

Eloquent JavaScript
3rd edition

Marijn Haverbeke

Copyright © 2018 by Marijn Haverbeke

This work is licensed under a Creative Commons attribution-noncommercial
license (http://creativecommons.org/licenses/by-nc/3.0/). All code in the
book may also be considered licensed under an MIT license (http://opensource.
org/licenses/MIT).

The illustrations are contributed by various artists: Cover and chapter illus-
trations by Madalina Tantareanu. Pixel art in Chapters 7 and 16 by Antonio
Perdomo Pastor. Regular expression diagrams in Chapter 9 generated with
regexper.com by Jeff Avallone. Village photograph in Chapter 11 by Fabrice
Creuzot. Game concept for Chapter 15 by Thomas Palef.

The third edition of Eloquent JavaScript was made possible by 325 financial
backers.

You can buy a print version of this book, with an extra bonus chapter included,
printed by No Starch Press at https://www.amazon.com/Eloquent-JavaScript-
2nd-Ed-Introduction/dp/1593275846.

i

http://creativecommons.org/licenses/by-nc/3.0/
http://opensource.org/licenses/MIT
http://opensource.org/licenses/MIT
http://regexper.com
http://lessmilk.com
http://eloquentjavascript.net/backers3.html
http://eloquentjavascript.net/backers3.html
https://www.amazon.com/Eloquent-JavaScript-2nd-Ed-Introduction/dp/1593275846
https://www.amazon.com/Eloquent-JavaScript-2nd-Ed-Introduction/dp/1593275846

Contents

Introduction 1
On programming . 2
Why language matters . 3
What is JavaScript? . 6
Code, and what to do with it . 7
Overview of this book . 8
Typographic conventions . 8

1 Values, Types, and Operators 10
Values . 10
Numbers . 11
Strings . 13
Unary operators . 15
Boolean values . 16
Empty values . 18
Automatic type conversion . 18
Summary . 20

2 Program Structure 22
Expressions and statements . 22
Bindings . 23
Binding names . 25
The environment . 25
Functions . 26
The console.log function . 26
Return values . 27
Control flow . 27
Conditional execution . 28
while and do loops . 30
Indenting Code . 31
for loops . 32
Breaking Out of a Loop . 33

ii

Updating bindings succinctly . 34
Dispatching on a value with switch . 34
Capitalization . 35
Comments . 36
Summary . 36
Exercises . 37

3 Functions 39
Defining a function . 39
Bindings and scopes . 40
Functions as values . 42
Declaration notation . 43
Arrow functions . 44
The call stack . 45
Optional Arguments . 46
Closure . 47
Recursion . 49
Growing functions . 51
Functions and side effects . 54
Summary . 55
Exercises . 55

4 Data Structures: Objects and Arrays 57
The weresquirrel . 57
Data sets . 58
Properties . 59
Methods . 60
Objects . 61
Mutability . 63
The lycanthrope’s log . 64
Computing correlation . 66
Array loops . 68
The final analysis . 68
Further arrayology . 70
Strings and their properties . 72
Rest parameters . 74
The Math object . 75
Destructuring . 76
JSON . 77
Summary . 78

iii

Exercises . 79

5 Higher-Order Functions 82
Abstraction . 83
Abstracting repetition . 83
Higher-order functions . 85
Script data set . 86
Filtering arrays . 87
Transforming with map . 88
Summarizing with reduce . 88
Composability . 90
Strings and character codes . 91
Recognizing text . 93
Summary . 95
Exercises . 95

6 The Secret Life of Objects 97
Encapsulation . 97
Methods . 98
Prototypes . 99
Classes . 101
Class notation . 102
Overriding derived properties . 103
Maps . 104
Polymorphism . 106
Symbols . 107
The iterator interface . 108
Getters, setters, and statics . 110
Inheritance . 112
The instanceof operator . 113
Summary . 114
Exercises . 115

7 Project: A Robot 117
Meadowfield . 117
The task . 119
Persistent data . 121
Simulation . 122
The mail truck’s route . 124
Pathfinding . 124

iv

Exercises . 126

8 Bugs and Errors 128
Language . 128
Strict mode . 129
Types . 130
Testing . 131
Debugging . 132
Error propagation . 134
Exceptions . 135
Cleaning up after exceptions . 136
Selective catching . 138
Assertions . 140
Summary . 141
Exercises . 142

