HTML5: The Missing Manual (O’Reilly).

• Optimize your site for mobile devices. Thanks to tablets and indispensable
smartphones, mobile browsing has exploded. But your desktop site will look
like little more than a tiny version of itself if you don’t dynamically refashion
your pages for the small screen. Page 250 introduces this issue, but you can
learn how to truly make your site mobile-friendly in HTML5: The Missing Manual
(O’Reilly). Or, for a more thorough and technical discussion of web design in
the mobile world, check out the Smashing Magazine book The Mobile Web
Handbook (learn more about it at http://tinyurl.com/mobile-web-h).

• Try out a content-management system. Understanding the standards that un-
derpin a page is only part of the challenge of site building. To create a beautiful,
content-filled, frequently updated website, you need to juggle a lot of details.
That’s where content-management systems and blogging-and-more platforms
like WordPress come in. With WordPress, you pick a layout and write the page
content, but WordPress combines the two into a flawless site. Of course, it’s
up to you to decide if you want to give up that much control to get the sort of
features that WordPress offers. If you do, you’ll find that your understanding
of HTML markup and CSS styling still comes in handy when you customize the
templates and style sheet that govern a WordPress-powered site. To step off in
this direction, check out WordPress: The Missing Manual (O’Reilly).

And no matter which path you take, happy travels!

http://tinyurl.com/mobile-web-h

555

APPENDix

B

HTML is the language of the Web. You can use it to create any web page,
whether you’re promoting a local bake sale or running a Fortune 500 company.
Chapter 1 introduced you to HTML, and since then, you’ve steadily added to

your arsenal of HTML elements.

This appendix provides a quick reference of all the HTML elements you’ve seen in
this book (and a few more). Each entry features a brief description of the element,
and many entries provide cross-references to more detailed examples in the book.
The list includes the most usable new elements from the latest version of HTML,
HTML5. You’ll also get a quick refresher on HTML character entities, which let you
display special characters on a web page.

HTML Elements
As you know, the HTML standard is based on elements—specialized codes in angle
brackets that tell a browser how to format text, when to insert images, and how to
link different documents together.

The elements listed below are arranged in alphabetical order. The beginning of each
section details the type of element it is:

• A block or inline element. Block elements are separated from other elements
with a bit of extra white space. For example, the <h1> block element adds a
heading to your page on its own line and separates it from the preceding and
following content with some padding and margin space. (Of course, you can
alter or remove this space using the margin and padding style properties.)

 HTML Quick Reference

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn556

HTML
ELEMENTS

 NOTE  In official HTML5 lingo, block elements are called flow elements, and inline elements are called
phrasing elements.

• A container or standalone element. A container element holds text or other
elements inside it. A standalone element can’t contain anything, so you usually
write it as only one tag using the empty element syntax (page 15). HTML limits
where you can put some standalone elements, meaning you can associate them
only with certain other elements. For example, you can associate the <area>
element, which defines an image-map hotspot, only with the <map> element,
which defines an image map.

The section below doesn’t include any of the new elements from HTML5—you’ll find
those in a separate section, starting on page 577.

<a> (Anchor Element)
Inline Element, Container Element

The anchor element (<a>) has two roles. The most common is to create a link that,
when clicked, takes a visitor from one page to another. The second role is to place a
hidden marker, called a bookmark, in a web page. You’ll learn about both uses below.

To create a link, you supply the destination URL using the href attribute. You put
the clickable link text between the opening and closing tags:

Click Me

When setting the href attribute, you can use a relative URL, which points to a page
on your own website, or an absolute URL, which starts with http:// and can point to
any page on the Web. For a review of the differences between relative and absolute
links and when to use each, see page 177.

You can also use the anchor element to create clickable image links. They’re just as
easy to write as clickable text links. The trick is to put the element inside an
<a> element, like this:

Finally, you can use the anchor element to create a link that, instead of sending a
visitor to a new page, opens an email message with the address information already
filled in. You do this by creating a mailto link, as shown here:

Email Me

For more information about the ins and outs of the mailto link, see page 188.

You can also apply the target attribute to an anchor, which instructs a browser to
open the destination page in a new browser window or in a specific frame, like this:

Click Me

APPenDIx B: HTML QUICK REFERENCE 557

HTML
ELEMENTS

The anchor element also works with bookmarks, letting you lead website guests to
a specific spot on a web page. To create a bookmark, you simply add an identifying
name to the target element using the id attribute, like this:

<h2 id="Canaries">Pet Canaries</h2>

Once you create a bookmark like this, you can use the anchor element to write a URL
that points to it by adding the bookmark information to the end of the URL. To do
this, add the number-sign symbol (#) followed by the bookmark name, as shown here:

Learn about recent developments in canary
sales.

You can learn more about bookmarks and ordinary links in Chapter 6.

<address> (Contact Information)
Block Element, Container Element

Webmasters use the <address> element only occasionally; by convention, they use
it only as a way to contact the authors of the web page. The contact information
could be an email address, a web link (the two most common options), or a postal
address. Here’s an example:

Our website is managed by:
<address>
John Solo,
Lisa Cheng<a>, and
Ryan Pavane.
</address>

Most browsers format text in the <address> element in italics, just as though you
had used the <i> element. The only value in using <address> is that it lets automated
programs that scan web pages extract useful address information.

To put other address information on your page, like your store’s physical address,
don’t use the <address> element to style it. Remember that, by convention, it’s
reserved for address details for the person or people who maintain the web page.

<area> (Image Map)
Standalone Element, Allowed in <map> Only

The <area> element defines a clickable region (known as a hotspot) inside an im-
age map (which you create using the <map> element). When defining an area, you
need to supply the target URL (using the href attribute), the type of shape the area
is (using the shape attribute), and the coordinates of that shape (using the coords
attribute). For shape, you can specify a circle, square, or polygon.

For a circle, specify the coordinates in this order: center point x-coordinate, center
point y-coordinate, radius. For any other shape, supply the corners, in order, as a

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn558

HTML
ELEMENTS

series of x-y coordinates, like this: x1, y1, x2, y2, and so on. Here’s an example that
creates a square hotspot:

<area href="page1.htm" shape="square" coords="5,5,95,195" alt="A clickable
square" />

This square is invisible to your site guests. But if they click anywhere inside it, they’ll
go to page1.htm. For more information, see the <map> element on page 567. For a
full-fledged image map example, see page 189.

<audio> (Sound Player)
Block Element, Container Element

The <audio> element creates an audio player, a small set of playback controls that
visitors can use to listen to an audio file.

You specify the filename using the src attribute. Browsers differ in which audio
formats they’ll play, but MP3 files are by far the most reliable choice. In addition, you
should always include the controls attribute. Without it, guests have no idea that
there’s a player on the page (unless you create a set of controls for it using JavaScript).

Here’s a fully configured <audio> element at its simplest:

<audio src="rubberduckies.mp3" controls></audio>

You can set a few options for the <audio> element. Use the obnoxious autoplay
attribute to tell the audio player to start playing as soon as the page loads. Use the
loop attribute to tell the audio player to replay the audio file when it ends, unless a
visitor clicks the Pause button. Use the muted attribute to start the player with the
sound muted (in which case a visitor can click the speaker icon to restore sound).

You can specify fallback content for the <audio> element, too. That way, if a browser
doesn’t understand HTML5 (for example, if a visitor checks out your page with a
dusty old copy of IE 8), the browser displays the fallback content instead of the
audio player:

<audio src="rubberduckies.mp3" controls>
 Your browser is old. Click here to download the
 rubberduckies.mp3 audio file.
</audio>

Optionally, you can give the <audio> element a list of audio files in different formats.
The player then plays the first audio file whose format it understands. To do this, you
need to remove the src attribute and then, inside the <audio> element, add one or
more <source> elements, like this:

<audio controls>
 <source src="rubberduckies.ogg" type="audio/ogg">
 <source src="rubberduckies.mp3" type="audio/mpeg">
 Your browser is old. Click here to download the
 rubberduckies.mp3 audio file.
</audio>

APPenDIx B: HTML QUICK REFERENCE 559

HTML
ELEMENTS

Now the player will play rubberduckies.ogg if the browser supports it (Chrome,
Firefox, and Opera do). Otherwise, it will play rubberduckies.mp3, if the browser
supports that (Safari and Internet Explorer, please step forward). And if the browser
doesn’t understand the <audio> element at all, it will show the fallback content,
which is the link to the audio file.

To see what the <audio> element looks like in a full web page, see page 526.

 (Bold Text)
Inline Element, Container Element

The element displays text in boldface. The official rules suggest that you use
 for “stylistically offset” text, that is, text that should be presented in bold but
that doesn’t have greater importance than the words around it. This could include
keywords, product names, and anything else that might be bold in print:

Make sure you buy the Super-Fraginator today!

If you want to format text in bold and convey additional importance, is the
recommended choice (although the visual result is the same). This subtle difference
in meaning is the official position of the people who created the HTML5 standard,
although few web developers actually pay attention to the difference.

<base> (Base URL)
Standalone Element, Allowed in <head> Only

The <base> element defines a document’s base URL, which is a starting-point web
address used to interpret all relative paths. You have to place the <base> element in
the <head> section of a page, and you can use two attributes: href (which identifies
the base URL) and target (which supplies a target frame for links).

For example, if you have a link that points to a file named MySuperSunday.htm and
the base URL is http://www.SundaysForever.com/Current/, a browser interprets the
link as http://www.SundaysForever.com/Current/MySuperSunday.htm.

Web-heads rarely use the base URL this way because it almost always makes more
sense for the browser to use the current page as a starting point for all relative URLs.
In other words, if you’re looking at http://www.SundaysForever.com/Current/Intro.
htm, the browser already knows that the base URL is http://www.SundaysForever.
com/Current/. For more information about the difference between absolute and
relative links, see page 177.

<blockquote> (Block Quotation)
Block Element, Container Element

The <blockquote> element identifies a long quotation as a block element. It stands
on its own, separate from paragraph block elements:

<blockquote><p>It was the best of times, it was the worst of times.</p>
</blockquote>

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn560

HTML
ELEMENTS

Usually, browsers indent the <blockquote> element on the left and right sides. How-
ever, you shouldn’t use <blockquote> as a formatting tool. Instead, use it where it
makes sense—to highlight a passage quoted from a book. As with any element, you
can use a style sheet rule to change the way a browser formats <blockquote> text.

To put a brief quotation inside a block element like a paragraph, use the <q> element
instead of <blockquote>.

<body> (Document Body)
Container Element, Allowed in <html> Only

The <body> element is a basic part of the structure of any HTML document. You put
it immediately after the <head> section ends, and it contains all the content of your
web page, including its text, image URLs, tables, and links.

 (Line Break)
Inline Element, Standalone Element

The line break (
) is an inline element that forces the text following it onto a
new line, with no extra spacing. For example, you can use the
 element to split
address information in a paragraph:

<p>Johnny The Fever

200 Easy Street

Akimbo, Madagascar</p>

<button> (Button)
Inline Element, Container Element

The <button> element lets you create a clickable button within a form, and you can
put a phrase or an image between the <button> element’s start and end tags. As
with any other form control, you need to supply a unique name and a value that
the form will submit when a visitor clicks the button. You put the button content
between the opening and closing tags:

<button name="submit" value="order" type="button">Place Order</button>

You can create three types of buttons, depending on the value you choose for the
type attribute. A value of button creates an ordinary button with no built-in smarts
(add JavaScript code to make it do something). A reset button clears all the informa-
tion a visitor has filled out in a form, and a submit button sends the information in a
form (like a guest’s name or email address) back to a web server, which is useful if
you create an application that uses the information (say, to build a list of customers).

The <button> element is more powerful than the <input> element for creating
buttons, because it puts whatever content you want on the face of the button,
including images:

<button name="submit" value="order" type="button">

</button>

APPenDIx B: HTML QUICK REFERENCE 561

HTML
ELEMENTS

<caption> (Table Caption)
Container Element, Allowed in <table> Only

The <caption> element defines the title text for a table. If you use it, you have to
make it the first element in a <table> element:

<table>
 <caption>Least Popular Vacation Destinations</caption>
 ...
</table>

HTML applies no automatic formatting to the caption; it simply positions the caption
at the top of a table as ordinary text (and wraps it, if necessary, to fit the width of
the table). You can apply whatever formatting you want through style sheet rules.

