10/24/2019 Getting Started with Headless Chrome | Web | Google Developers

your peers for a CDS Extended event at a hosted location nearby. To learn more, check out the Chrome Dev

Summit 2019 website (https://developer.chrome.com/devsummit/).

Getting Started with Headless Chrome

By Eric Bidelman (/web/resources/contributors/ericbidelman)

Engineer @ Google working on web tooling: Headless Chrome, Puppeteer, Lighthouse

TL,DR

Headless Chrome (https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md) is
shipping in Chrome 59. It's a way to run the Chrome browser in a headless environment.
Essentially, running Chrome without chrome! It brings all modern web platform features
provided by Chromium and the Blink rendering engine to the command line.

Why is that useful?

A headless browser is a great tool for automated testing and server environments where you
don't need a visible Ul shell. For example, you may want to run some tests against a real web
page, create a PDF of it, or just inspect how the browser renders an URL.

deadless mode has been available on Mac and Linux since Chrome 59. Windows support

://bugs.chromium.org/p/chromium/issues/detail?id=686608) came in Chrome 60.

Starting Headless (CLI)

The easiest way to get started with headless mode is to open the Chrome binary from the
command line. If you've got Chrome 59+ installed, start Chrome with the --headless flag:

e \
ieadless \ # Runs Chrome in headless mode.

https://developers.google.com/web/updates/2017/04/headless-chrome 1/15

https://developer.chrome.com/devsummit/
https://developers.google.com/web/resources/contributors/ericbidelman
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md
https://bugs.chromium.org/p/chromium/issues/detail?id=686608

10/24/2019 Getting Started with Headless Chrome | Web | Google Developers

lisable-gpu \ # Temporarily needed if running on Windows.
‘emote-debugging-port=9222 \
ps://www.chromestatus.com # URL to open. Defaults to about:blank.

Right now, you'll also want to include the --disable-gpu flag if you're running on Windows. See crbug.com/7
://bugs.chromium.org/p/chromium/issues/detail?id=737678).

chrome should point to your installation of Chrome. The exact location will vary from platform
to platform. Since I'm on Mac, | created convenient aliases for each version of Chrome that |
have installed.

If you're on the stable channel of Chrome and cannot get the Beta, | recommend using chrome-
canary:

i chrome="/Applications/Google\ Chrome.app/Contents/Mac0S/Google\ Chrome"
i chrome-canary="/Applications/Google\ Chrome\ Canary.app/Contents/Mac0S/Google\
i chromium="/Applications/Chromium.app/Contents/Mac0S/Chromium"

Download Chrome Canary here (https://www.google.com/chrome/browser/canary.html).

Command line features

In some cases, you may not need to programmatically script (#node) Headless Chrome. There
are some useful command line flags

(https://cs.chromium.org/chromium/src/headless/app/headless_shell_switches.cc) to perform
common tasks.

Printing the DOM

The --dump-dom flag prints document.body.innerHTML to stdout:

le --headless --disable-gpu --dump-dom https://www.chromestatus.com/

https://developers.google.com/web/updates/2017/04/headless-chrome 2/15

https://bugs.chromium.org/p/chromium/issues/detail?id=737678
https://www.google.com/chrome/browser/canary.html
https://cs.chromium.org/chromium/src/headless/app/headless_shell_switches.cc

10/24/2019 Getting Started with Headless Chrome | Web | Google Developers

Create a PDF

The --print-to-pdf flag creates a PDF of the page:

le --headless --disable-gpu --print-to-pdf https://www.chromestatus.com/

Taking screenshots

To capture a screenshot of a page, use the --screenshot flag:

le --headless --disable-gpu --screenshot https://www.chromestatus.com/

e of a standard letterhead.
le --headless --disable-gpu --screenshot --window-size=12860,1696 https://www.chrc

‘us 5x
le --headless --disable-gpu --screenshot --window-size=412,732 https://www.chrome

Running with --screenshot will produce a file named screenshot.png in the current working
directory. If you're looking for full page screenshots, things are a tad more involved. There's a
great blog post from David Schnurr that has you covered. Check out Using headless Chrome
as an automated screenshot tool
(https://medium.com/@dschnr/using-headless-chrome-as-an-automated-screenshot-tool-4b07dffba79a).