9 Regular Expressions 143
Creating a regular expression . 143
Testing for matches . 144
Sets of characters . 144
Repeating parts of a pattern . 146
Grouping subexpressions . 147
Matches and groups . 147
The Date class . 148
Word and string boundaries . 150
Choice patterns . 150
The mechanics of matching . 151
Backtracking . 152
The replace method . 154
Greed . 155
Dynamically creating RegExp objects 157
The search method . 157
The lastIndex property . 158
Parsing an INI file . 160
International characters . 162
Summary . 163
Exercises . 165

10 Modules 167
Modules . 167

v

Packages . 168
Improvised modules . 169
Evaluating data as code . 170
CommonJS . 171
ECMAScript modules . 173
Building and bundling . 175
Module design . 175
Summary . 177
Exercises . 178

11 Asynchronous Programming 180
Asynchronicity . 180
Crow tech . 182
Callbacks . 183
Promises . 185
Failure . 186
Networks are hard . 187
Collections of promises . 190
Network flooding . 190
Message routing . 192
Async functions . 194
Generators . 196
The event loop . 197
Asynchronous bugs . 199
Summary . 200
Exercises . 200

12 Project: A Programming Language 202
Parsing . 202
The evaluator . 207
Special forms . 208
The environment . 210
Functions . 211
Compilation . 212
Cheating . 213
Exercises . 214

13 JavaScript and the Browser 216
Networks and the Internet . 216
The Web . 218

vi

HTML . 218
HTML and JavaScript . 221
In the sandbox . 222
Compatibility and the browser wars 222

14 The Document Object Model 224
Document structure . 224
Trees . 225
The standard . 226
Moving through the tree . 227
Finding elements . 228
Changing the document . 229
Creating nodes . 230
Attributes . 232
Layout . 233
Styling . 235
Cascading styles . 236
Query selectors . 237
Positioning and animating . 238
Summary . 241
Exercises . 241

15 Handling Events 243
Event handlers . 243
Events and DOM nodes . 244
Event objects . 245
Propagation . 245
Default actions . 247
Key events . 247
Pointer events . 249
Scroll events . 253
Focus events . 254
Load event . 255
Events and the event loop . 255
Timers . 257
Debouncing . 257
Summary . 259
Exercises . 259

vii

16 Project: A Platform Game 261
The game . 261
The technology . 262
Levels . 262
Reading a level . 263
Actors . 265
Encapsulation as a burden . 268
Drawing . 269
Motion and collision . 274
Actor updates . 277
Tracking keys . 279
Running the game . 280
Exercises . 282

17 Drawing on Canvas 284
SVG . 284
The canvas element . 285
Lines and surfaces . 286
Paths . 287
Curves . 289
Drawing a pie chart . 291
Text . 292
Images . 293
Transformation . 295
Storing and clearing transformations 297
Back to the game . 299
Choosing a graphics interface . 304
Summary . 305
Exercises . 306

18 HTTP and Forms 308
The protocol . 308
Browsers and HTTP . 310
Fetch . 312
HTTP sandboxing . 313
Appreciating HTTP . 314
Security and HTTPS . 315
Form fields . 315
Focus . 317
Disabled fields . 318

viii

The form as a whole . 318
Text fields . 320
Checkboxes and radio buttons . 321
Select fields . 322
File fields . 323
Storing data client-side . 325
Summary . 327
Exercises . 328

19 Project: A Pixel Art Editor 330
Components . 330
The state . 332
DOM building . 333
The canvas . 334
The application . 337
Drawing tools . 339
Saving and loading . 342
Undo history . 345
Let’s draw . 346
Why is this so hard . 347
Exercises . 348

20 Node.js 350
Background . 350
The node command . 351
Modules . 352
Installing with NPM . 353
The file system module . 355
The HTTP module . 357
Streams . 359
A file server . 361
Summary . 366
Exercises . 367

21 Project: Skill-Sharing Website 369
Design . 369
Long polling . 370
HTTP interface . 371
The server . 373
The client . 380

ix

Exercises . 387

Exercise Hints 389
Program Structure . 389
Functions . 390
Data Structures: Objects and Arrays 391
Higher-Order Functions . 393
The Secret Life of Objects . 394
Project: A Robot . 395
Bugs and Errors . 396
Regular Expressions . 396
Modules . 397
Asynchronous Programming . 399
Project: A Programming Language . 400
The Document Object Model . 401
Handling Events . 401
Project: A Platform Game . 403
Drawing on Canvas . 403
HTTP and Forms . 405
Project: A Pixel Art Editor . 407
Node.js . 409
Project: Skill-Sharing Website . 410

x

“We think we are creating the system for our own purposes. We
believe we are making it in our own image... But the computer is
not really like us. It is a projection of a very slim part of ourselves:
that portion devoted to logic, order, rule, and clarity.”