<cite> (Citation)
Inline Element, Container Element

The <cite> element identifies a citation, which is a reference to a book, print article,
or other published resource:

<p>Charles Dickens wrote <cite>A Tale of Two Cities</cite>.</p>

Usually, browsers render the <cite> element as italic text. But you shouldn’t use
the <cite> element for formatting alone. Instead, use it when it makes sense (for
example, when you refer to a published work you quote) and add style sheet rules
that apply the specific formatting you want.

<code> (Code Listing)
Inline Element, Container Element

Use the <code> element to wrap snippets of example code (for instance, in a web
page that presents a programming tutorial). Browsers display this code in a mono-
spaced font.

<dd> (Dictionary Description)
Container Element, Allowed in <dl> Only

The <dd> element defines a word in a dictionary list. For more information, see the
example in the <dl> element description below, or refer to page 54.

 (Deleted Text)
Block Element or Inline Element, Container Element

Webmasters rarely use the element; it identifies text that was present but has
now been removed. Browsers that support it display crossed-out text to represent
the deleted material. Another element web-heads sometimes use to indicate a
revision trail is <ins>.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn562

HTML
ELEMENTS

<dfn> (Defined Term)
Inline Element, Container Element

Site authors rarely use the <dfn> element; it indicates the defining instance of a term.
For example, the first time you learn about a new term in this book, like froopy, it’s
italicized. That’s because it’s the defining instance, and a definition usually follows.
Browsers render the <dfn> element in italics.

<div> (Generic Block Container)
Block Element, Container Element

The <div> element groups together one or more block elements. For example, you
could group together several paragraphs, a paragraph and a heading, and so on.
Here’s an example:

<div>
 <p>...</p>
 <p>...</p>
</div>

On its own, the <div> element doesn’t do anything, but it’s a powerful way to ap-
ply style sheet formatting. In the example above, you can apply formatting to the
<div> element, and the browser passes that formatting along to the two nested
paragraphs (assuming the style properties you’re using support inheritance, as
described on page 82).

To learn more about using the <div> element to apply style rules, see page 213. You
should also refer to the element, which applies formatting inside a block ele-
ment. And if you want to apply more meaning to your containers, consider replacing
your <div> with one of the HTML5 semantic elements discussed on page 577.

<dl> (Dictionary List)
Block Element, Container Element

The <dl> element defines a definition list (also known as a dictionary list), which is a
series of terms, each followed by a definition in an indented block of text. In theory,
you could put any type of content in a dictionary list, but it’s recommended that you
follow its intended use and include a list of terms and explanations. Here’s an example:

<dl>
 <dt>tasseomancy</dt>
 <dd>Divination by reading tea leaves.</dd>
 <dt>tyromancy</dt>
 <dd>Divination by studying how cheese curds form during cheese making.</dd>
</dl>

APPenDIx B: HTML QUICK REFERENCE 563

HTML
ELEMENTS

<dt> (Dictionary Term)
Container Element, Allowed in <dl> Only

The <dt> element identifies the dictionary term that you’re about to define. For more
information, see the simple example under the <dl> element description above, or
refer to page 54.

 (Emphasis)
Inline Element, Container Element

The element has the same effect as the <i> (italic text) element, but a slightly
different meaning. It’s for emphasized text that would have a different inflection if
read out loud (say, by a screen reader), like this:

Make sure you don't use the wrong element for your italics.

By comparison, the <i> element is for italicized text that doesn’t have this emphasis.

Using style sheet rules, you can change the formatting of the element, and
emphasize its content in a way that doesn’t use italic formatting (like by coloring
the text red).

<form> (Interactive Form)
Block Element, Container Element

You use the <form> element to create a page that collects information from your
guests. In it, you put graphical widgets like text boxes, checkboxes, selectable lists,
and so on (represented by the <input>, <textarea>, <button>, and <select> ele-
ments, respectively). By putting these widgets in a <form> element, your browser can
collect the information and then send it to a web server for use in another program,
like a database that records guests’ email addresses. Web applications are outside
the scope of this book, but you can see how to use a <form> element with JavaScript
on page 490, and you can consider free form-submission services on page 357.

<h1>, <h2>, <h3>, <h4>, <h5>, <h6> (Headings)
Block Element, Container Element

Headings are section titles. They appear as boldface letters at various sizes. The
size of the text depends on the heading level. The six heading levels start at <h1>
(the biggest) and move down to <h6>. Both <h5> and <h6> are actually smaller than
regularly sized text. Here’s an <h1> element in action:

<h1>Important Information</h1>

When you use headings, nest them on the page following a logical structure. Start
with <h1> for the most important heading, and then use lower heading levels for
subtopics under the main heading. Don’t start with <h3> just because the formatting
looks nicer. Instead, use the heading levels to delineate the structure of your docu-
ment, and use style sheets to change the formatting of each heading to suit you.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn564

HTML
ELEMENTS

<head> (Document Head)
Container Element, Allowed in <html> Only

The <head> section of a page goes before the <body> section. While the <body> ele-
ment contains the web page content, the <head> element includes other information,
like the title of the web page (the <title> element), descriptive metadata (one or
more <meta> elements), and styles (the <style> or <link> elements).

<hr> (Horizontal Rule)
Block Element, Standalone Element

The <hr> element produces a horizontal rule (a solid line) that you use to separate
block elements:

<p>...</p>
<hr />
<p>...</p>

Although the <hr> element still works perfectly well, HTML whizzes prefer using
border settings in a style sheet rule to get much more control over the line style
and its color. Here’s an example that defines a style sheet rule for a solid blue line:

.border { border-top: solid medium navy }

And here’s how you could apply it:

<p>...</p>
<div class="border"></div>
<p>...</p>

For more information about the style sheet border settings, refer to page 108.

<html> (Document)
Container Element

The <html> element is the first one that should appear in any HTML document. It
wraps the rest of the document. If you create an ordinary web page, the <html>
element contains two other essential ingredients: the <head> element, which defines
the title, metadata, and linked style sheets; and the <body> element, which contains
the actual content.

<i> (Italic Text)
Inline Element, Container Element

The <i> element displays text in italics, without conveying any extra emphasis or
inflection. Here’s an example:

The mattress label says <i>do not remove under penalty of law</i>

APPenDIx B: HTML QUICK REFERENCE 565

HTML
ELEMENTS

If you want to provide italics that suggest an emphasis in the way they are spoken,
the element is a better choice. However, both elements provide the same for-
matting, and the difference is acknowledged only by serious HTML5 wonks.

<iframe> (Inline Frame)
Inline Element, Container Element

The <iframe> element creates an inline frame—a scrollable window that’s embedded
in a page and that displays another web page inside it. You supply the attributes
src (the page you want your browser to display in the frame), name (the unique
name of the frame), and width and height (the dimensions of the frame in pixels).
You can turn off the automatic border by setting the frameborder="0" attribute,
and turn off scrolling by adding the scrolling="no" attribute. Here’s one use of
the <iframe> element:

<iframe src="MyPage.html" width="100" height="250"></iframe>

You can include instructions with the <iframe> element that a browser will display
if it doesn’t support <iframe>:

<iframe src="MyPage.html" width="100" height="250">
 <p>To see more details, check out this page.</p>
</iframe>

 (Image)
Inline Element, Standalone Element

The element points to a picture file you want to display in a page. The src
attribute identifies the picture using a relative or absolute link (see page 177). The
alt attribute supplies text that a browser displays if it can’t display the picture.

Internet Explorer displays alternate text in a pop-up box, while some more standards-
aware browsers (namely Firefox) don’t. No matter; you can display a pop-up text
box in just about any browser using the title attribute. It’s the best way to add
cross-browser pop-up text to an image.

The element also supports height and width attributes you can use to ex-
plicitly size a picture:

In this example, the picture has a width of 100 pixels and a height of 150 pixels. If
these dimensions don’t match the actual size of the picture, your browser stretches
and otherwise mangles the picture to match the dimensions.

Never use the width and height attributes to resize an image; make those kinds
of edits in a proper image-editing program. You can use the width and height at-
tributes to tell a browser how big your picture is so it can lay out the page before it

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn566

HTML
ELEMENTS

downloads the whole image, and to preserve your layout even if the browser can’t
find your picture.

To learn more about the image types you can use and how to organize pictures on
a page, refer to Chapter 4.

Finally, you can create clickable regions on an image by defining an image map, and
then by linking that image map to your image with the usemap attribute of the
element. For more information, see the <map> section (page 567).

<input> (Input Control)
Standalone Element, Allowed in <form> Only

The <input> element is the most common ingredient in an HTML form (which itself
uses the <form> element). The <input> element can represent different widgets
(called controls) that collect information from a web visitor.

The type attribute specifies the kind of control you want to create. Table B-1 lists
the most common types. Additionally, you should give every control a unique name
using the name attribute.

TABLE B-1 HTML form controls.

CONTROL HTML ELEMENT DESCRIPTION

Single-line text box <input type="text" /> Displays a box where a visitor can type in text.

Password text box <input type="password" /> Shows a box where a visitor can type in text,
but the browser doesn’t display the text.
Instead, it displays an asterisk (*) or bullet (•)
in place of every letter, to hide the text from
prying eyes.

Checkbox <input type="checkbox" /> Displays a checkbox you can set as turned on
or off.

Radio button <input type="radio" /> Shows a radio button (a circle you can set as
turned on or off). Usually, you have a group
of radio buttons next to one another, in which
case a visitor selects exactly one.

Submit button <input type="submit" /> Shows a standard clickable button that sub-
mits a form and all its data.

Reset button <input type="reset" /> Displays a standard clickable button that
clears any text a visitor has typed in and any
selections she’s made.

Image button <input type="image" /> Shows a Submit button with a difference—you
supply its visuals as a picture. To specify the
picture file you want, set the src attribute.

Ordinary button <input type="button" /> Shows a standard clickable button that doesn’t
do anything unless you hook it up to some
JavaScript code (Chapter 14).

APPenDIx B: HTML QUICK REFERENCE 567

HTML
ELEMENTS

Here’s an <input> element that creates a text box. When a visitor submits the page,
whatever he typed into the box will be sent, along with the descriptive identifier
LastName:

<input type="text" name="LastName" />

Of course, forms are useful only if you have code that processes their data. On page
490, you saw how guests can interact with forms using JavaScript, but forms are
more commonly used with server-side web programs. For example, a server-side
script might receive some visitor information from a form and store it in a database.

<ins> (Inserted Text)
Block Element or Inline Element, Container Element

The <ins> element identifies newly inserted text (for example, text added to a web
page during its most recent edit). By design, browsers underline the text inside the
<ins> element. Because of its specialized purpose, you’ll rarely come across pages
that use the <ins> element.

You can use the <ins> element around block elements or inside a block element.
The element is a complementary revision element, and you might want to
use it in conjunction with <ins>.

 (List Item)
Container Element, Allowed in and Only

The element represents a single item in an ordered (numbered) or unordered
(bulleted) list. For more information, see the element for ordered lists and the
 element for unordered lists.

<link> (Document Relationship)
Standalone Element, Allowed in <head> Only

The <link> element describes a relationship between the current document and
another document. For example, you might use it to point to the previous version
of the current document. More commonly, you use it to point to an external style
sheet that provides formatting instructions for the current page. You always put the
<link> element in the <head> section of a page. Here’s one possible use:

<link rel="stylesheet" href="MyStyles.css" />

By using external style sheets, you can define the styles for your site in a single file
and then link all your site’s pages to it. Chapter 3 has much more on style sheets
and how to use them.

<map> (Image Map)
Inline Element, Container Element

The <map> element defines an image map—a picture with one or more clickable
regions. When you create an image map, you assign it a unique name using the

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn568

HTML
ELEMENTS

name attribute. You then add one <area> element inside the <map> element for each
clickable region, specifying the coordinates of the clickable area and the destination
URL. (See the <area> element on page 557 for more on how the coords attribute
works.) Here’s an example of an image map with three clickable regions:

<map id="Three Squares" name="ThreeSquares">
 <area href="page1.htm" shape="square" coords="5,5,95,195"
 alt="Square #1" />

 <area href="page2.htm" shape="square" coords="105,5,195,195"
 alt="Square #2" />
 <area href="page3.htm" shape="square" coords="205,5,295,195"
 alt="Square #3" />
</map>

Finally, to use your image map, you need to apply it to an image using the usemap
attribute. The usemap attribute matches the name of the map but starts with a number
sign (#), which tells browsers that the image map is on the current page:

You can’t see the clickable regions of an image map (unless you outline them in
the image). However, when you point to a hotspot, your mouse cursor changes to
a hand. Clicking a hotspot has the same effect as clicking an ordinary <a> link—you
immediately go to the new URL. For a full-fledged image map example, see page 189.

