
6/25/2018 Writing your first Django app, part 1 | Django documentation | Django

https://docs.djangoproject.com/en/2.0/intro/tutorial01/ 1/8

Documentation

Writing your �rst Django app, part 1
Let’s learn by example.

Throughout this tutorial, we’ll walk you through the creation of a basic poll application.

It’ll consist of two parts:

A public site that lets people view polls and vote in them.

An admin site that lets you add, change, and delete polls.

We’ll assume you have Django installed already. You can tell Django is installed and which version by running the following command in a shell prompt (indicated by the $ pre�x):

$ python -m django --version

If Django is installed, you should see the version of your installation. If it isn’t, you’ll get an error telling “No module named django”.

This tutorial is written for Django 2.0, which supports Python 3.4 and later. If the Django version doesn’t match, you can refer to the tutorial for your version of Django by using the version switcher at the bottom right corner of this page, or update Django
to the newest version. If you’re using an older version of Python, check What Python version can I use with Django? to �nd a compatible version of Django.

See How to install Django for advice on how to remove older versions of Django and install a newer one.

Creating a project
If this is your �rst time using Django, you’ll have to take care of some initial setup. Namely, you’ll need to auto-generate some code that establishes a Django project – a collection of settings for an instance of Django, including database con�guration,
Django-speci�c options and application-speci�c settings.

From the command line, cd into a directory where you’d like to store your code, then run the following command:

$ django-admin startproject mysite

Django

Where to get help:

If you’re having trouble going through this tutorial, please post a message to django-users or drop by #django on irc.freenode.net to chat with other Django users who might be able to help.

Language: en

Documentation version: 2.0

https://docs.djangoproject.com/en/2.0/
https://docs.djangoproject.com/en/2.0/intro/install/
https://docs.djangoproject.com/en/2.0/faq/install/#faq-python-version-support
https://docs.djangoproject.com/en/2.0/topics/install/
https://docs.djangoproject.com/en/2.0/glossary/#term-project
https://www.djangoproject.com/
https://docs.djangoproject.com/en/2.0/internals/mailing-lists/#django-users-mailing-list
irc://irc.freenode.net/django

6/25/2018 Writing your first Django app, part 1 | Django documentation | Django

https://docs.djangoproject.com/en/2.0/intro/tutorial01/ 2/8

This will create a mysite directory in your current directory. If it didn’t work, see Problems running django-admin.

Let’s look at what startproject created:

mysite/
 manage.py
 mysite/
 __init__.py
 settings.py
 urls.py
 wsgi.py

These �les are:

The outer mysite/ root directory is just a container for your project. Its name doesn’t matter to Django; you can rename it to anything you like.

manage.py: A command-line utility that lets you interact with this Django project in various ways. You can read all the details about manage.py in django-admin and manage.py.

The inner mysite/ directory is the actual Python package for your project. Its name is the Python package name you’ll need to use to import anything inside it (e.g. mysite.urls).

mysite/__init__.py: An empty �le that tells Python that this directory should be considered a Python package. If you’re a Python beginner, read more about packages in the o�cial Python docs.

mysite/settings.py: Settings/con�guration for this Django project. Django settings will tell you all about how settings work.

mysite/urls.py: The URL declarations for this Django project; a “table of contents” of your Django-powered site. You can read more about URLs in URL dispatcher.

mysite/wsgi.py: An entry-point for WSGI-compatible web servers to serve your project. See How to deploy with WSGI for more details.

The development server
Let’s verify your Django project works. Change into the outer mysite directory, if you haven’t already, and run the following commands:

Note

You’ll need to avoid naming projects after built-in Python or Django components. In particular, this means you should avoid using names like django (which will con�ict with Django itself) or test (which con�icts with a built-in
Python package).

Where should this code live?

If your background is in plain old PHP (with no use of modern frameworks), you’re probably used to putting code under the Web server’s document root (in a place such as /var/www). With Django, you don’t do that. It’s not a good
idea to put any of this Python code within your Web server’s document root, because it risks the possibility that people may be able to view your code over the Web. That’s not good for security.

Put your code in some directory outside of the document root, such as /home/mycode.

Language: en

Documentation version: 2.0

https://docs.djangoproject.com/en/2.0/faq/troubleshooting/#troubleshooting-django-admin
https://docs.djangoproject.com/en/2.0/ref/django-admin/#django-admin-startproject
https://docs.djangoproject.com/en/2.0/ref/django-admin/
https://docs.python.org/3/tutorial/modules.html#tut-packages
https://docs.djangoproject.com/en/2.0/topics/settings/
https://docs.djangoproject.com/en/2.0/topics/http/urls/
https://docs.djangoproject.com/en/2.0/howto/deployment/wsgi/

6/25/2018 Writing your first Django app, part 1 | Django documentation | Django

https://docs.djangoproject.com/en/2.0/intro/tutorial01/ 3/8

$ python manage.py runserver

You’ll see the following output on the command line:

Performing system checks...