—Ellen Ullman, Close to the Machine: Technophilia and its
Discontents

Introduction

This is a book about instructing computers. Computers are about as common
as screwdrivers today, but they are quite a bit more complex, and making them
do what you want them to do isn’t always easy.

If the task you have for your computer is a common, well-understood one,
such as showing you your email or acting like a calculator, you can open the
appropriate application and get to work. But for unique or open-ended tasks,
there probably is no application.

That is where programming may come in. Programming is the act of con-
structing a program—a set of precise instructions that tell a computer what to
do. Because computers are dumb, pedantic beasts, programming is fundamen-
tally tedious and frustrating.

Fortunately, if you can get over that fact, and maybe even enjoy the rigor
of thinking in terms that dumb machines can deal with, programming can be
very rewarding. It allows you to do things that would take forever by hand, in
seconds. It is a way to make your computer tool do things that it couldn’t do
before. And it provides a wonderful exercise in abstract thinking.

Most programming is done with programming languages. A programming
language is an artificially constructed language used to instruct computers. It
is interesting that the most effective way we’ve found to communicate with a
computer borrows so heavily from the way we communicate with each other.
Like human languages, computer languages allow words and phrases to be
combined in new ways, making it possible to express ever new concepts.

At one point language-based interfaces, such as the BASIC and DOS prompts
of the 80s and 90s, were the main method of interacting with computers. Those
have largely been replaced with visual interfaces, which are easier to learn but
offer less freedom. Computer languages are still there, if you know where to
look. One such language, JavaScript, is built into every modern web browser
and is thus available on almost every device.

This book will try to make you familiar enough with this language to do
useful and amusing things with it.

1

On programming

Besides explaining JavaScript, I will also introduce the basic principles of pro-
gramming. Programming, it turns out, is hard. The fundamental rules are
simple and clear, but programs built on top of these rules tend to become com-
plex enough to introduce their own rules and complexity. You’re building your
own maze, in a way, and you might just get lost in it.

There will be times when reading this book feels terribly frustrating. If you
are new to programming, there will be a lot of new material to digest. Much of
this material will then be combined in ways that require you to make additional
connections.

It is up to you to make the necessary effort. When you are struggling to follow
the book, do not jump to any conclusions about your own capabilities. You are
fine—you just need to keep at it. Take a break, reread some material, and make
sure you read and understand the example programs and exercises. Learning
is hard work, but everything you learn is yours, and will make subsequent
learning easier.

When action grows unprofitable, gather information; when infor-
mation grows unprofitable, sleep.
—Ursula K. Le Guin, The Left Hand of Darkness

A program is many things. It is a piece of text typed by a programmer,
it is the directing force that makes the computer do what it does, it is data
in the computer’s memory, yet it controls the actions performed on this same
memory. Analogies that try to compare programs to objects we are familiar
with tend to fall short. A superficially fitting one is that of a machine—lots of
separate parts tend to be involved, and to make the whole thing tick, we have
to consider the ways in which these parts interconnect and contribute to the
operation of the whole.

A computer is a physical machine that acts as a host for these immaterial
machines. Computers themselves can do only stupidly straightforward things.
The reason they are so useful is that they do these things at an incredibly
high speed. A program can ingeniously combine an enormous number of these
simple actions in order to do very complicated things.

A program is a building of thought. It is costless to build, it is weightless,
and it grows easily under our typing hands.

But without care, a program’s size and complexity will grow out of control,
confusing even the person who created it. Keeping programs under control is
the main problem of programming. When a program works, it is beautiful. The

2

art of programming is the skill of controlling complexity. The great program
is subdued—made simple in its complexity.

Some programmers believe that this complexity is best managed by using
only a small set of well-understood techniques in their programs. They have
composed strict rules (“best practices”) prescribing the form programs should
have, and carefully stay within their safe little zone.

This is not only boring, it is also ineffective. New problems often require
new solutions. The field of programming is young and still developing rapidly,
and is varied enough to have room for wildly different approaches. There are
many terrible mistakes to make in program design, and you should go ahead
and make them so that you understand them. A sense of what a good program
looks like is developed in practice, not learned from a list of rules.