<meta> (Metadata)
Standalone Element, Allowed in <head> Only

Meta elements let you embed descriptive information in your web pages. Your visi-
tors never see this information, but automated programs like web search engines
can find it as they scan your site. You add metadata by placing <meta> elements in
the <head> section of your page.

Every <meta> element includes a name attribute (which identifies the type of informa-
tion you’re adding) and a content attribute (which supplies the information itself).
Although you can have an unlimited number of potential <meta> elements, the two
most common are description and keywords, because some search engines use them:

<meta name="description" content="Sugar Beat Music for Children offers age-
appropriate music classes for children 4 months to 5 years old" />

Page 317 describes meta elements in more detail and explains how search engines
use them.

<noscript> (Alternate Script Content)
Block Element, Container Element

The <noscript> element defines the content a browser should display if it can’t run
a script, a mini-program embedded in your page. You place it immediately after the

APPenDIx B: HTML QUICK REFERENCE 569

HTML
ELEMENTS

<script> element. The most common reason a browser can’t run a script is because
a visitor has turned off his browser’s script feature.

For more information about scripts, refer to Chapter 14.

<object> (Embedded Object)
Inline Element, Container Element

The <object> element embeds specialized, nonstandard objects in your page. For
example, you might use an <object> element to place a Flash movie inside a web
page, although this practice is becoming steadily less common.

 (Ordered List)
Block Element, Container Element

An ordered list starts with the element and contains multiple list items, each of
which you represent with an element. In an ordered list, your browser arranges
each item consecutively, using your choice of numbers, letters, or Roman numerals.

Here’s a simple ordered list that numbers items from 1 to 3:

 Buy bread
 Soak stamps off letters
 Defraud government with offshore investment scheme

To start at a number other than 1, use the start attribute and supply the starting
number. To change the list’s number or letter format, use the type attribute with one
of these values: 1 (numbers), a (lowercase letters), A (uppercase letters), i (lowercase
Roman numerals), I (uppercase Roman numerals).

HTML5 adds a feature for backward-counting lists. To create one, you add the re-
versed attribute to the element. However, older browsers don’t support this
feature.

For more information on ordered lists, see page 51.

<option> (Menu Option)
Container Element, Allowed in <select> Only

The <option> element defines the items you want to appear in a list, and you put
the element inside a <select> element. For example, to create a drop-down menu
that lets visitors choose a color from a list of options including Blue, Red, and Green,
you need one <select> element with three <option> elements inside it.

When you define the <option> element, you can use the selected attribute to tell
a browser to pre-select an item when it displays the page for the first time. You can
also use the value attribute to associate a unique identifying piece of information
with an option, which is included with the form data when a visitor submits the form.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn570

HTML
ELEMENTS

For a basic example, see the description of the <select> element.

<p> (Paragraph)
Block Element, Container Element

The <p> element contains a paragraph of text:

<p>It was the best of times, it was the worst of times ...</p>

Because paragraphs are block elements, a browser automatically adds a line break
and a little extra space between two paragraphs, or between a paragraph and an-
other block element, like a list or a heading.

Browsers ignore empty paragraphs. To create a blank paragraph, use a nonbreak-
ing space like this:

<p> </p>

<param> (Object Parameter)
Standalone Element, Allowed in <object> Only

The <param> element defines extra information in an <object> element, which a
browser sends to an applet or a plug-in.

<pre> (Preformatted Text)
Block Element, Container Element

Preformatted text breaks the normal rules of HTML formatting. When you put
content inside a <pre> element, a browser duplicates every space and line break
it sees, retaining the formatting you used originally. Additionally, the browser puts
all the content in a monospaced font (typically Courier), which means the results
aren’t always pretty.

The <pre> element is an easy and quick way to get text to appear exactly the way
you want it, which is useful if you want to represent visual poetry or display a snip-
pet of programming code. However, you shouldn’t use it to align large sections of
ordinary text; use CSS positioning rules for that (see Chapter 8).

<pre>
Tumbling-hair
 picker of buttercups
 violets
 dandelions
And the big bullying daisies
 through the field wonderful
 with eyes a little sorry
Another comes
 also picking flowers
</pre>

APPenDIx B: HTML QUICK REFERENCE 571

HTML
ELEMENTS

<q> (Short Quotation)
Inline Element, Container Element

The <q> element defines a short quotation inside another block element, like a
paragraph.

<p>As Charles Dickens once wrote, <q>It was the best of times, it was the
worst of times</q>.</p>

Usually, browsers display the <q> element as italic text, and some browsers, like
Firefox, add quotation marks around the text. However, don’t use the <q> element
as a formatting tool. Instead, use it to identify quotations in your text, and then add
style sheet rules to apply the formatting you want.

If you want a longer quotation that stands on its own as a block element, use the
<blockquote> element instead.

<samp> (Sample Output)
Inline Element, Container Element

Use the <samp> element to mimic the way computer code looks when it’s printed
out or displayed on a computer console. This rarely used element simply formats
its contents with a monospaced font, like <pre> and <code>.

<script> (Client-Side Script)
Block Element, Container Element

The <script> element lets you include a client-side script inside your web page.
A script is a set of instructions written in a simplified programming language like
JavaScript. Web designers use scripts to create interactive web pages that add ef-
fects like buttons that change color when you point to them. To learn some of the
basics of JavaScript and to see scripts in action, check out Chapter 14.

<select> (Selectable List)
Container Element, Allowed in <form> Only

The <select> element creates a list you can use in a form. Your visitor selects a
single item from the list (or multiple items, if you add the multiple attribute). You
use the name attribute to give the list a unique name, as in the following example:

<select name="PromoSource">
 <option value="Ad">Google Ad</option>
 <option value="Search">Google Search</option>
 <option value="Psychic">Uncanny Psychic Intuition</option>
 <option value="Luck">Bad Luck</option>
</select>

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn572

HTML
ELEMENTS

Ordinarily, you create selection lists as drop-down menus. However, you can create
a scrollable list box using the size attribute. Just specify the number of rows you
want to show at once:

<select name="PromoSource" size="3">
 ...
</select>

For an example of a form, refer to page 490.

<small> (Small Print)
Inline Element, Container Element

Use the <small> element to hold “small print,” like the legalese at the bottom of a
contract. Visually, small print steps the text size down one notch, although you can
change this effect through a style sheet if it’s not appropriate.

<source> (Audio or Video File)
Standalone Element, Allowed in <video> or <audio>

You can use the <source> element to identify the file you want an audio or video
player to play. Usually, you do this to list a set of files that provide the same content
in different file formats. That way, you can ensure that the largest possible range
of browsers can play your file. (The obvious drawbacks are that you need to make
multiple copies of the files, encode them in different formats, and then find space
to store the files on your website.)

The <source> element takes two attributes: src (which identifies the file) and type
(which identifies the file format and, optionally, its codec). Here’s an example with
the <audio> element:

<audio controls>
 <source src="rubberduckies.ogg" type="audio/ogg">
 <source src="rubberduckies.mp3" type="audio/mpeg">
</audio>

The most common and reliable formats for audio are MP3 (set the type to audio/
mp3) and OGG (set the type to audio/ogg). The most common formats for video are
MP4 (video/mp4), WebM (video/webm), and OGG (video/ogg). You can get detailed
format information at http://tinyurl.com/html5-formats.

 (Generic Inline Container)
Inline Element, Container Element

Use the element to mark text you want to format inside a block element.
For instance, you could format a single word in a paragraph, a few words, a whole
sentence, and so on. Here’s an example:

http://tinyurl.com/html5-formats

APPenDIx B: HTML QUICK REFERENCE 573

HTML
ELEMENTS

<p>In this paragraph, some of the text is wrapped in a span element.
That gives you the ability to format it in some fancy
way later on.</p>

On its own, the element doesn’t do anything. However, it’s a powerful way
to apply style sheet formatting in a flexible, reusable way.

You should also refer to the <div> element, which can apply formatting to several
block elements at once (see page 213).

 (Strong Importance)
Inline Element, Container Element

The element has the same effect as the (bold text) element, but the
official rules of HTML suggest you use it for text that has greater importance than
the surrounding words. Here’s an example:

I'm very sorry for all the trouble.

To customize the way the element emphasizes important text (say, to
make the text both bold and italicized), use a style sheet rule. On the other hand, if
you want bold text that doesn’t give one word more emphasis than the surrounding
words, you’re better off using the element.

<style> (Internal Style Sheet)
Container Element, Allowed in <head> Only

The <style> element lets you define a style right inside a web page. This is known
as an internal style sheet. Use it to supply style sheet rules for the current page.
Always put the <style> element inside the <head> section of a web page.

Here’s an example of an internal style sheet that gives <h1> headings fuchsia text:

<style>
 h1 { color: fuchsia }
</style>

More commonly, you’ll use the <link> element in your pages to connect to a central
style sheet. That way, you can apply the same styles to all the pages in your site
without cluttering up your markup. Chapter 3 has much more about style sheets
and how to use them.

<sub> (Subscript)
Inline Element, Container Element

The <sub> element makes text smaller and positions it lower than the surrounding
text (the midpoints of subscript characters line up with the bottom of the surround-
ing text). It’s best not to rely on this trick for formatting (use style sheets instead),
but it’s a handy way to deal with scientific terms like H2O. Here’s how you use it:

Water is H₂O

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn574

HTML
ELEMENTS

<sup> (Superscript)
Inline Element, Container Element

The <sup> element makes text smaller and positions it higher than the surrounding
text (the middle of superscript text lines up with the top of the current line). It’s best
not to rely on this trick for formatting (use style sheets instead), but it’s a handy way
to deal with exponents like 33. Here’s the <sup> element in action:

3³ is 27

<table> (Table)
Block Element, Container Element

The <table> element is the outermost element that defines a table. Inside it, you
define rows with the <tr> element, and inside each row, you use the <td> element
to define individual cells and specify the content they hold. Here’s a basic table:

<table>
 <tr>
 <td>Row 1, Column 1</td>
 <td>Row 1, Column 2</td>
 </tr>
 <tr>
 <td>Row 2, Column 1</td>
 <td>Row 2, Column 2</td>
 </tr>
</table>

It looks like this:

Row 1, Column 1 Row 1, Column 2

Row 2, Column 1 Row 2, Column 2

See page 57 for more on creating tables and page 259 for information on sizing them.

<td> (Table Data Cell)
Container Element, Allowed in <tr> Only

The <td> element represents an individual cell inside a table row (a <tr> element).
Each time you add a <td> element, you create a column. However, it’s perfectly valid
to have different numbers of columns in subsequent rows (although it might look a
little wacky). For a basic table example, see the <table> element definition above,
and for a detailed explanation of tables, check out Chapter 2.

<textarea> (Multiline Text Input)
Container Element, Allowed in <form> Only

The <textarea> element displays a large text box in a form (the <form> element)
that can fit multiple lines of text. As with all input controls, you need to identify the

APPenDIx B: HTML QUICK REFERENCE 575

HTML
ELEMENTS

control by giving it a unique name. Additionally, you can set the size of the text box
using the rows and cols attributes.

To preload text in the <textarea> element, put it between the start and end tags,
like so:

<textarea name="Comments">Enter your comments here.</textarea>

<th> (Table Header Cell)
Container Element, Allowed in <tr> Only

The <th> element represents an individual cell with table heading text. Use the
<th> element in the same way you use the <td> element. The difference is that you
usually reserve the <th> element for the first row of a table (because it represents
column headings), and <th> text appears boldfaced and centered (which you can
tailor using style sheets).

<title> (Document Title)
Container Element, Allowed in <head> Only

The <title> element specifies the title of a web page. A browser displays this text
in its title bar and uses it as the bookmark text if a visitor bookmarks the page. You
have to put the <title> element in the <head> section of a page.

<title>Truly Honest Car Mechanics</title>

<tr> (Table Row)
Container Element, Allowed in <table> Only

The <tr> element represents an individual row inside a table (a <table> element). To
add cells of information, you need to add the <td> element inside the <tr> element.
For a basic table example, see the <table> element definition above.