System check identified no issues (0 silenced).

You have unapplied migrations; your app may not work properly until they are applied.
Run 'python manage.py migrate' to apply them.

June 21, 2018 - 15:50:53
Django version 2.0, using settings 'mysite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

You’ve started the Django development server, a lightweight Web server written purely in Python. We’ve included this with Django so you can develop things rapidly, without having to deal with con�guring a production server – such as Apache – until
you’re ready for production.

Now’s a good time to note: don’t use this server in anything resembling a production environment. It’s intended only for use while developing. (We’re in the business of making Web frameworks, not Web servers.)

Now that the server’s running, visit http://127.0.0.1:8000/ with your Web browser. You’ll see a “Congratulations!” page, with a rocket taking off. It worked!

Note

Ignore the warning about unapplied database migrations for now; we’ll deal with the database shortly.

Changing the port

By default, the runserver command starts the development server on the internal IP at port 8000.

If you want to change the server’s port, pass it as a command-line argument. For instance, this command starts the server on port 8080:

$ python manage.py runserver 8080

If you want to change the server’s IP, pass it along with the port. For example, to listen on all available public IPs (which is useful if you are running Vagrant or want to show off your work on other computers on the network), use:

$ python manage.py runserver 0:8000

0 is a shortcut for 0.0.0.0. Full docs for the development server can be found in the runserver reference.

Language: en

Documentation version: 2.0

http://127.0.0.1:8000/
http://127.0.0.1:8000/
https://docs.djangoproject.com/en/2.0/ref/django-admin/#django-admin-runserver
https://docs.djangoproject.com/en/2.0/ref/django-admin/#django-admin-runserver

6/25/2018 Writing your first Django app, part 1 | Django documentation | Django

https://docs.djangoproject.com/en/2.0/intro/tutorial01/ 4/8

Creating the Polls app
Now that your environment – a “project” – is set up, you’re set to start doing work.

Each application you write in Django consists of a Python package that follows a certain convention. Django comes with a utility that automatically generates the basic directory structure of an app, so you can focus on writing code rather than creating
directories.

Your apps can live anywhere on your Python path. In this tutorial, we’ll create our poll app right next to your manage.py �le so that it can be imported as its own top-level module, rather than a submodule of mysite.

To create your app, make sure you’re in the same directory as manage.py and type this command:

$ python manage.py startapp polls

That’ll create a directory polls, which is laid out like this:

polls/
 __init__.py
 admin.py
 apps.py
 migrations/
 __init__.py
 models.py
 tests.py
 views.py

This directory structure will house the poll application.

Write your �rst view

Automatic reloading of runserver

The development server automatically reloads Python code for each request as needed. You don’t need to restart the server for code changes to take effect. However, some actions like adding �les don’t trigger a restart, so you’ll
have to restart the server in these cases.

Projects vs. apps

What’s the difference between a project and an app? An app is a Web application that does something – e.g., a Weblog system, a database of public records or a simple poll app. A project is a collection of con�guration and apps
for a particular website. A project can contain multiple apps. An app can be in multiple projects.

Language: en

Documentation version: 2.0

https://docs.python.org/3/tutorial/modules.html#tut-searchpath
https://docs.djangoproject.com/en/2.0/ref/django-admin/#django-admin-runserver

6/25/2018 Writing your first Django app, part 1 | Django documentation | Django

https://docs.djangoproject.com/en/2.0/intro/tutorial01/ 5/8

Let’s write the �rst view. Open the �le polls/views.py and put the following Python code in it:

polls/views.py

from django.http import HttpResponse

def index(request):
 return HttpResponse("Hello, world. You're at the polls index.")

This is the simplest view possible in Django. To call the view, we need to map it to a URL - and for this we need a URLconf.

To create a URLconf in the polls directory, create a �le called urls.py. Your app directory should now look like:

polls/
 __init__.py
 admin.py
 apps.py
 migrations/
 __init__.py
 models.py
 tests.py
 urls.py
 views.py

In the polls/urls.py �le include the following code:

polls/urls.py

from django.urls import path

from . import views

urlpatterns = [
 path('', views.index, name='index'),
]

The next step is to point the root URLconf at the polls.urls module. In mysite/urls.py, add an import for django.urls.include and insert an include() in the urlpatterns list, so you have:

mysite/urls.py

from django.contrib import admin
from django.urls import include, path

urlpatterns = [
 path('polls/', include('polls.urls')),
 path('admin/', admin.site.urls),
]

Language: en

Documentation version: 2.0

https://docs.djangoproject.com/en/2.0/ref/urls/#django.urls.include

6/25/2018 Writing your first Django app, part 1 | Django documentation | Django

https://docs.djangoproject.com/en/2.0/intro/tutorial01/ 6/8

The include() function allows referencing other URLconfs. Whenever Django encounters include(), it chops off whatever part of the URL matched up to that point and sends the remaining string to the included URLconf for further processing.