Why language matters

In the beginning, at the birth of computing, there were no programming lan-
guages. Programs looked something like this:

00110001 00000000 00000000
00110001 00000001 00000001
00110011 00000001 00000010
01010001 00001011 00000010
00100010 00000010 00001000
01000011 00000001 00000000
01000001 00000001 00000001
00010000 00000010 00000000
01100010 00000000 00000000

That is a program to add the numbers from 1 to 10 together and print out
the result: 1 + 2 + ... + 10 = 55. It could run on a simple, hypothetical
machine. To program early computers, it was necessary to set large arrays of
switches in the right position or punch holes in strips of cardboard and feed
them to the computer. You can probably imagine how tedious and error-prone
this procedure was. Even writing simple programs required much cleverness
and discipline. Complex ones were nearly inconceivable.

Of course, manually entering these arcane patterns of bits (the ones and
zeros) did give the programmer a profound sense of being a mighty wizard.
And that has to be worth something in terms of job satisfaction.

Each line of the previous program contains a single instruction. It could be
written in English like this:

3

1. Store the number 0 in memory location 0.

2. Store the number 1 in memory location 1.

3. Store the value of memory location 1 in memory location 2.

4. Subtract the number 11 from the value in memory location 2.

5. If the value in memory location 2 is the number 0, continue with instruc-
tion 9.

6. Add the value of memory location 1 to memory location 0.

7. Add the number 1 to the value of memory location 1.

8. Continue with instruction 3.

9. Output the value of memory location 0.

Although that is already more readable than the soup of bits, it is still rather
obscure. Using names instead of numbers for the instructions and memory
locations helps:

Set “total” to 0.
Set “count” to 1.

[loop]
Set “compare” to “count”.
Subtract 11 from “compare”.
If “compare” is zero, continue at [end].
Add “count” to “total”.
Add 1 to “count”.
Continue at [loop].

[end]
Output “total”.

Can you see how the program works at this point? The first two lines give
two memory locations their starting values: total will be used to build up the
result of the computation, and count will keep track of the number that we
are currently looking at. The lines using compare are probably the weirdest
ones. The program wants to see whether count is equal to 11 in order to
decide whether it can stop running. Because our hypothetical machine is rather
primitive, it can only test whether a number is zero and make a decision based
on that. So it uses the memory location labeled compare to compute the value
of count - 11 and makes a decision based on that value. The next two lines

4

add the value of count to the result and increment count by 1 every time the
program has decided that count is not 11 yet.

Here is the same program in JavaScript:

let total = 0, count = 1;
while (count <= 10) {

total += count;
count += 1;

}
console.log(total);
// → 55

This version gives us a few more improvements. Most importantly, there
is no need to specify the way we want the program to jump back and forth
anymore. The while construct takes care of that. It continues executing the
block (wrapped in braces) below it as long as the condition it was given holds.
That condition is count <= 10, which means “count is less than or equal to 10”.
We no longer have to create a temporary value and compare that to zero, which
was just an uninteresting detail. Part of the power of programming languages
is that they can take care of uninteresting details for us.

At the end of the program, after the while construct has finished, the console
.log operation is used to write out the result.

Finally, here is what the program could look like if we happened to have
the convenient operations range and sum available, which respectively create a
collection of numbers within a range and compute the sum of a collection of
numbers:

console.log(sum(range(1, 10)));
// → 55

The moral of this story is that the same program can be expressed in both
long and short, unreadable and readable ways. The first version of the program
was extremely obscure, whereas this last one is almost English: log the sum of
the range of numbers from 1 to 10. (We will see in later chapters how to define
operations like sum and range.)

A good programming language helps the programmer by allowing them to
talk about the actions that the computer has to perform on a higher level.
It helps omit details, provides convenient building blocks (such as while and
console.log), allows you to define your own building blocks (such as sum and
range), and makes those blocks easy to compose.

5

What is JavaScript?

JavaScript was introduced in 1995 as a way to add programs to web pages in the
Netscape Navigator browser. The language has since been adopted by all other
major graphical web browsers. It has made modern web applications possible—
applications with which you can interact directly without doing a page reload
for every action. JavaScript is also used in more traditional websites to provide
various forms of interactivity and cleverness.