 (Unordered List)
Block Element, Container Element

An unordered list starts with the element and includes multiple list items, each
of which you represent with an element. The browser indents each item in the
list and draws a bullet next to it.

Here’s a simple unordered list:

 Buy bread
 Soak stamps off letters
 Defraud government with offshore investment scheme

Webmasters often use the element to create a menu of commands. (You can
also use multiple levels of nested lists to create a hierarchical menu.) When using

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn576

HTML
ELEMENTS

 to create a navigation menu, use a style sheet rule to remove the bullets (set
list-style-type to none) and tweak the margin and padding settings.

<video> (Video Player)
Block element, Container element

The <video> element creates a playback window with a small set of playback controls
underneath it. A visitor uses these controls to watch a video.

You specify the video you want to appear in the window using the src attribute.
Browsers differ in the video file formats they play back, but you can’t go wrong with
MP4 files that use H.264 encoding (see page 530). In addition, you should always
include the controls attribute. Without it, you’ll create a playback window that has
no buttons (and that therefore won’t play a video unless you create an alternative
set of controls using JavaScript).

Here’s a fully configured <video> element at its simplest:

<video src="butterfly.mp4" controls></video>

The <video> element lets you set a few options.

The height and width properties set the size of the video window. If you don’t set
these attributes, browsers create a video window that matches the dimensions of
the video you want to play. The poster attribute specifies an image that appears
in the video window initially, before a visitor clicks Play. The obnoxious autoplay
attribute tells the player to start playback as soon as the page loads, and the loop
attribute tells the player to restart the video file when it ends, unless a visitor clicks
the Pause button. Finally, you can use the muted attribute to start the player with
the sound muted (visitors can click the speaker icon to restore sound).

You can specify fallback content inside the <video> element. That way, very old
browsers that don’t understand HTML5, like IE 8, display the fallback content instead
of the video player. (Without the fallback content, old browsers ignore the video
player altogether.)

<video src="butterfly.mp4" controls>
 No video for you. But you can still download the
 butterfly.mp4 video file.
</audio>

Optionally, you can give the <video> element a list of files in different formats. The
player shows the first video file that has a format it understands. To do this, you
need to remove the src attribute and then, inside the <video> element, add one or
more <source> elements, like this:

<video controls>
 <source src="butterfly.webm" type="video/webm">
 <source src="butterfly.mp4" type="video/mp4">
 Your browser is old. Click here to download the

APPenDIx B: HTML QUICK REFERENCE 577

HTML5
SEMANTIC
ELEMENTS

 butterfly.mp4 video file.
</audio>

If a browser understands the WebM video standard, the video player loads butterfly.
webm (as you’ll see in Chrome, Firefox, and Opera). Browsers that don’t play WebM
files but do play MP4 (like Internet Explorer and Safari) will load butterfly.mp4. And
if the browser doesn’t understand the <video> element at all, it displays the fallback
content and a link to download the video file.

To see what the <video> element looks like in a full web page, see page 529.

HTML5 Semantic Elements
As you learned in Chapter 1, the latest version of the HTML language is known as
HTML5. And although it’s full of improvements, it also comes with a significant
caveat. Because it’s relatively new, many browsers don’t recognize all its features.
Internet Explorer is a particular laggard; you’ll won’t be able to tap into any HTML5
features unless you use IE 9 or later.

Because of these browser support issues, web designers need to approach HTML5
with caution. Workaround techniques let you use many HTML5 features without
leaving older browsers in the dark. (For example, page 535 explains how you should
use a Flash fallback with the HTML5 <video> element to make sure your videos work
even on old browsers.) However, these solutions aren’t always simple, and sometimes
they’re more trouble than they’re worth.

You can use one group of elements right now, however, and without much extra
effort. These are HTML5’s semantic elements, which add meaning to the structure
of your pages. Semantic elements let you identify the logical purpose of different
portions of your page. For example, you can indicate in your markup where your
header is, where you placed your navigation links, and so on. Your visitors never
see this information, but you can employ it in a variety of other useful ways. For
example, search engines can use it to learn more about your website, screen read-
ing programs can present your content more effectively to people with disabilities,
and other tools can extract your data and reuse it in dozens of ways. All of these
scenarios are still evolving, but if you plan to stick with your website for a long time,
it’s worth getting used to some of these new conventions so you can take advantage
of them when HTML5 works in all browsers.

If you decide to use HTML5’s semantic elements, you still need to worry about one
issue. Older browsers (like IE 8) won’t recognize these elements, so they’ll just
ignore them. That’s fine up to a point, because the semantic elements aren’t about
formatting; they’re about structure. But many of the new semantic elements are
block elements, which means a browser should display them on a separate line on
the resulting web page, with a little bit of space between them and the preceding
(and following) elements. Browsers that don’t recognize HTML5 elements won’t
know to display some of the semantic elements as block elements, so it’s up to you

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn578

HTML5
SEMANTIC
ELEMENTS

to add a style sheet rule that tells these browsers what to do. Here’s a style super-
rule that applies block formatting to the nine HTML5 semantic elements in one step:

article, aside, figure, figcaption, footer, header, hgroup, nav, section,
summary {
 display: block;
}

This rule won’t have any effect on browsers that already recognize HTML5, because
they already set the display property to block.

The super style sheet rule above solves part of the problem but not all of it. It
works with old browsers that don’t understand HTML5, except Internet Explorer
(which, in practice, is probably the only non-HTML5 browser still traveling the Web
in significant numbers). The problem is that IE won’t apply style sheet formatting
to elements it doesn’t recognize. Fortunately, you have a workaround: You can
trick Internet Explorer into recognizing a foreign element by registering it using a
JavaScript command. Here’s a script block that gives IE the ability to recognize and
style the <header> element:

<script>
 document.createElement('header')
</script>

Rather than write this sort of code yourself, you can make use of a ready-made script
that does it for you (described at http://tinyurl.com/nlcjxm). To use this script, you
simply add a reference to it in the <head> section of your page, like this:

<head>
 <title>...</title>
 <script src="http://html5shim.googlecode.com/svn/trunk/html5.js"></script>
</head>

This grabs the script from the html5shim.googlecode.com web server and runs it
before the browser starts processing the rest of the page. The script is short and
to the point—it uses the JavaScript trick described above to simulate all the new
HTML5 elements. That way, you can format the elements with style sheet rules. Add
the super-rule shown above to your style sheet, and the new elements will display
as proper block elements. The only remaining task is for you to use the elements
and add your own style sheet rules to format them.

The following sections list all of HTML5’s new semantic elements. Notably missing
are the HTML5 elements that don’t have handy workarounds for old browsers. This
includes the new HTML5 widgets for creating forms (page 487), and the <canvas>
element that lets you draw shapes with the help of JavaScript.

 TIP  To see the latest version of the HTML5 specification, complete with all the features that leave older browsers
out in the cold, see http://dev.w3.org/html5/markup. To learn about all of HTML5’s new features, including those
that let you build better web programs with JavaScript, you can read HTML5: The Missing Manual (O’Reilly).

http://tinyurl.com/nlcjxm
html5shim.googlecode.com
http://dev.w3.org/html5/markup

APPenDIx B: HTML QUICK REFERENCE 579

HTML5
SEMANTIC
ELEMENTS<article> (Article)

Block Element, Container Element

Represents whatever you think of as an article—a section of self-contained content
like a newspaper article, a forum post, or a blog entry (not including frills like com-
ments or an author bio).

As with almost all the HTML5 semantic elements, the <article> element doesn’t
apply any built-in formatting. Think of it as a more specific version of the generic
<div> container.

<aside> (Sidebar)
Block Element, Container Element

Represents a complete chunk of content that’s separate from the main content of the
page. For example, it makes sense to use <aside> to create a sidebar with content
related to a main article. You can also use it for a block of links or ads.

<figcaption> (Figure Caption)
Block Element, Container Element

The <figcaption> element wraps the caption text that goes with a <figure> (see
below). The goal is to clearly indicate the association between an image and its
caption. Of course, <figcaption> isn’t limited to text alone. You can use any HTML
elements that make sense; good choices include links and tiny icons.

<figure> (Figure)
Block Element, Container Element

The <figure> element wraps a picture and its associated caption. Here’s an example:

<figure>

 <figcaption>The bark of a plane tree</figcaption>
</figure>

In most cases, you want to use a style sheet class to position the <figure> element.
For example, you might choose to float it on the left or right side of your page.

<footer> (Footer)
Block Element, Container Element

The <footer> element holds a chunk of content that sits at the bottom of a page
(or at the bottom of a well-defined section of content, like an <article>) element.
The footer may include small print, a copyright notice, and a small set of links (for
example, links that take you to About Us or Get Support pages).

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn580

HTML5
SEMANTIC
ELEMENTS

<header> (Header)
Block Element, Container Element

The <header> element represents a heading that includes a title and some content.
For example, a heading at the beginning of an article might include a title and a
byline, or a title and some links to subtopics in the article. Here’s an example:

<header>
 <h1>An HTML5 Investigation</h1>
 <p>Prepared by Steven Smith</p>
</header>

The <header> can also wrap the heading section of a website (for example, a ban-
ner with a company logo). It’s perfectly acceptable for a web page to have more
than one <header> section, as long as each header belongs to a distinct section of
content. (For example, a news site that shows several articles on one page could
have a header section for each article.)

<mark> (Highlighted Text)
Inline Element, Container Element

The <mark> element represents a section of text you want to highlight for reference.
For example, you could use it to flag changes, mistakes, or keywords in a page.

If you decide to use the <mark> element now, you’ll need to supply the formatting
for browsers that don’t recognize HTML5. Here’s the sort of style rule you need:

mark {
 background-color: yellow;
 color: black;
}

<nav> (Navigation Links)
Block Element, Container Element

The <nav> element represents a section of a page that contains links. These links may
point to topics on the current page or to other pages on a website. In fact, it’s not
unusual to have a page with multiple <nav> sections—one for a site-wide navigation
menu, another for topics in the current article, and so on.

It’s worth noting that you don’t have to wrap every block of links in a <nav> element.
Web designers generally reserve it for the largest and most important navigational
sections on a page. You can place <nav> inside another HTML5 element as well. For
example, if you have a set of navigation links right in the header, you’re free to place
the <nav> element inside the <header> element. Or, if you decide the links aren’t
clearly part of the header, you may choose to add the <header> element followed
by the <nav> element. The HTML5 specification is explicit in saying that decisions
like these are a matter of taste.

APPenDIx B: HTML QUICK REFERENCE 581

HTML5
SEMANTIC
ELEMENTS

<section> (Section)
Block Element, Container Element

Of all of HTML5’s semantic elements, the <section> element is the most general. It
represents a document that should start with a heading of any level.

If possible, you should use a more specific container for your content than <section>.
For example, both <article> or <aside> have more specific meanings, which makes
them better choices than <section>. If you can’t really describe your content as an
article or an aside, however (for example, say it’s a patient record pulled out of a
database), then a <section> element is a perfectly reasonable way to identify it.

One confusing detail is that you can use a <section> for parts of a page. For example,
on your website’s home page you could put blog postings, news, and a sidebar of
ads into their own separate <section> elements.

 NOTE  As web designers become more accustomed to using elements like <section>, people will begin
to settle on a few widely accepted usage patterns. Until then, HTML5 leaves some ambiguity about the best ways
to use its new elements.

<time> (Date or Time)
Inline Element, Container Element

Date and time information appears frequently in web pages. For example, it turns
up at the end of most blog postings. Unfortunately, there’s no standardized way to
tag dates, so there’s no easy way for other programs (like search engine crawlers)
to extract them without guessing. The <time> element solves this problem in two
ways. Not only does it let you flag an existing date for later use, but it also adds a
datetime attribute that you can use to provide the date in a standardized form that
any program can understand.

Here are a few examples of the <time> element at work:

<time datetime="2011-11-30">30th of November</time>
<time datetime="20:00">8:00pm</time>
<time datetime="2011-11-30T20:30">8:30 PM on November 11, 2011</time>

Remember, the information in the datetime attribute won’t appear on your web
page. It’s there for other programs to read.

Because the <time> element is purely informational and doesn’t have any associated
formatting, you can use it with any browser.