REPL mode (read-eval-print loop)

The --repl flag runs Headless in a mode where you can evaluate JS expressions in the
browser, right from the command line:

‘ome --headless --disable-gpu --repl --crash-dumps-dir=./tmp https://www.chromest
1/112805.245285:INFO:headless_shell.cc(278)] Type a Javascript expression to eval
.ocation.href

wult":{"type":"string", "value":"https://www.chromestatus.com/features"}}

juit

https://developers.google.com/web/updates/2017/04/headless-chrome 3/15

https://medium.com/@dschnr/using-headless-chrome-as-an-automated-screenshot-tool-4b07dffba79a

10/24/2019 Getting Started with Headless Chrome | Web | Google Developers

the addition of the --crash-dumps-dir flag when using repl mode.

Debugging Chrome without a browser UI?

When you run Chrome with --remote-debugging-port=9222, it starts an instance with the
DevTools protocol (https://chromedevtools.github.io/devtools-protocol/) enabled. The protocol is
used to communicate with Chrome and drive the headless browser instance. It's also what
tools like Sublime, VS Code, and Node use for remote debugging an application. #synergy

Since you don't have browser Ul to see the page, navigate to http://localhost:9222 in
another browser to check that everything is working. You'll see a list of inspectable pages
where you can click through and see what Headless is rendering:

& C' | https://www.chromestatus.com/features & d Elements Console Sources » 2
Q top v Fittet | Info v o1

=~ features_loaded 114.12500000000006 ms features:275
AE VERSIONS “OMm
CHOUWE VESIOH (/hl ome features_unveil features—imports.vulcanize.js:4

o & oy Dlattorr 200.75 ms
e e cavsonmnt [..\‘d‘ "(,)f m eature ample Jsage Metr The resource https://www.chromestatus.c features:1
Proposed Status om/omaha_data was preloaded using link preload but
RS e not used within a few seconds from the window's
u Jpport & load event. Please make sure it wasn't preloaded

J In development
for nothing.
Sty The resource https://www.chromestatus.c features:1

59 dev - - S om/static/elements/features-imports.vulcanize.js
£k Features: 883 @ was preloaded using link preload but not used

B beta within a few seconds from the window's load event.
Please make sure it wasn't preloaded for nothing.

IN DEVELOPMENT

<dialog>: add DialogShowParams to ¢
show()/showModal() [c
ARIA 1.1 v 5

Accessible Object Model 8

DevTools remote debugging Ul

From here, you can use the familiar DevTools features to inspect, debug, and tweak the page
as you normally would. If you're using Headless programmatically, this page is also a powerful
debugging tool for seeing all the raw DevTools protocol commands going across the wire,
communicating with the browser.

https://developers.google.com/web/updates/2017/04/headless-chrome 4/15

https://chromedevtools.github.io/devtools-protocol/

10/24/2019 Getting Started with Headless Chrome | Web | Google Developers

Using programmatically (Node)

Puppeteer

Puppeteer (/web/tools/puppeteer/) is a Node library developed by the Chrome team. It provides a
high-level API to control headless (or full) Chrome. It's similar to other automated testing
libraries like Phantom and NightmareJsS, but it only works with the latest versions of Chrome.

Among other things, Puppeteer can be used to easily take screenshots, create PDFs, navigate
pages, and fetch information about those pages. | recommend the library if you want to quickly
automate browser testing. It hides away the complexities of the DevTools protocol and takes
care of redundant tasks like launching a debug instance of Chrome.

Install it:
. --save puppeteer
Example - print the user agent

. puppeteer = require('puppeteer');

c() => {
iIst browser = await puppeteer.launch();
1sole.log(await browser.version());

1it browser.close();

Example - taking a screenshot of the page

. puppeteer = require('puppeteer');

c() = {
. browser = await puppeteer.launch();

. page = await browser.newPage();

. page.goto('https://www.chromestatus.com', {waitUntil: 'networkidle2'});
. page.pdf({path: 'page.pdf', format: 'A4'});

https://developers.google.com/web/updates/2017/04/headless-chrome 5/15

https://developers.google.com/web/tools/puppeteer/

10/24/2019 Getting Started with Headless Chrome | Web | Google Developers

. browser.close();

Check out Puppeteer's documentation
(https://github.com/GoogleChrome/puppeteer/blob/master/docs/api.md) to learn more about the full
API.

The CRI library

chrome-remote-interface (https://www.npmjs.com/package/chrome-remote-interface) is a lower-level
library than Puppeteer's API. | recommend it if you want to be close to the metal and use the
DevTools protocol (https://chromedevtools.github.io/devtools-protocol/) directly.

Launching Chrome

chrome-remote-interface doesn't launch Chrome for you, so you'll have to take care of that
yourself.

In the CLI section, we started Chrome manually (#cli) using --headless --remote-

debugging-port=9222. However, to fully automate tests, you'll probably want to spawn
Chrome from your application.