It is important to note that JavaScript has almost nothing to do with the
programming language named Java. The similar name was inspired by mar-
keting considerations rather than good judgment. When JavaScript was being
introduced, the Java language was being heavily marketed and was gaining
popularity. Someone thought it was a good idea to try to ride along on this
success. Now we are stuck with the name.

After its adoption outside of Netscape, a standard document was written
to describe the way the JavaScript language should work, so that the various
pieces of software that claimed to support JavaScript were actually talking
about the same language. This is called the ECMAScript standard, after the
Ecma International organization that did the standardization. In practice, the
terms ECMAScript and JavaScript can be used interchangeably—they are two
names for the same language.

There are those who will say terrible things about JavaScript. Many of these
things are true. When I was required to write something in JavaScript for the
first time, I quickly came to despise it. It would accept almost anything I typed
but interpret it in a way that was completely different from what I meant. This
had a lot to do with the fact that I did not have a clue what I was doing, of
course, but there is a real issue here: JavaScript is ridiculously liberal in what
it allows. The idea behind this design was that it would make programming in
JavaScript easier for beginners. In actuality, it mostly makes finding problems
in your programs harder because the system will not point them out to you.

This flexibility also has its advantages, though. It leaves space for a lot of
techniques that are impossible in more rigid languages, and as you will see
(for example in Chapter 10), it can be used to overcome some of JavaScript’s
shortcomings. After learning the language properly and working with it for a
while, I have learned to actually like JavaScript.

There have been several versions of JavaScript. ECMAScript version 3 was
the widely supported version in the time of JavaScript’s ascent to dominance,
roughly between 2000 and 2010. During this time, work was underway on
an ambitious version 4, which planned a number of radical improvements and
extensions to the language. Changing a living, widely used language in such

6

a radical way turned out to be politically difficult, and work on the version 4
was abandoned in 2008, leading to a much less ambitious version 5, which only
made some uncontroversial improvements, coming out in 2009. Then in 2015
version 6 came out, a major update that included some of the ideas planned
for version 4. Since then we’ve had new, small updates every year.

The fact that the language is evolving means that browsers have to constantly
keep up, and if you’re using an older one, it may not support every feature.
The language designers are careful to not make any changes that could break
existing programs, so new browsers can still run old programs. In this book,
I’m using the 2017 version of JavaScript.

Web browsers are not the only platforms on which JavaScript is used. Some
databases, such as MongoDB and CouchDB, use JavaScript as their scripting
and query language. Several platforms for desktop and server programming,
most notably the Node.js project (the subject of Chapter 20), provide an envi-
ronment for programming JavaScript outside of the browser.

Code, and what to do with it

Code is the text that makes up programs. Most chapters in this book contain
quite a lot of code. I believe reading code and writing code are indispensable
parts of learning to program. Try to not just glance over the examples—read
them attentively and understand them. This may be slow and confusing at
first, but I promise that you’ll quickly get the hang of it. The same goes for
the exercises. Don’t assume you understand them until you’ve actually written
a working solution.

I recommend you try your solutions to exercises in an actual JavaScript
interpreter. That way, you’ll get immediate feedback on whether what you are
doing is working, and, I hope, you’ll be tempted to experiment and go beyond
the exercises.

The easiest way to run the example code in the book, and to experiment with
it, is to look it up in the online version of the book at eloquentjavascript.net.
There, you can click any code example to edit and run it and to see the output
it produces. To work on the exercises, go to eloquentjavascript.net/code, which
provides starting code for each coding exercise and allows you to look at the
solutions.

If you want to run the programs defined in this book outside of the book’s
website, some care will be required. Many examples stand on their own and
should work in any JavaScript environment. But code in later chapters is
often written for a specific environment (the browser or Node.js) and can run

7

https://eloquentjavascript.net/
https://eloquentjavascript.net/code

only there. In addition, many chapters define bigger programs, and the pieces
of code that appear in them depend on each other or on external files. The
sandbox on the website provides links to Zip files containing all the scripts and
data files necessary to run the code for a given chapter.

Overview of this book

This book contains roughly three parts. The first 12 chapters discuss the
JavaScript language itself. The next seven chapters are about web browsers
and the way JavaScript is used to program them. Finally, two chapters are
devoted to Node.js, another environment to program JavaScript in.

Throughout the book, there are five project chapters, which describe larger
example programs to give you a taste of actual programming. In order of
appearance, we will work through building a delivery robot, a programming
language, a platform game, a pixel paint program, and a dynamic website.