CReAtInG A WeBsIte: tHe MIssInG MAnUAL, FOURtH eDItIOn582

HTML
CHARACTER

ENTITIES HTML Character Entities
HTML character entities are codes that browsers translate into other characters
when they display a page. All HTML character entities start with an ampersand (&)
and end with a semicolon (;).

There are two principal reasons to use HTML character entities. First of all, you
might want to use a character that has a special meaning in the HTML standard. For
example, if you type < in an HTML document, a browser assumes you’re starting to
define an element, which makes it difficult to write a pithy bit of logic like “2 < 3.” To
get around this, you replace the < symbol with a character entity that represents the
less-than symbol. The browser then inserts the actual < character you want when
it displays the page.

The other reason to use HTML character entities is because you want to use a special
character that’s not easy to type, like an accented letter or a currency symbol. In
fact, characters like these are quite possibly not on your keyboard at all.

Table B-2 has the most commonly used HTML entities. For the complete list, which
includes many more international language characters, see www.webmonkey.com/
reference/Special_Characters. You can also type in certain special characters us-
ing a non-English keyboard or pick international language characters from a utility
program. See page 66 for more information about these options.

TABLE B-2 HTML character entities.

CHARACTER NAME OF CHARACTER WHAT TO TYPE

< Less-than <

> Greater-than >

& Ampersand &

" Quotation mark "

© Copyright mark ©

® Registered trademark symbol ®

¢ Cent sign ¢

£ Pound sterling sign £

¥ Yen sign ¥

€ Euro sign € (but € is bet-
ter supported)

° Degree sign °

± Plus or minus sign ±

÷ Division sign ÷

x Multiply sign ×

www.webmonkey.com/reference/Special_Characters
www.webmonkey.com/reference/Special_Characters

APPenDIx B: HTML QUICK REFERENCE 583

HTML
CHARACTER

ENTITIESCHARACTER NAME OF CHARACTER WHAT TO TYPE

μ Micron sign µ

¼ One-quarter fraction ¼

½ One-half fraction ½

¾ Three-quarters fraction ¾

¶ Paragraph sign ¶

§ Section sign §

« Left angle quote, guillemotleft «

» Right angle quote, guillemotright »

¡ Inverted exclamation mark ¡

¿ Inverted question mark ¿

æ Small ae diphthong (ligature) æ

ç Small c, cedilla ç

è Small e, grave accent è

é Small e, acute accent é

ê Small e, circumflex accent ê

ë Small e, dieresis or umlaut mark ë

ö Small o, dieresis or umlaut mark ö

É Capital E, acute accent É

HTML Color Names
The HTML standard officially recognizes only 16 color names. Table B-3 lists them.

TABLE B-3 HTML color names.

Aqua Navy

Black Olive

Blue Purple

Fuchsia Red

Gray Silver

Green Teal

Lime White

Maroon Yellow

Although many browsers recognize more names, the best way to specify color is
with a color code (see page 89).

585

Amazon Associates
generating associate links, 436–442
link-building tools, 438–442
overview, 433–435
signing up, 435–436

angle brackets (<>)
character entities for, 65
ignoring, 18

Aplus.Net web hosting, 292–295
Apple Final Cut Pro, 534
<area> element, 191, 557–558
arguments (JavaScript functions), 469
arrays (objects), 517
art, finding, 144–146
<article> (article) element (HTML5),

579–580
artifacts, compression, 124
<aside> (sidebar) element (HTML5),

579
ASIN (Amazon Standard Item

Number), 437–438
ASP.NET, 152
associate links (Amazon Associates),

436–442
attributes (elements), 29
Audacity audio editor, 526
Audience Overview graph (Google

Analytics), 338
audio files

<audio> element, 525, 527, 558–559
playing, 526–529

automatic playback (audio), 527–528

Index

Symbols
1,000-pixel rule (page layouts),

238–239
+= operator (JavaScript), 470

A
<a> (anchor) element, 32, 175–176,

556–557
above the fold (designing), 43
absolute positioning, 256–258
absolute sizes (fonts), 101
absolute URLs, 178–179, 184, 556
<address> element, 557
Admin tab, (Google Analytics), 337
Adobe Premiere Elements, 534
ads

creating (AdSense), 421–427
creation of targeted (AdSense), 430
display, 422
making money with, 414
placing in web pages, 427–429

AdSense, Google. See Google
AdSense

AdWords, Google, 349–351
affiliate programs, 415. See

also Amazon Associates
alert() function (JavaScript), 461–462
aligning text, 91–96
Allow Blocked Content warning (IE),

462
alpha blending (images), 127
alt (alternative text) attribute, 29,

116–117

InDex586

 (BOLD)
ELEMENT

Brackets
basics, 169–171
Brackets web editor (Adobe), 151–153
creating style sheets in, 173
overview, 151–153
working file list, 171–174

browsers
basics, 6–8
JavaScript unsupported in, 462
monospaced fonts in, 44
video fallbacks for older, 535–541

bulk operations (blog posts), 398
bulleted lists

definition of, 51
floating pictures around, 132
graphical bullets in, 144
overview, 53

business accounts (PayPal), 444
buttons

building shopping cart, 452–453
<button> element, 560
Buy Now (PayPal), 445–449
controls, 490
picture, 500–501, 503
picture-less, 510–511
rollover. See rollover buttons

C
cache keyword, 328
caching (browsers), 81
CafePress, 442
CalculateBMI() function, 491–493
calling functions (JavaScript),

468–469
captions

adding to images, 133–135
<caption> element, 561

Cascading Style Sheets (CSS). See CSS
(Cascading Style Sheets)

cells, spanning (tables), 59–61
centering fixed-width layouts, 244
channels feature (AdSense), 425
character entities (HTML), 12, 18,

63–65, 582–584
chargebacks (PayPal), 444
charmap utility, 67
checkbox controls, 489–490
Chrome, Google, 387
<cite> (citation) element, 561

B
 (bold) element, 32, 61–62, 559
backgrounds

background-color style property,
87–88

background images, 138–143
pictures on colored, 125–126
watermarks, 140

backslash (\) in file paths, 184
bandwidth, 289, 291
<base> (base URL) element, 559
Behavior group reports (Google

Analytics), 343
Bing search engine, 320
bitrate, video, 534
blended transparency (images), 127
block elements, 30–31, 38, 555
<blockquote> element, 44–46,

559–560
Blogger, Google. See Google Blogger
blogs

blogrolls, 411
characteristics of, 382–383
customizing domain names, 408
group, 401
hazards of blogging, 384
hosting options, 388–389
overview, 381
promoting, 411
self-hosted, 388–389
syndication of, 384–388

<body> element, 21, 207–208, 560
bookmarks

anchor element and, 557
icons, 352
linking to, 194–196

borders (CSS)
adding to text-wrapped image,

132–133
border-radius property, 110–111
creating, 108–109
properties, 107–108
rounded corners, 110–111
using with tables, 111–112

bounce rate (web traffic), 340

 (line break) element, 16, 32,

40–42, 560

InDex 587

CUSTOMIZING
BLOGGER

TEMPLATES
<cite> element, 47
class attribute, 85
className property (HTML objects),

476
class rules, creating (CSS), 210–213
class selectors (style sheets), 84–87
clear property (CSS), 136–138
click-through rate (AdSense), 421
client-side programming (JavaScript),

458–459
client-side scripts, 290
<code> element, 561
codecs, video, 530–531
Code view (Expression Web), 164
collapsible menus

menu markup, 512–516
overview, 512
submenus code, 516–518

collapsible text (DHTML), 483–487
collapsing the whitespace, 40
collections, font, 107
colors

changing link, 193–194
choosing color schemes, 210
finding right, 89
HTML color names, 583
pictures on colored backgrounds,

125–126
properties, 87–88
specifying, 88–89
tips for using, 90

columns
column spans (tables), 59–60
multiple column layout. See multiple

column layout (tutorial)
sizing in tables, 260–261
stretching heights of, 251–252

commas (,) in JavaScript, 469
comments

CSS, 212
HTML, 28, 68
in JavaScript (//), 470
reviewing (Blogger), 407–411
YouTube, 544–545

communities, web
Google+Communities, 373–380
managing members, 379
transforming websites into, 353–355

compression (graphics), 123–124
contact forms, 356–359

container elements, 16, 38, 556
containers, video, 530–531
content

content is king, 351
content management systems

(CMSes), 388, 554
duplicating on multiple pages.

See duplicating content on
multiple pages

grouping with <div> element, 213–216
keeping fresh, 352
pay-for, 415

contextual selectors, 217–221
controls attribute (audio files), 526,

527, 529
controls, form (DHTML), 489–490
converting video clips, 533
cookies, 333
copying files to computers

(Dreamweaver), 306–307
cost-per-click (AdSense), 421
country-specific domains, 284–285
Creative Cloud subscription/program

(Adobe), 153–154, 155
Creative Commons license, 146
CSS (Cascading Style Sheets). See

also style sheets
aligning/spacing text, 91–96
borders. See borders (CSS)
browser support of, 74
the cascade, 82–83
comments, 212
creating buttons at CSS-Tricks,

511–512
CSS inspection tools (tutorial),

224–228
inheritance, 82–84
overview, 71–73
rules. See rules, CSS
shorthand syntax, 209
types of style sheets, 73–74

curly braces { } in CSS rules, 75
cursor property, 514
customizing

blog domain names, 408
shopping cart pages, 451–452

customizing Blogger templates
adding/deleting/rearranging

gadgets, 403–406
basics, 401–402

InDex588

CYBERDUCK
FTP PROGRAM

editing HTML, 406–407
reformatting, 402–403

Cyberduck FTP program, 301–303

D
Daily Kos, 401
dashboards

Blogger, 390
Google Analytics, 336–337

<dd> (dictionary description)
element, 561

declaring functions (JavaScript),
467–468

declaring variables, 463
default pages, 180
definition list elements, 53–55
 (deleted text) element, 62, 561
deleting

blog posts, 399
gadgets (Blogger), 405–406
objectionable blog comments,

408–409
developer panel (Google Chrome),

226–227
<dfn> (defined term) element, 562
display ads, 422
displaying HTML files as code, 5–6
<div> (division) element

absolute positioning and, 258
grouping content with, 213–216
overview, 47–48, 562
saving work with, 217
structuring pages with, 232

<dl> (dictionary list) element, 54
DNS (Domain Name System), 281
doctypes, 19–20
document.getElementById() method

(JavaScript), 474–475
document-relative links, 185
documents, HTML

basic structure of, 20–22
building (tutorial)

adding content, 22–24
adding images, 27–30
adding important elements, 30–33
structuring text, 24–27

checking pages for errors, 33–36
DTD (document type definition),

19–20

document.write() command
(JavaScript), 466

Dojo, 497, 522
domain names (URLs)

buying for future, 288
choosing, 282–283
country-specific, 284–285
customizing for blogs, 408
definition of, 279
private registration of, 290
registering, 287
searching for, 285–287
separate from host, 296
separating from host, 296
top-level domains, 284–285
web hosts and, 289

DOM (document object model),
473–474

donations, 414
drawing programs, 128
Dreamstime, 146
Dreamweaver

creating new pages, 158–160
creating style sheets in, 173–174
defining sites in, 161–162
downloading/installing, 153–155
Dreamweaver Web Template (dwt)

files, 269
editing pages, 154–157
Enter key in Design view, 158
hot-spot editor, 192
Link Checker panel, 197
overview, 150–151
Synchronize button, 307
uploading files from, 303–307
working with multiple pages, 160–161

Drupal, 388
<dt> (dictionary term) element, 54,

563
DTD (document type definition),

19–20
duplicating content on multiple pages

overview, 262–263
PHP includes, 267
server-side includes, 263–267
web applications for, 264
web templates. See web templates

Dynamic Drive, 518
dynamic HTML (DHTML)

collapsible text, 483–487

InDex 589

ELEMENTS,
HTML

events, 479–481
finding scripts online, 493–497
HTML objects, 474–480
image rollovers, 482–484
interactive forms, 487–493
overview, 473–474
script categories, 495

dynamic picture buttons, 500–501

E
e-commerce

Amazon Associates. See Amazon
Associates

building shopping carts (PayPal),
449–453

Google AdSense. See Google
AdSense

overview, 413–415
PayPal merchant tools. See PayPal
selling custom designs, 442

editable regions (web templates),
270–272

editing
HTML in Blogger templates, 406–407
video clips, 533
web pages with Dreamweaver,