One way is to use child_process:

. execFile = require('child_process').execFile;
:ion launchHeadlessChrome(url, callback) {
Assuming MacOSx.

iIst CHROME = '/Applications/Google\ Chrome.app/Contents/Mac0S/Google\ Chrome';
:cFile(CHROME, ['--headless', '--disable-gpu', '--remote-debugging-port=9222', ur

thHeadlessChrome('https://www.chromestatus.com', (err, stdout, stderr) => {

But things get tricky if you want a portable solution that works across multiple platforms. Just
look at that hard-coded path to Chrome :(

https://developers.google.com/web/updates/2017/04/headless-chrome 6/15

https://github.com/GoogleChrome/puppeteer/blob/master/docs/api.md
https://www.npmjs.com/package/chrome-remote-interface
https://chromedevtools.github.io/devtools-protocol/

10/24/2019 Getting Started with Headless Chrome | Web | Google Developers

Using ChromeLauncher

Lighthouse (/web/tools/lighthouse/) is @ marvelous tool for testing the quality of your web apps.
A robust module for launching Chrome was developed within Lighthouse and is now extracted
for standalone use. The chrome-launcher NPM module
(https://www.npmjs.com/package/chrome-launcher) will find where Chrome is installed, set up a
debug instance, launch the browser, and kill it when your program is done. Best part is that it
works cross-platform thanks to Node!

By default, chrome-launcher will try to launch Chrome Canary (if it's installed), but you can
change that to manually select which Chrome to use. To use it, first install from npm:

. --save chrome-launcher

Example - using chrome-launcher to launch Headless

. chromeLauncher = require('chrome-launcher');

itional: set logging level of launcher to see its output.
iIstall it using: npm i --save lighthouse-logger

nst log = require('lighthouse-logger');
)g.setLevel('info');

iunches a debugging instance of Chrome.

varam {boolean=} headless True (default) launches Chrome in headless mode.
False launches a full version of Chrome.

‘eturn {Promise<ChromeLauncher>}

:ion launchChrome(headless=true) {
urn chromelLauncher.launch({
'/ port: 9222, // Uncomment to force a specific port of your choice.
thromeFlags: |
'--window-size=412,732",
'--disable-gpu’,
headless ? '--headless' : "'

https://developers.google.com/web/updates/2017/04/headless-chrome 7/15

https://developers.google.com/web/tools/lighthouse/
https://www.npmjs.com/package/chrome-launcher

10/24/2019 Getting Started with Headless Chrome | Web | Google Developers

thChrome() .then(chrome => {
1sole.log(Chrome debuggable on port: ${chrome.port}’);

chrome.kill();

Running this script doesn't do much, but you should see an instance of Chrome fire up in the
task manager that loaded about :blank. Remember, there won't be any browser Ul. We're
headless.

To control the browser, we need the DevTools protocol!

Retrieving information about the page

1g: The DevTools protocol can do a ton of interesting stuff, but it can be a bit daunting at first. | recommend

ing a bit of time browsing the DevTools Protocol Viewer (https://chromedevtools.github.io/devtools-protocol/

hen, move on to the chrome-remote-interface APl docs to see how it wraps the raw protocol.

Let's install the library:

. --save chrome-remote-interface

Examples

Example - print the user agent

. CDP = require('chrome-remote-interface');

:hChrome() .then(async chrome => {
Ist version = await CDP.Version({port: chrome.port});
isole.log(version['User-Agent']);

https://developers.google.com/web/updates/2017/04/headless-chrome 8/15

https://chromedevtools.github.io/devtools-protocol/

10/24/2019 Getting Started with Headless Chrome | Web | Google Developers

Results in something like: HeadlessChrome/660.0.3082.0

Example - check if the site has a web app manifest (/web/fundamentals/web-app-manifest)

. CDP = require('chrome-remote-interface');

ic function() {

. chrome = await launchChrome();
. protocol = await CDP({port: chrome.port});

‘tract the DevTools protocol domains we need and enable them.
'e API docs: https://chromedevtools.github.io/devtools-protocol/

. {Page} = protocol;
. Page.enable();

navigate({url: 'https://www.chromestatus.com/'});

1it for window.onload before doing stuff.

loadEventFired(async () => {
ist manifest = await Page.getAppManifest();

(manifest.url) {

:onsole.log('Manifest: ' + manifest.url);
:onsole.log(manifest.data);
1se

:onsole.log('Site has no app manifest');

1tocol.close();
‘ome.kill(); // Kill Chrome.

Example - extract the <title> of the page using DOM APIs.