The language part of the book starts with four chapters that introduce the
basic structure of the JavaScript language. They introduce control structures
(such as the while word you saw in this introduction), functions (writing your
own building blocks), and data structures. After these, you will be able to write
basic programs. Next, Chapters 5 and 6 introduce techniques to use functions
and objects to write more abstract code and keep complexity under control.

After a first project chapter, the language part of the book continues with
chapters on error handling and bug fixing, regular expressions (an important
tool for working with text), modularity (another defense against complexity),
and asynchronous programming (dealing with events that take time). The
second project chapter concludes the first part of the book.

The second part, Chapters 13 to 19, describes the tools that browser JavaScript
has access to. You’ll learn to display things on the screen (Chapters 14 and
17), respond to user input (Chapter 15), and communicate over the network
(Chapter 18). There are again two project chapters in this part.

After that, Chapter 20 describes Node.js, and Chapter 21 builds a small
website using that tool.

Typographic conventions

In this book, text written in a monospaced font will represent elements of
programs—sometimes they are self-sufficient fragments, and sometimes they
just refer to part of a nearby program. Programs (of which you have already
seen a few), are written as follows:

8

https://eloquentjavascript.net/code

function factorial(n) {
if (n == 0) {

return 1;
} else {

return factorial(n - 1) * n;
}

}

Sometimes, in order to show the output that a program produces, the ex-
pected output is written after it, with two slashes and an arrow in front.

console.log(factorial(8));
// → 40320

Good luck!

9

“Below the surface of the machine, the program moves. Without
effort, it expands and contracts. In great harmony, electrons scatter
and regroup. The forms on the monitor are but ripples on the water.
The essence stays invisibly below.”

—Master Yuan-Ma, The Book of Programming

Chapter 1

Values, Types, and Operators

Inside the computer’s world, there is only data. You can read data, modify
data, create new data—but that which isn’t data cannot be mentioned. All
this data is stored as long sequences of bits and is thus fundamentally alike.

Bits are any kind of two-valued things, usually described as zeros and ones.
Inside the computer, they take forms such as a high or low electrical charge,
a strong or weak signal, or a shiny or dull spot on the surface of a CD. Any
piece of discrete information can be reduced to a sequence of zeros and ones
and thus represented in bits.

For example, we can express the number 13 in bits. It works the same way
as a decimal number, but instead of 10 different digits, you have only 2, and
the weight of each increases by a factor of 2 from right to left. Here are the
bits that make up the number 13, with the weights of the digits shown below
them:

0 0 0 0 1 1 0 1
128 64 32 16 8 4 2 1

So that’s the binary number 00001101, or 8 + 4 + 1, or 13.

Values

Imagine a sea of bits—an ocean of them. A typical modern computer has more
than 30 billion bits in its volatile data storage (working memory). Nonvolatile
storage (the hard disk or equivalent) tends to have yet a few orders of magnitude
more.

To be able to work with such quantities of bits without getting lost, we must
separate them into chunks that represent pieces of information. In a JavaScript
environment, those chunks are called values. Though all values are made of bits,
they play different roles. Every value has a type that determines its role. Some
values are numbers, some values are pieces of text, some values are functions,

10

and so on.
To create a value, you must merely invoke its name. This is convenient. You

don’t have to gather building material for your values or pay for them. You
just call for one, and woosh, you have it. They are not really created from thin
air, of course. Every value has to be stored somewhere, and if you want to use
a gigantic amount of them at the same time, you might run out of memory.
Fortunately, this is a problem only if you need them all simultaneously. As
soon as you no longer use a value, it will dissipate, leaving behind its bits to
be recycled as building material for the next generation of values.

This chapter introduces the atomic elements of JavaScript programs, that is,
the simple value types and the operators that can act on such values.

Numbers

Values of the number type are, unsurprisingly, numeric values. In a JavaScript
program, they are written as follows:

13

Use that in a program, and it will cause the bit pattern for the number 13
to come into existence inside the computer’s memory.

JavaScript uses a fixed number of bits, namely 64 of them, to store a single
number value. There are only so many patterns you can make with 64 bits,
which means that the amount of different numbers that can be represented is
limited. For N decimal digits, the amount of numbers that can be represented is
10N. Similarly, given 64 binary digits, you can represent 264 different numbers,
which is about 18 quintillion (an 18 with 18 zeros after it). That’s a lot.