154–157
elements, HTML

<a> (anchor), 175–176, 556–557
<address>, 557
<area>, 191, 557–558
<audio>, 525, 527, 558–559
 (bold), 559
<base> (base URL), 559
basics, 15–16
binding background images to,

141–143
block, 30–31, 38, 555
<blockquote>, 559–560
<body>, 207–208, 560

 (line break), 40–42, 560
<button>, 560
<caption>, 561
<cite> (citation), 561
<code>, 561
container, 38, 556
<dd> (dictionary description), 561
definition lists, 53–55
 (deleted text), 561
 (deleted text), 62

<dfn> (defined term), 562
<div> (division) element. See <div>

(division) element
divisions and spans, 47–48
<dt> (dictionary term), 563
 (emphasis), 563
<figure>/<figcaption>, 135
<form> (interactive form), 489–491,

563
formatting with type selectors,

208–210
<h1>, <h2> (headings), 563
<head> (document head), 42–43, 564
<hr> (horizontal rule), 43, 564
<html> (document), 564
HTML5 elements, 48
<i> (italic text), 564–565
<iframe> (inline frame), 263, 549, 565
<i> (italics), 61–62
 (image), 565–566
inheritance, 82–84
inline, 31–32, 38, 555
<input> (input control), 566–567
<ins> (inserted text), 567
layered, 255–256
<link> (document relationship), 78,

82, 567
<map> (image map), 190–191,

567–568
<meta> (metadata), 201, 317–318, 568
nesting elements, 17–18
nesting lists in, 55–56
<noscript> (alternate script content),

568
<object> (embedded object),

569–570
 (ordered list), 51–53, 569
<option> (menu option), 569
<p> (paragraph), 39–41, 570–571
<param> (object parameter), 570
<pre> (preformatted text), 43–44,

570
<q> (short quotation), 571–572
quotes (<blockquote>), 44–46
<samp> (sample output), 571
<script> (client-side script), 571
<select> (selectable list), 571
<small> (small print), 62, 572
<source> (audio/video file), 531, 572

InDex590

(EMPHASIS)

ELEMENT
 (generic inline container),

135, 572
standalone, 38, 556
 (strong importance), 573
<style> (internal style sheet), 82, 573
<sub> (subscript), 62, 573
<sup> (superscript), 62, 574
<table>, 574
for tables, 57–62
<td> (table data cell), 574
<textarea> (multiline text input), 574
<th> (table header cell), 575
<title> (document title), 575
<tr> (table row), 575
types of, 37–39
<u> (underline), 62
 (unordered list), 53, 575
<video> (video player), 525, 527, 529,

576–578
 (emphasis) element, 61–62, 563
email

addresses (web hosts), 289
newsletters, 356–358

embedding multimedia, 525
empty element syntax, 16
equal sign (=) in variables, 463
errors, checking pages for, 33–36
events, HTML object, 479–481
Expression Web

avoiding advanced features, 169
checking links in, 197–198
choosing view, 162–165
configuring for HTML5, 165
creating style sheets in, 173
defining sites in, 167–169
function menu (JavaScript), 466
history of, 151
hot-spot editor, 192
making button pictures in, 503
opening multiple pages, 165–166
overview, 162
sizing browser windows, 239
uploading files from, 307–310

external links, 176–179
external script files (JavaScript),

472–473
external style sheets, 73, 81

F
Facebook

creating a Facebook page, 364–370
overview, 363–364
promoting Facebook page on

websites, 370
favicons, 352
feed readers, 384–387
<figcaption> element (HTML5), 135,

579
<figure> element (HTML5), 135, 579
filenames, URL, 279
files

creating simple HTML (tutorial), 9–12
displaying as HTML code, 5–6
file protocol, 184
Files panel (Dreamweaver), 160–161
File Transfer Protocol (FTP), 279
FileZilla FTP program, 301
formats for web graphics, 122–127
saving in word processors, 12
transferring to websites.

See transferring files
working set of (Brackets), 171–174

Firefox
CSS tools in, 226
feed readers and, 387
overview, 8
sizing browser windows, 239
View Selection Source feature, 14

fixed boxes, 234–235
fixed content (web templates), 270
fixed IP addresses, 292
fixed-width page layouts, 236–238,

242–246
Flash Kit, 529
Flash players, 536–541
Flickr, 146
floating

boxes, 232–234
figures, 135
images, 127
pictures around lists, 132

float property (CSS), 131
flow elements (HTML5), 38, 556
flow layout model, 232
Flowplayer Flash, 537

InDex 591

GOOGLE
CHROME

folders
folder lists (Brackets), 172
linking pages in same, 181–182
linking to parent, 184–185
linking to subfolders, 182–185
metadata (Expression Web), 168–169
organizing linked pages with, 177, 181
root, 180
root-relative, 185–186

fonts
finding right, 96–98
font collections, 107
Google fonts, 103–106
monospaced in browsers, 44
properties, 96
sizing, 100–103
specifying, 98–100

footers
<footer> (footer) element (HTML5),

579
sticky, 254

foreign language characters, 66–68
for loops, 517
<form> elements (DHTML), 489–491,

563
formats, video, 530–531, 542
formatting vs. structure (web pages),

70–71
form controls (HTML), 566
forms, interactive (DHTML), 487–493
forums, 373
forwarding, domain, 287
forward slash (/)

for CSS comments, 212
linking to parent folders with, 184
in relative addresses, 121
for root-relative links, 185
in URLs, 184

Fotolia, 146
fragments

linking to, 194–196
URL, 279

frames
dimensions of (video), 532
seamless (HTML5), 263

FTP programs, 301–303
functions (JavaScript)

calling, 468–469
declaring, 467–468
definition of, 461

overview, 467
receiving information with, 469–471
returning information with, 471–472

G
gadgets, Blogger, 403–406
geographic locating service (Google

Analytics), 341
get operation (Dreamweaver),

306–307
GIF files

overview, 122–123
when to use, 125

GIMP graphics program, 128
Goldwave audio editors, 526
Google accounts, 543
Google AdSense

AdSense window, 419–422
creating ads, 421–427
creating targeted ads, 430
Google-powered searches, 430–433
overview, 415–417
placing ads in web pages, 427–429
rules, 420
signing up, 417–419

Google AdWords, 349–351
Google Analytics

basics, 332–333
content overview, 343
dashboard, 336–337
Map Overlay, 340–341
Sessions Graph, 339
signing up for, 334–335
Site Usage section, 339–340
Traffic Sources Overview chart,

342–343
Google Blogger

creating blogs with, 390–395
customizing templates.

See customizing Blogger
templates

formatting posts, 395–396
managing blogs, 397–398
managing posts, 398–399
overview, 388, 389
reviewing comments, 407–411
tweaking common settings, 399–401

Google Chrome
addresses for local files, 12
for CSS inspection, 226

InDex592

GOOGLE+
COMMUNITIES

overview, 7
sizing browser windows, 239

Google+Communities, 373–380
Google fonts, 103–106
Google Places, 348–349
Google search engine

PageRank system, 321
submitting sites to, 320–321

Google Toolbar, 325
Google Webmaster Tools, 327–330
graphics

background images, 138–143
design on Web, 70–71
file formats for Web, 122–127
finding free art, 144–146
graphical bullets in lists, 144
 (image) element. See

(image) element
saving in different formats, 128

group blogs, 401
groups, community, 371–373

H
<h1>, <h2> (headings) elements, 31,

42–43, 563
H.264 codec, 530
HandBrake, 533, 535
<head> (document head) element, 21,

564
headers

<header> element (HTML5), 580–581
sticky, 253–254

height
column, 251–252
property, 234

height attribute
images, 565–566
videos, 531–532

height property (videos), 576
hexadecimal color values, 89
hiding from search engines, 326–328
hosted blogs, 388
hosted multimedia, 525
hotspots (image maps), 190–193
hover pseudo-class, 507
<hr> (horizontal rule) element, 31, 43,

564
href (hypertext reference) attribute,

78, 175

HTML5
configuring Expression Web for, 165
doctype, 20
elements in, 48
learning, 554
semantic elements, 577–581

HTML (HyperText Markup Language)
character entities, 63–65, 582–584
color names, 583
converting raw text to, 48–49
creating simple file (tutorial), 9–12
documents. See documents, HTML
dynamic. See dynamic HTML

(DHTML)
editing in Blogger templates,

406–407
elements. See elements, HTML
excluding formatting in, 73
export features, 150
files, 4
form controls, 566
.htm/.html extensions, 10–12
<html> (document) element, 20–21,

564–565
HTML editors, 149
overview, 3
text editors and, 4–6
viewing code in web pages, 13–14
web browsers and. See web browsers

HTTP (HyperText Transfer Protocol)
basics, 278
definition of, 4

hyperlinks. See linking web pages

i
<i> (italics) element, 32, 61–62, 564
id attribute

identifying fragments with, 194
identifying objects with, 474

id selectors, 86–87
<iframe> element, 263, 549, 565
if statements, 478
iHover library, 511
images

adding to HTML documents, 27–30
alternative text for, 319
background, 138–143
file sizes for, 125
floating, 127
image editors, 128

InDex 593

LINKING WEB
PAGES

image maps, 189–192, 567–568
image rollovers, 482–484
linking, 186–188
preloading, 508
storing in subfolders (tutorial),

120–122
wrapping text around. See wrapping

text (tutorial)
 (image) element

alternative text attribute, 116–117
basics, 28–30, 565–566
overview, 32, 115–116
picture placement, 119–121
picture sizing, 117–119

iMovie, 534
includes

#include command, 264–265
PHP, 267
server-side, 262–263, 263–267

inheritance (CSS), 82–84
inline elements, 31–32, 38, 555
inline images, 119–120
inline styles, 74, 80–81
innerHTML property, 475–476
<input> (input control) element, 489,

566–567
<ins> (inserted text) element, 567
inspecting style sheets (tutorial),

224–228
installing Dreamweaver, 153–155
interactive forms (DHTML), 487–493
internal links, 176–179
internal style sheets, 73–74, 79–80
Internet

vs. intranet, 282
vs. World Wide Web, 4

Internet Explorer
Allow Blocked Content warning, 462
CSS inspection in, 226
limits of IE 8, 535
overview, 7–8
subscribing to feeds, 386–387

intranet vs. Internet, 282
inviting community members,

378–380
IP addresses, 281, 333
ISPs (Internet Service Providers), 292,

341
iStockPhoto, 146

J
JavaScript

browsers not supporting, 462
capabilities of, 457
dynamic HTML (DHTML).