. CDP = require('chrome-remote-interface');

https://developers.google.com/web/updates/2017/04/headless-chrome

9/15

https://developers.google.com/web/fundamentals/web-app-manifest

10/24/2019 Getting Started with Headless Chrome | Web | Google Developers

ic function() {

. chrome = await launchChrome();
. protocol = await CDP({port: chrome.port});

‘tract the DevTools protocol domains we need and enable them.

ie API docs: https://chromedevtools.github.io/devtools-protocol/
. {Page, Runtime} = protocol;

. Promise.all([Page.enable(), Runtime.enable()]);

navigate({url: 'https://www.chromestatus.com/'});

1it for window.onload before doing stuff.
loadEventFired(async () => {

iIst js = "document.querySelector('title').textContent";
Evaluate the JS expression in the page.

Ist result = await Runtime.evaluate({expression: js});

1isole.log('Title of page: ' + result.result.value);

1tocol.close();
‘ome.kill(); // Kill Chrome.

Using Selenium, WebDriver, and ChromeDriver

Right now, Selenium opens a full instance of Chrome. In other words, it's an automated
solution but not completely headless. However, Selenium can be configured to run headless
Chrome with a little work. | recommend Running Selenium with Headless Chrome
(https://intoli.com/blog/running-selenium-with-headless-chrome/) if you want the full instructions on
how to set things up yourself, but I've dropped in some examples below to get you started.

Using ChromeDriver

ChromeDriver (https://sites.google.com/a/chromium.org/chromedriver/) 2.32 uses Chrome 61 and
works well with headless Chrome.

https://developers.google.com/web/updates/2017/04/headless-chrome 10/15

https://intoli.com/blog/running-selenium-with-headless-chrome/
https://sites.google.com/a/chromium.org/chromedriver/

10/24/2019 Getting Started with Headless Chrome | Web | Google Developers
Install:

. --save-dev selenium-webdriver chromedriver

Example:

. fs = require('fs');
. webdriver = require('selenium-webdriver');
. chromedriver = require('chromedriver');

. chromeCapabilities = webdriver.Capabilities.chrome();
ieCapabilities.set('chromeOptions', {args: ['--headless']});

. driver = new webdriver.Builder()

wrBrowser ('chrome')

thCapabilities(chromeCapabilities)

1ild();

ivigate to google.com, enter a search.
'r.get('https://www.google.com/");

'r.findElement({name: 'q'}).sendKeys('webdriver');
'r.findElement({name: 'btnG'}).click();
'r.wait(webdriver.until.titleIs('webdriver - Google Search'), 1000);
lke screenshot of results page. Save to disk.

'r . takeScreenshot().then(base64png => {
writeFileSync('screenshot.png', new Buffer(base64png, 'base64'));

r.quit();

Using WebDriverlO

WebDriverlO (http://webdriver.io/) is a higher level API on top of Selenium WebDriver.

Install:

. --save-dev webdriverio chromedriver

https://developers.google.com/web/updates/2017/04/headless-chrome 11/15

http://webdriver.io/

10/24/2019 Getting Started with Headless Chrome | Web | Google Developers

Example: filter CSS features on chromestatus.com

. webdriverio = require('webdriverio');
. chromedriver = require('chromedriver');

. PORT = 9515;

ledriver.start([
url-base=wd/hub’,
port=S{PORT} ",
‘verbose'

c () =

. opts = {

t: PORT,

iiredCapabilities:

irowserName: '‘chrome’,

thromeOptions: {args: ['--headless']}

. browser = webdriverio.remote(opts).init();
. browser.url('https://www.chromestatus.com/features');

. title = await browser.getTitle();
le.log(Title: ${title}’);

. browser.waitForText('.num-features', 3000);
wumFeatures = await browser.getText('.num-features');
1le.log(Chrome has ${numFeatures} total features');

. browser.setValue('input[type="search"]', 'CSS');
le.log('Filtering features...');

. browser.pause(1000);

ratures = await browser.getText('.num-features');
1le.log(Chrome has S{numFeatures} CSS features’);

. buffer = await browser.saveScreenshot('screenshot.png');
1le.log('Saved screenshot...');

https://developers.google.com/web/updates/2017/04/headless-chrome 12/15

10/24/2019 Getting Started with Headless Chrome | Web | Google Developers

ledriver.stop();
ier.end();

Further resources

Here are some useful resources to get you started:

Docs

e DevTools Protocol Viewer (https://chromedevtools.github.io/devtools-protocol/) - APl reference
docs

Tools

e chrome-remote-interface (https://www.npmjs.com/package/chrome-remote-interface) - node
module that wraps the DevTools protocol

e Lighthouse (https://github.com/GoogleChrome/lighthouse) - automated tool for testing web
app quality; makes heavy use of the protocol

e chrome-launcher (https://github.com/GoogleChrome/lighthouse/tree/master/chrome-launcher) -
node module for launching Chrome, ready for automation

Demos

e "The Headless Web (https://paul.kinlan.me/the-headless-web/)" - Paul Kinlan's great blog post
on using Headless with api.ai.