Computer memory used to be much smaller, and people tended to use groups
of 8 or 16 bits to represent their numbers. It was easy to accidentally overflow
such small numbers—to end up with a number that did not fit into the given
amount of bits. Today, even computers that fit in your pocket have plenty of
memory, so you are free to use 64-bit chunks, and you need to worry about
overflow only when dealing with truly astronomical numbers.

Not all whole numbers below 18 quintillion fit in a JavaScript number,
though. Those bits also store negative numbers, so one bit indicates the sign of
the number. A bigger issue is that nonwhole numbers must also be represented.
To do this, some of the bits are used to store the position of the decimal point.
The actual maximum whole number that can be stored is more in the range of
9 quadrillion (15 zeros)—which is still pleasantly huge.

11

Fractional numbers are written by using a dot:

9.81

For very big or very small numbers, you may also use scientific notation by
adding an e (for exponent), followed by the exponent of the number:

2.998e8

That is 2.998 × 108 = 299,800,000.
Calculations with whole numbers (also called integers) smaller than the

aforementioned 9 quadrillion are guaranteed to always be precise. Unfortu-
nately, calculations with fractional numbers are generally not. Just as π (pi)
cannot be precisely expressed by a finite number of decimal digits, many num-
bers lose some precision when only 64 bits are available to store them. This
is a shame, but it causes practical problems only in specific situations. The
important thing is to be aware of it and treat fractional digital numbers as
approximations, not as precise values.

Arithmetic

The main thing to do with numbers is arithmetic. Arithmetic operations such
as addition or multiplication take two number values and produce a new number
from them. Here is what they look like in JavaScript:

100 + 4 * 11

The + and * symbols are called operators. The first stands for addition, and
the second stands for multiplication. Putting an operator between two values
will apply it to those values and produce a new value.

But does the example mean “add 4 and 100, and multiply the result by 11,”
or is the multiplication done before the adding? As you might have guessed,
the multiplication happens first. But as in mathematics, you can change this
by wrapping the addition in parentheses:

(100 + 4) * 11

For subtraction, there is the - operator, and division can be done with the /
operator.

12

When operators appear together without parentheses, the order in which
they are applied is determined by the precedence of the operators. The example
shows that multiplication comes before addition. The / operator has the same
precedence as *. Likewise for + and -. When multiple operators with the same
precedence appear next to each other, as in 1 - 2 + 1, they are applied left to
right: (1 - 2)+ 1.

These rules of precedence are not something you should worry about. When
in doubt, just add parentheses.

There is one more arithmetic operator, which you might not immediately
recognize. The % symbol is used to represent the remainder operation. X % Y
is the remainder of dividing X by Y. For example, 314 % 100 produces 14, and
144 % 12 gives 0. Remainder’s precedence is the same as that of multiplication
and division. You’ll also often see this operator referred to as modulo.

Special numbers

There are three special values in JavaScript that are considered numbers but
don’t behave like normal numbers.

The first two are Infinity and -Infinity, which represent the positive and
negative infinities. Infinity - 1 is still Infinity, and so on. Don’t put too
much trust in infinity-based computation, though. It isn’t mathematically
sound, and it will quickly lead to our next special number: NaN.

NaN stands for “not a number”, even though it is a value of the number type.
You’ll get this result when you, for example, try to calculate 0 / 0 (zero divided
by zero), Infinity - Infinity, or any number of other numeric operations that
don’t yield a meaningful result.

Strings

The next basic data type is the string. Strings are used to represent text. They
are written by enclosing their content in quotes:

`Down on the sea`
"Lie on the ocean"
'Float on the ocean'

You can use single quotes, double quotes, or backticks to mark strings, as
long as the quotes at the start and the end of the string match.

Almost anything can be put between quotes, and JavaScript will make a
string value out of it. But a few characters are more difficult. You can imagine

13

how putting quotes between quotes might be hard. Newlines (the characters
you get when you press Enter) may only be included without escaping when
the string is quoted with backticks (\‘).

To make it possible to include such characters in a string, the following
notation is used: whenever a backslash (\) is found inside quoted text, it
indicates that the character after it has a special meaning. This is called
escaping the character. A quote that is preceded by a backslash will not end
the string but be part of it. When an n character occurs after a backslash, it is
interpreted as a newline. Similarly, a t after a backslash means a tab character.
Take the following string:

"This is the first line\nAnd this is the second"

The actual text contained is this:

This is the first line
And this is the second

There are, of course, situations where you want a backslash in a string to
be just a backslash, not a special code. If two backslashes follow each other,
they will collapse together, and only one will be left in the resulting string
value. This is how the string “A newline character is written like "\n".” can
be expressed:

"A newline character is written like \"\\n\"."