The idea behind include() is to make it easy to plug-and-play URLs. Since polls are in their own URLconf (polls/urls.py), they can be placed under “/polls/”, or under “/fun_polls/”, or under “/content/polls/”, or any other path root, and the app will
still work.

You have now wired an index view into the URLconf. Lets verify it’s working, run the following command:

$ python manage.py runserver

Go to http://localhost:8000/polls/ in your browser, and you should see the text “Hello, world. You’re at the polls index.”, which you de�ned in the index view.

The path() function is passed four arguments, two required: route and view, and two optional: kwargs, and name. At this point, it’s worth reviewing what these arguments are for.

path() argument: route
route is a string that contains a URL pattern. When processing a request, Django starts at the �rst pattern in urlpatterns and makes its way down the list, comparing the requested URL against each pattern until it �nds one that matches.

Patterns don’t search GET and POST parameters, or the domain name. For example, in a request to https://www.example.com/myapp/, the URLconf will look for myapp/. In a request to https://www.example.com/myapp/?page=3, the
URLconf will also look for myapp/.

path() argument: view

When Django �nds a matching pattern, it calls the speci�ed view function with an HttpRequest object as the �rst argument and any “captured” values from the route as keyword arguments. We’ll give an example of this in a bit.

path() argument: kwargs

Arbitrary keyword arguments can be passed in a dictionary to the target view. We aren’t going to use this feature of Django in the tutorial.

path() argument: name

Naming your URL lets you refer to it unambiguously from elsewhere in Django, especially from within templates. This powerful feature allows you to make global changes to the URL patterns of your project while only touching a single �le.

When you’re comfortable with the basic request and response �ow, read part 2 of this tutorial to start working with the database.

When to use include()

You should always use include() when you include other URL patterns. admin.site.urls is the only exception to this.

Language: en

Documentation version: 2.0

https://docs.djangoproject.com/en/2.0/ref/urls/#django.urls.include
https://docs.djangoproject.com/en/2.0/ref/urls/#django.urls.include
https://docs.djangoproject.com/en/2.0/ref/urls/#django.urls.include
http://localhost:8000/polls/
https://docs.djangoproject.com/en/2.0/ref/urls/#django.urls.path
https://docs.djangoproject.com/en/2.0/ref/urls/#django.urls.path
https://docs.djangoproject.com/en/2.0/ref/urls/#django.urls.path
https://docs.djangoproject.com/en/2.0/ref/request-response/#django.http.HttpRequest
https://docs.djangoproject.com/en/2.0/ref/urls/#django.urls.path
https://docs.djangoproject.com/en/2.0/ref/urls/#django.urls.path
https://docs.djangoproject.com/en/2.0/intro/tutorial02/
https://docs.djangoproject.com/en/2.0/ref/urls/#django.urls.include

6/25/2018 Writing your first Django app, part 1 | Django documentation | Django

https://docs.djangoproject.com/en/2.0/intro/tutorial01/ 7/8

 Quick install guide Writing your �rst Django app, part 2

Learn More

About Django

Getting Started with Django

Team Organization

Django Software Foundation

Code of Conduct

Diversity Statement

Get Involved

Join a Group

Contribute to Django

Submit a Bug

Report a Security Issue

Follow Us

GitHub

Twitter

News RSS

Django Users Mailing List

Language: en

Documentation version: 2.0

https://docs.djangoproject.com/en/2.0/intro/install/
https://docs.djangoproject.com/en/2.0/intro/tutorial02/
https://www.djangoproject.com/start/overview/
https://www.djangoproject.com/start/
https://docs.djangoproject.com/en/dev/internals/organization/
https://www.djangoproject.com/foundation/
https://www.djangoproject.com/conduct/
https://www.djangoproject.com/diversity/
https://www.djangoproject.com/community/
https://docs.djangoproject.com/en/dev/internals/contributing/
https://docs.djangoproject.com/en/dev/internals/contributing/bugs-and-features/
https://docs.djangoproject.com/en/dev/internals/security/#reporting-security-issues
https://github.com/django
https://twitter.com/djangoproject
https://www.djangoproject.com/rss/weblog/
https://groups.google.com/forum/#!forum/django-users

6/25/2018 Writing your first Django app, part 1 | Django documentation | Django

https://docs.djangoproject.com/en/2.0/intro/tutorial01/ 8/8

© 2005-2018 Django Software Foundation and individual contributors. Django is a registered trademark of the Django Software Foundation.

Language: en

Documentation version: 2.0

https://www.djangoproject.com/foundation/
https://www.djangoproject.com/trademarks/