FAQ

Do I need the --disable-gpu flag?

Only on Windows. Other platforms no longer require it. The --disable-gpu flag is a temporary
work around for a few bugs. You won't need this flag in future versions of Chrome. See

https://developers.google.com/web/updates/2017/04/headless-chrome 13/15

https://chromedevtools.github.io/devtools-protocol/
https://www.npmjs.com/package/chrome-remote-interface
https://github.com/GoogleChrome/lighthouse
https://github.com/GoogleChrome/lighthouse/tree/master/chrome-launcher
https://paul.kinlan.me/the-headless-web/

10/24/2019 Getting Started with Headless Chrome | Web | Google Developers

crbug.com/737678 (https://bugs.chromium.org/p/chromium/issues/detail?id=737678) for more
information.

So | still need Xvfb?

No. Headless Chrome doesn't use a window so a display server like Xvfb is no longer needed.
You can happily run your automated tests without it.

What is Xvfb? Xvfb is an in-memory display server for Unix-like systems that enables you to run
graphical applications (like Chrome) without an attached physical display. Many people use
Xvfb to run earlier versions of Chrome to do "headless" testing.

How do | create a Docker container that runs Headless Chrome?

Check out lighthouse-ci (https://github.com/ebidel/lighthouse-ci). It has an example Dockerfile
(https://github.com/ebidel/lighthouse-ci/blob/master/builder/Dockerfile) that uses node :8-slim as a
base image, installs + runs Lighthouse
(https://github.com/ebidel/lighthouse-ci/blob/master/builder/entrypoint.sh) on App Engine Flex.

--no-sandbox is not needed if you properly setup a user
://github.com/ebidel/lighthouse-ci/blob/master/builder/Dockerfile#L35-L40) in the container.

Can | use this with Selenium / WebDriver / ChromeDriver?

Yes. See Using Selenium, WebDrive, or ChromeDriver (#drivers).

How is this related to PhantomJS?

Headless Chrome is similar to tools like PhantomdJsS (http://phantomjs.org/). Both can be used for
automated testing in a headless environment. The main difference between the two is that
Phantom uses an older version of WebKit as its rendering engine while Headless Chrome uses
the latest version of Blink.

At the moment, Phantom also provides a higher level API than the DevTools protocol

(https://chromedevtools.github.io/devtools-protocol/).
Where do | report bugs?
For bugs against Headless Chrome, file them on crbug.co

(https://bugs.chromium.org/p/chromium/issues/entry?
components=Blink&blocking=705916&cc=skyostil%40chromium.org&Proj=Headless)

https://developers.google.com/web/updates/2017/04/headless-chrome 14/15

https://bugs.chromium.org/p/chromium/issues/detail?id=737678
https://github.com/ebidel/lighthouse-ci
https://github.com/ebidel/lighthouse-ci/blob/master/builder/Dockerfile
https://github.com/ebidel/lighthouse-ci/blob/master/builder/entrypoint.sh
https://github.com/ebidel/lighthouse-ci/blob/master/builder/Dockerfile#L35-L40
http://phantomjs.org/
https://chromedevtools.github.io/devtools-protocol/
https://bugs.chromium.org/p/chromium/issues/entry?components=Blink&blocking=705916&cc=skyostil%40chromium.org&Proj=Headless

10/24/2019 Getting Started with Headless Chrome | Web | Google Developers

For bugs in the DevTools protocol, file them at github.com/ChromeDevTools/devtools-protocol

(https://github.com/ChromeDevTools/devtools-protocol/issues/new).

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License
(https://creativecommons.org/licenses/by/4.0/), and code samples are licensed under the Apache 2.0 License
(https://www.apache.org/licenses/LICENSE-2.0). For details, see the Google Developers Site Policies
(https://developers.google.com/site-policies). Java is a registered trademark of Oracle and/or its affiliates.

https://developers.google.com/web/updates/2017/04/headless-chrome 15/15

https://github.com/ChromeDevTools/devtools-protocol/issues/new
https://creativecommons.org/licenses/by/4.0/
https://www.apache.org/licenses/LICENSE-2.0
https://developers.google.com/site-policies