See dynamic HTML (DHTML)
evolution of, 459–460
external script files, 472–473
functions. See functions (JavaScript)
learning, 554
libraries, 496–497
<script> element, 460–463
scripts online, 493–497
server-side/client-side programming,

458–459
spaces/line breaks in, 467
variables, 463–467

Joomla, 388
JPEG files

compressing, 124
overview, 122–123
when to use, 125

jQuery library, 497, 522
justification of text, 92–93
JW Player, 537–542

K
keywords

in AdSense, 432–433
keyword sizing, 100–101
keywords meta element, 318
searching blogs with, 393–394

L
LAME MP3 encoder, 526
layered elements, 255–256
layouts, page. See page layouts
 (list item) element, 25–26, 31
libraries

JavaScript, 496–497
jQuery, 522

Lifehacker, 401
Like button (Facebook), 371
line break (
) element, 560
line breaks

basics, 40–42
in JavaScript, 467, 470

linking web pages
internal/external links, 176–179
linking to different file types, 177

InDex594

LINKS
tutorial

linking pages in same folder,
181–182

linking to parent folders, 184–185
linking to subfolders, 182–185
making image links, 186–188
moving to root folder, 185–186
starter site, 179–181

links
to bookmarks, 194–196
broken, 196–197
checking in web editors, 197–198
checking online, 198–200
coloring/underlining, 193–194
descriptive link text, 319
ink rot, 196–197
inside pictures, 189–192
<link> element, 78, 82, 567
mailto links, 188–189
to multimedia, 524–525
for opening pages in new windows,

179
pointing to fragments, 194–196
redirects, 200–202
underlining, 193–194

lists
backward-counting (HTML5), 569
definition lists, 53
floating pictures around, 132
graphical bullets in, 144
list controls, 490
nesting, 55–56
ordered, 51–53
unordered, 53

Live Bookmarks feature (Firefox), 387
log analysis (visitor tracking), 331
looping playback (audio), 528
lossless/lossy compression (audio),

124

M
mailto links, 188–189, 556
MakeVisible() function, 516–517
Map Overlay (Google Analytics),

340–341
maps

image, 189–192
<map> (image map) element,

190–191, 567–568

margins
padding for multiple columns, 247
setting, 208–209

<mark> (highlighted text) element
(HTML5), 580

Mark of the Web comment, 462
markup, HTML, 15
max-width property (CSS), 248–250
media files, preloading, 528
media queries (CSS3), 239, 250
menus

collapsible
menu markup, 512–516
overview, 512
submenus code, 516–518

jQuery menus/widgets, 522
overview, 511–512
Slashdot, 518–522
third-party, 518–522

metadata
audio downloads and, 528
folders (Expression Web), 168–169
<meta> (metadata) element, 201,

317–318, 568
methods (objects), 474
min-height property (CSS), 251
min-width property (CSS), 248–250
Miro Video Converter, 533
mobile devices, 554
moderating comments (Blogger),

409–410
modifying variables, 463
monochrome color, 90
monospaced fonts, 44
MooTools, 497, 522
MP4 (MPEG-4) container, 530
multimedia, 523–526
multiple column layout (tutorial)

attaching style sheet, 242
building fixed-width layout, 242–246
max-width/min-width properties,

248–250
overview, 239–240
planning layout, 240–242
switching layouts with media queries,

250
switching to resizable layout,

245–248

InDex 595

PAYPAL
multiple page layouts, 238. See

also duplicating content on
multiple pages

MultiplyNumbers() function
(JavaScript), 472

music catalogs, 526

N
naming

blogs, 391
style sheets, 77
websites, 282–283

<nav> (navigation links) element
(HTML5), 580

negative margins (text), 94
nesting elements, 17–18
nesting lists, 55–56
newsletters, email, 356–358
nonbreaking space character entity,

41–42
<noscript> (Alternate Script Content)

element, 568
Notepad, 9–11
Notepad++, 153
numbered lists, 132
Number() function (JavaScript),

491–492

O
objects

basics, 474
HTML, 474–480
<object> (embedded object)

element, 569–570
 (ordered list) element, 51–53,

569
online link checkers, 197, 198–200
Open Directory Project (ODP),

321–324
opening

linked pages in new windows, 179
multiple pages (Expression Web),

165–166
Open Site dialog box (Expression

Web), 167
Open Site Explorer, 348

Opera, 8, 226
<option> (menu option) element, 569

P
<p> (paragraph) element, 21–22, 31,

39–41, 570–571
padding property, 109, 262
page layouts

1,000-pixel rule, 238–239
combining absolute/relative

positioning, 256–258
creating multiple column layout.

See multiple column layout
(tutorial)

duplicating content on multiple.
See duplicating content on
multiple pages

fixed boxes, 234–235
floating boxes, 232–234
layered elements, 255–256
overview, 231
screen sizing strategies, 236–239
sizing tables, 259–263
sticky headers, 253–254
stretching column heights, 251–252
structuring pages with <div>

element, 232
PageRank system (Google), 321,

324–327
pageviews, counting, 339
Paint.Net, 128
<param> (object parameter) element,

570
parameters (JavaScript functions),

469
parentElement property (HTML

objects), 476
parent folders, linking to, 184–185
parentheses () in JavaScript, 468
parking, domain, 287–288
paths

relative, 122
URL, 279

pay-for-content, 415
payments, accepting (PayPal),

445–450
PayPal

accepting payments, 445–450
building shopping carts, 449–452
chargebacks, 444
overview, 442–443

InDex596

PERFORMANCE
REPORTS

(ADSENSE)
signing up with, 443–445
withdrawing money from, 453–454

performance reports (AdSense), 421
personal accounts (PayPal), 443–444
phantom variables, 464
Photoshop, Adobe, 128
PHP includes, 267
phrasing elements (HTML5), 38, 556
pictures

creating for buttons, 503
picture buttons, 500–501
picture-less buttons, 510–511
picture-with-text buttons, 508–511
placing, 119–121
placing on colored backgrounds,

125–126
sizing, 117–119, 125

pixels
1,000-pixel rule, 238–239
planning column width, 243–244
sizing (text), 102–103

playing audio files, 526–529
plus (+) sign in variables, 464
PNG files

overview, 122–123
when to use, 125

pop-up blockers, 179
poster attribute (video), 532
posts (Blogger)

formatting, 395–396
managing, 398–399

<pre> (preformatted text) element,
43–44, 570

precedence in style rules, 219
preloading

images, 508
media files, 528

premier accounts (PayPal), 444
privacy settings (YouTube), 544
private domain registration, 290
product links (Amazon Associates),

437–438
profile pages (Facebook), 364
progressive enhancement

(JavaScript), 487
promoting blogs, 411
promoting websites

bookmark icons, 352
community groups, 371–373
cultivating links, 347–348

email newsletters, 356–358
Facebook. See Facebook
Google AdWords, 349–351
Google+ Communities, 373–380
Google Places, 348–349
planning for, 314
return visitors, 351–353
search engines. See search engines
self-promotion, 346–347
tracking visitors. See visitor tracking
Twitter, 358–364
web communities, 353–354
website community tools, 354–355

properties
CSS rules, 75
HTML object, 474–476

proportional page sizing, 236–239
protocols, URL, 278
pseudo-classes, 193–194
put operation (Dreamweaver),

305–306

Q
<q> (short quotation) element,

571–572
query strings, URL, 279–280
quirks mode (browsers), 19
quotation marks (“ ”)

for font names, 100
in JavaScript, 461
special characters for, 65

quote elements (text), 44–46

R
radio button controls, 490
recursive link checking, 199–200
redirects (links), 200–202
re-encoding videos, 532–533
refreshing web pages, 13
registering

domain names, 287
with search engines, 320

relative paths, 122
relative positioning, 256–258
relative sizing (fonts), 102–103
relative URLs, 177–178, 183, 556
rel (relationship) attribute, 78
reports

Behavior Group (Google Analytics),
343

InDex 597

SHARING
performance (AdSense), 421
Reporting tab (Google Analytics),

338
ResetAllMenus() function, 516–517
resizable layouts, 245–248
resolution, screen, 239
RGB color standard, 89–90
robots meta element, 326
robots.txt file, 326
rollover buttons

creating rollover effect, 507–508
options for building, 501–503
overview, 500–501, 503
picture-less buttons, 510–511
picture-with-text buttons, 508–511
preparing button pictures, 505–506
starter page, 504–505

rollovers, image, 482–484
root folders, 180
root-relative links, 185–186
rounded corners (borders), 110–111
rows

sizing in tables, 262
spanning (tables), 60

rules
AdSense, 420
CSS, 74–76

S
Safari, 8, 14, 387
<samp> (sample output) element, 571
sandboxes, 458
sans-serif fonts, 98–99
saving

documents as web pages, 150
files in word processors, 12
graphics in different formats, 128
video files, 530

screen-reading programs, 116
screens

resolution of, 239
sizing strategies for, 236–239

<script> (client-side script) element,
571

<script> element (JavaScript),
460–463

scripts (DHTML)
categories of, 495
finding online, 493–497
using HTML objects in, 476–480

seamless frames (HTML5), 263
search engines

alternative text for images, 319
basics, 315
cheating the system, 319–320
choosing effective page titles,

315–316
descriptive link text, 319
Google Webmaster Tools, 327–330
hiding from, 326–328
overview, 315
page descriptions, 316–318
PageRank system (Google), 321
registering with, 320
rising in rankings, 324–327
SEO (search engine optimization),

326
submitting sites to Google, 320–321
submitting sites to Open Directory

Project (ODP), 321–324
searching

for domain names, 285–287
Google-powered searches (AdSense),

430–433
for scripts online, 494–496

<section> (section) element (HTML5),
581–582

<select> (selectable list) element, 571
selectors (CSS rules), 74–75
self-hosted blogs, 388–389
self-promotion, 346–347
semantic elements (HTML5), 577–581
serif fonts, 99
server-side applications, 458–459
server-side includes (SSIs), 263–264,

263–267
server-side programming

(JavaScript), 458–459
server-side programming languages,

289
Sessions graph (Google Analytics),

339
setTimeout() function (JavaScript),

478–479
shared hosting, 290
shareware web editors, 151
sharing

blog posts on Google+, 394
communities, 378
tweets on websites, 360–363

InDex598

SHOPPING
CARTS,

BUILDING
(PAYPAL)

YouTube videos, 547
shopping carts, building (PayPal),

449–452
shorthand syntax (CSS), 209
site feature

in Dreamweaver, 161–162
in Expression Web, 167–169

sitelinks (search listings), 330
sitemaps, 330
Site Usage section (Google Analytics),

339–340
sizing

columns in tables, 260–261
fonts, 100–103
graphic images, 125
keywords, 100–101
pictures, 117–119
rows in tables, 262
strategies for screens, 236–239
tables, 259–263

Slashdot menu, 518–522
<small> (small print) element, 62, 572
<source> (audio/video file) element,

531, 572
source pages (linking), 181
spaces in JavaScript, 467
spacing text, 91–96
spam, comment, 407
 (generic inline container)

element, 48, 135, 572
spanning cells (tables), 59–61
special characters

basics, 63–65
using in file/folder names, 184

split-window editors, 149
squatters, domain, 282
src attribute, 29, 121, 473, 526
src property, 482
standalone elements, 16, 38, 556
standards mode (browsers), 19
start attribute (lists), 52
start/end HTML tags, 14–15
statistics (web traffic), 290
sticky headers, 253–254
stock photography, 145
storing images in subfolders

(tutorial), 120–122
strings (JavaScript), 461
 (strong importance)

element, 61, 573

structure vs. formatting (web pages),
70–71

style> (internal style sheet) element,
82, 573

style property (HTML objects), 476
style sheets. See also CSS (Cascading

Style Sheets)
attaching, 242
attaching to web page (tutorial),

76–81
borders. See borders (CSS)
class selectors, 84–87
colors. See colors
creating with web page editors,

173–174
CSS inspection tools (tutorial),

224–228
fonts. See fonts
id selectors, 86–87
inheritance, 82–84
naming, 77
overview, 69, 71
planning, 203–206
types of, 73–74

style sheets, building
class rules, creating, 210–213
formatting elements with type

selectors, 208–210
grouping content with <div> element,

213–216
organizing rules hierarchy, 213
overview, 206–207
saving work with contextual

selectors, 217–221
saving work with <div> element, 217
single style sheet for entire site,

221–224
styling <body> element, 207–208

<sub> (subscript) element, 62, 573
subdomains (blogs), 408
subfolders

linking to, 182–185
storing images in, 120–122

Sublime Text, 153
<sup> (superscript) element, 62, 574
SVG (Scalable Vector Graphics),

122–123
Synchronize button (Dreamweaver),

307
syndication, blog, 384–388

InDex 599

TYPE
ATTRIBUTET

tables
HTML elements for, 57–62
sizing, 259–263
spanning cells, 59–61
<table> element, 574
<th> (table header cell) element,

260, 575
using borders with, 111–112

tags
HTML, 5, 14–18
video (YouTube), 544

target pages (linking), 181
tasting, domain, 284
<td> (table data cell) element, 57,

260, 574
templates

Blogger, 392
customizing Blogger.

See customizing Blogger
templates

web. See web templates
text

aligning/spacing, 91–96
alternative text for images, 319
bold ()/italics (<i>) elements,

61–62
collapsible (DHTML), 483–487
converting raw to HTML, 48–49
 (delete) element, 62
HTML elements for, 39–49
justification of, 92–93
page title text, 316
picture-with-text buttons, 508–511
preformatted, 43–44
rules for adapting to Web, 43
<small> element, 62
special characters, 63–65
structuring, 24–27
<sub> (subscript) element, 62
<sup> (superscript) element, 62
<textarea> element, 489
text ads, 421
text box controls, 489–490
text editors, 4–6, 12–13, 148
<u> (underline) element, 62
using descriptive link text, 319
wrapping around images.

See wrapping text (tutorial)

<textarea> (multiline text input)
element, 574

TextEdit (Mac), 9, 11
TextWrangler, 153
<th> (table header cell) element, 260,

575
third-party menus, 518–522
tiled backgrounds, 139–140
<time> (date or time) element

(HTML5), 581
timelines, Twitter, 361–362
TinyURL tool, 66
<title> (document title) element, 21,

575
toggling items, 484
Top-Down Stripy Curtain script,

494–497
top-level domains, 284–285
<tr> (table row) element, 57, 575
Traffic Sources Overview chart

(Google Analytics), 342–343
traffic virus, 351
transferring files

overview, 298–299
uploading in Dreamweaver, 303–307
uploading in Expression Web,

307–310
uploading with FTP programs,

301–303
uploading with Windows Explorer,

299–301
transparency, image, 126
tree models, 27
tutorials

converting raw text to HTML, 48–49
creating rollover buttons, 503–511
creating simple HTML file, 9–12
HTML document, building, 22–33
images, storing in subfolders, 120–122
images, wrapping text around,

127–138
linking pages in a site, 179–188
multiple column page layout, 239–251
style sheet inspection, 224–228
style sheets, attaching to web page,

76–81
Twitter for promoting websites,

358–364
type attribute, 52–53, 489

InDex600

TYPE
SELECTORS

type selectors
CSS rules, 76
formatting elements with, 208–210
overview, 84

U
<u> (underline) element, 62
 (unordered list) element, 25–26,

31, 53, 575
undefined variable checks, 464
underlining links, 193–194
Unicode encoding, 66–68
universal standard (HTML), 25
updating websites, 351–352
uploading files

in Dreamweaver, 303–307
from Expression Web, 307–310
with FTP programs, 301–303
with Windows Explorer, 299–301

uploading videos to YouTube, 543–
547

URLs (Uniform Resource Locators)
basics, 278–280
of blogs, 391
browser analysis of, 280–282
for community pages, 376
Facebook, 368–369, 370
for search results pages (AdSense),

433
relative/absolute, 177–179, 183, 184,

556
rules for writing, 184

UTF-8 encoding, 11, 67–68

v
validation tools, 34–36
values (CSS rules), 75
variables (JavaScript), 463–467
vector drawings, 122
video clips

basics, 529–531
configuring video window, 531–532
editing/converting, 533
fallbacks for older browsers, 535–541
Flash players, 536–541
preparing for Web, 532–535
scaling dimensions of, 534
uploading to YouTube. See YouTube
<video> element, 525, 527, 529
video manager (YouTube), 546

View Cart buttons, 453
viewing source code (web pages),

13–14
virtual private server (VPS) hosting,

290
visitors, return, 351–353
visitor tracking

Google Analytics
basics, 332–333
content overview, 343
dashboard, 336–337
geographic locating service, 341
Sessions Graph, 339
signing up for, 334–335
Traffic Sources Overview chart,

342–343
web traffic. See web traffic

(Google Analytics)
overview, 330–332

visual composer (Blogger), 395–396
Visual Studio Express for Web, 152

W
W3C validator, 35–36
watermarks, background, 140
Web

graphic design on, 70–71
vs. Internet, 4
preparing video clips for, 532–535

web applications, 264
web browsers. See browsers
web communities, 353–355
Web Developer extension, 239
web fonts (Google), 103–106
web graphics. See graphics
web hosting

Aplus.Net walkthrough, 292–295
assessing needs for, 288–290
avoiding free hosting, 297–298
bandwidth and, 291
becoming a web host, 292
browser analysis of URLs, 280–282
choosing web hosts, 290–292
domain names. See domain names

(URLs)
post sign-up results, 294–297
transferring files to websites.

See transferring files
URL basics, 278–280

InDex 601

WEBSITES
FOR FURTHER
INFORMATION

WebHostingTalk discussion board,
292

web servers, 277–278
WebM

codec, 531
video standard, 577–578

Web Monkey, 494
web page editors

advantages of, 148
Brackets. See Brackets
checking links in, 197–198
creating style sheets with, 173–174
Dreamweaver. See Dreamweaver
Expression Web. See Expression Web
“saving as” HTML failures, 150
shareware, 151
types of, 148–149

web pages
choosing effective page titles,

315–316
creating with Dreamweaver, 158–160
customizing shopping cart, 451–452
duplicating content on multiple.

See duplicating content on
multiple pages

editing with Dreamweaver, 154–157
laying out. See page layouts
linking. See linking web pages
opening multiple (Expression Web),

165–166
optimizing for mobile devices, 554
page descriptions (searching),

316–318
PageRank system (Google), 321
placing ads in, 427–429
practicing styling of, 221
refreshing, 13
rising in rankings, 324–327
showing YouTube videos in, 546–550
structure vs. formatting, 70–71
viewing source code of, 13–14
working with multiple

(Dreamweaver), 160–161
web-safe fonts, 97
web server logs, 331
web servers, 6–7, 277–278
websites

anatomy of, 181
design tips, 113
naming, 282–283

permanent online presence of, 328
promoting. See promoting websites
promoting Facebook Pages on, 370
sharing tweets on, 360–363
submitting to Google, 320–321
submitting to Open Directory Project

(ODP), 321–324
tips for flexible designs, 248
types of, xiii–xiv
universal availability of, 9
updating, 351–352

websites for downloading
audio editors, 526
audio loops, 529
backgrounds, 140
Brackets, 153
compression tools, 124
contact forms, 357–358
Dynamic Drive, 518
Expression Web, 151
feed readers, 385
Firefox, 8
Flash video players, 536
FTP programs, 301
Google Chrome, 7
Google Toolbar, 325
graphics programs, 128
Internet Explorer, 8
JavaScript libraries, 497
Like buttons (Facebook), 371
music, 526
Notepad++, 153
online scripts, 493–494
Opera, 8
photos from Flickr, 146
photos/pictures, 146
Safari, 8
Sublime Text, 153
TextWrangler, 153
video editing programs, 533
Web Developer extension, 239
web page editors, 151

websites for further information
Adobe Dreamweaver, 151
alpha blending, 127
Amazon Associates tools, 435
Bing search form, 320
Blogger template codes, 407
Brackets tutorial, 172
browser support of CSS/HTML5, 74

InDex602

WEB
TEMPLATES

building custom audio players, 528
color picker, 210
color usage, 90
content management systems, 388
CSS-Tricks site, 511
domain name searches, 286
editing video markup, 549
encoding email messages, 189
Facebook badges, 371
font references, 98
free web hosts, 298
Google AdSense, 417
Google AdWords, 349
Google Analytics, 334
Google Blogger, 389
Google+Community, 373
Google image search tool, 145
Google Places, 349
group blogs, 401
HTML5 specification, 579
HTML character entities, 582
HTML properties reference, 475
iHover library, 511
JavaScript events reference, 481
media queries, 250
online button-making tools, 503
online link checking, 198
Open Directory Project, 322
Open Site Explorer, 348
PageRank checkers, 325
promotion websites, 347
search engine optimization (SEO),

326
search engine robots, 327
Six Revisions article, 103
special characters reference, 65
style rules precedence, 219
SVG (Scalable Vector Graphics), 122
Twitter accounts, 358
Twitter search tool, 359
undefined variable checks, 464
W3C validator, 35
web hosting firms, 291–292
WordPress, 388
YouTube Help, 542

web templates
adding editable regions to, 270–272
basics, 267–269
creating, 269–270
creating pages with, 273–275
drawbacks of, 268–269
overview, 263

web traffic (Google Analytics)
Content overview, 343–344
Map Overlay, 340–341
overview, 338
Sessions graph, 339
Site Usage section, 339–340
Traffic Sources Overview chart,

342–343
white-space property (CSS), 95–96
width attribute, 531–532, 565–566
width property (videos), 576
Windows Explorer, uploading files

with, 299–301
Windows Movie Maker, 534
WordPress, 388, 554
wrapping text (tutorial)

adding border, 132–133
adding caption, 133–135
clearing float, 135–138
floating image, 128–132
overview, 127

write() function (JavaScript), 465
WYSIWYG editors, 149

Y
Yahoo search engine, 320
YouTube

overview, 525, 541–542
preparing videos for, 542
showing videos in web pages,

546–550
uploading videos to, 543–547

Z
Zazzle, 442
z-index (layered elements), 255

Don’t miss a thing!
Sign up for the free Missing
Manual email announcement
list at missingmanuals.com.
We’ll let you know when we
release new titles, make
free sample chapters available,
and update the features and
articles on the Missing Manual
website.

Creating a Website

TH

E MISSING CD

There’s no

CD with this book;

you just saved $5.00.

Instead, every single Web address, practice file, and

piece of downloadable software mentioned in this

book is available at missingmanuals.com

(click the Missing CD icon).

There you’ll find a tidy list of links,

organized by chapter.

http://missingmanuals.com
http://missingmanuals.com

	The Missing Credits
	Introduction
	The Glory of Building a Website from Scratch
	About This Book
	About the Online Resources
	Safari® Books Online

		Part One:	Building Basic
Web Pages
		Chapter 1:	Creating Your First Page
	HTML: The Language of the Web
	Tutorial: Creating an HTML File
	Seeing the HTML of a Live Web Page
	A Closer Look at HTML Tags
	Understanding HTML Documents
	Tutorial: Building a Complete HTML Document
	Checking Your Pages for Errors

		Chapter 2:	Becoming Fluent in HTML
	Types of Elements
	HTML Elements for Basic Text
	Tutorial: Converting Raw Text to HTML
	HTML Elements for Lists
	HTML Elements for Tables
	Inline Formatting

		Chapter 3:	Building a Style Sheet
	Graphic Design on the Web
	Style Sheet Basics
	Tutorial: Attaching a Style Sheet to a Page
	When Styles Overlap
	Class Selectors
	Colors
	Text Alignment and Spacing
	Basic Fonts
	Web Fonts with Google
	Borders

		Chapter 4:	Adding Graphics
	Introducing the Element
	Tutorial: Storing Images in a Subfolder
	File Formats for Web Graphics
	Tutorial: Wrapping Text Around an Image
	Background Images
	Finding Free Art

		Chapter 5:	Working with a Web Editor
	The Benefits of a Web Editor
	Choosing Your Web Editor
	Getting Started with Dreamweaver
	Setting Up Shop with Expression Web
	Trying Out Brackets

		Part Two:	From Web Page
to Website
		Chapter 6:	Linking Pages
	Understanding the Anchor
	Tutorial: Linking the Pages in a Site
	More Tricks with Links
	Links that Lead to Bookmarks
	When Good Links Go Bad

		Chapter 7:	Designing Better Style Sheets
	Planning a Style Sheet
	Building a Complete Style Sheet
	Improving Your Style Sheet
	Tutorial: Becoming a Style Detective

		Chapter 8:	Page Layout
	Understanding Style-Based Layout
	Choosing Your Layout
	Tutorial: Creating a Layout with Multiple Columns
	A Few More Layout Techniques
	Putting the Same Content on Multiple Pages

		Chapter 9:	Getting Your Site Online
	How Web Hosting Works
	Domain Names
	Getting Web Space
	Transferring Files to Your Site

		Part Three:	Connecting with
Your Audience
		Chapter 10:	Introducing Your Site to the World
	Your Website Promotion Plan
	Making Your Site Search-Engine Friendly
	Registering with Search Engines
	Tracking Visitors

		Chapter 11:	Website Promotion
	Spreading the Word
	Transforming a Site into a Community
	Email Newsletters
	Twitter
	Facebook
	Groups

		Chapter 12:	Adding a Blog
	Understanding Blogs
	Getting Started with Blogger
	Blog Management
	Reviewing Comments

		Chapter 13:	Making Money with Your Site
	Money-Making the Web Way
	Google AdSense
	Amazon Associates
	PayPal Merchant Tools

		Part Four:	Interactivity and
Multimedia
		Chapter 14:	JavaScript: Adding Interactivity
	Understanding JavaScript
	JavaScript 101
	Dynamic HTML
	Scripts on the Web

		Chapter 15:	Dynamic Buttons and Menus
	Fancy Buttons
	Choosing Your Approach
	Tutorial: Creating a Rollover Button
	Fancy Menus

		Chapter 16:	Audio and Video
	Understanding Multimedia
	Playing Audio Files
	Showing Video Clips
	Fallbacks for Old Browsers
	Uploading Videos to YouTube

		Part Five:	Appendixes
		Appendix A:	Where to Go From Here
		Appendix B:	HTML Quick Reference
	HTML Elements
	HTML5 Semantic Elements
	HTML Character Entities

	Index