Strings, too, have to be modeled as a series of bits to be able to exist inside
the computer. The way JavaScript does this is based on the Unicode standard.
This standard assigns a number to virtually every character you would ever
need, including characters from Greek, Arabic, Japanese, Armenian, and so
on. If we have a number for every character, a string can be described by a
sequence of numbers.

And that’s what JavaScript does. But there’s a complication: JavaScript’s
representation uses 16 bits per string element, which can describe up to 216

different characters. But Unicode defines more characters than that—about
twice as many, at this point. So some characters, such as many emoji, take
up two “character positions” in JavaScript strings. We’ll come back to this in
Chapter 5.

Strings cannot be divided, multiplied, or subtracted, but the + operator can

14

be used on them. It does not add, but it concatenates—it glues two strings
together. The following line will produce the string "concatenate":

"con" + "cat" + "e" + "nate"

String values have a number of associated functions (methods) that can be
used to perform other operations on them. We’ll come back to these in Chapter
4.

Strings written with single or double quotes behave very much the same—
the only difference is in which type of quote you need to escape inside of them.
Backtick-quoted strings, usually called template literals, can do a few more
tricks. Apart from being able to span lines, they can also embed other values.

`half of 100 is ${100 / 2}`

When you write something inside ${} in a template literal, its result will be
computed, converted to a string, and included at that position. The example
produces “half of 100 is 50”.

Unary operators

Not all operators are symbols. Some are written as words. One example is the
typeof operator, which produces a string value naming the type of the value
you give it.

console.log(typeof 4.5)
// → number
console.log(typeof "x")
// → string

We will use console.log in example code to indicate that we want to see the
result of evaluating something. More about that in the next chapter.

The other operators we saw all operated on two values, but typeof takes only
one. Operators that use two values are called binary operators, while those that
take one are called unary operators. The minus operator can be used both as
a binary operator and as a unary operator.

console.log(- (10 - 2))
// → -8

15

Boolean values

It is often useful to have a value that distinguishes between only two possibili-
ties, like “yes” and “no” or “on” and “off”. For this purpose, JavaScript has a
Boolean type, which has just two values: true and false, which are written as
those words.

Comparison

Here is one way to produce Boolean values:

console.log(3 > 2)
// → true
console.log(3 < 2)
// → false

The > and < signs are the traditional symbols for “is greater than” and “is
less than”, respectively. They are binary operators. Applying them results in
a Boolean value that indicates whether they hold true in this case.

Strings can be compared in the same way.

console.log("Aardvark" < "Zoroaster")
// → true

The way strings are ordered is roughly alphabetic, but not really what you’d
expect to see in a dictionary: uppercase letters are always “less” than lowercase
ones, so "Z" < "a", and nonalphabetic characters (!, -, and so on) are also
included in the ordering. When comparing strings, JavaScript goes over the
characters from left to right, comparing the Unicode codes one by one.

Other similar operators are >= (greater than or equal to), <= (less than or
equal to), == (equal to), and != (not equal to).

console.log("Itchy" != "Scratchy")
// → true
console.log("Apple" == "Orange")
// → false

There is only one value in JavaScript that is not equal to itself, and that is
NaN (“not a number”).

console.log(NaN == NaN)

16

// → false

NaN is supposed to denote the result of a nonsensical computation, and as
such, it isn’t equal to the result of any other nonsensical computations.

Logical operators

There are also some operations that can be applied to Boolean values them-
selves. JavaScript supports three logical operators: and, or, and not. These
can be used to “reason” about Booleans.

The && operator represents logical and. It is a binary operator, and its result
is true only if both the values given to it are true.

console.log(true && false)
// → false
console.log(true && true)
// → true

The || operator denotes logical or. It produces true if either of the values
given to it is true.

console.log(false || true)
// → true
console.log(false || false)
// → false

Not is written as an exclamation mark (!). It is a unary operator that flips
the value given to it—!true produces false and !false gives true.

When mixing these Boolean operators with arithmetic and other operators,
it is not always obvious when parentheses are needed. In practice, you can
usually get by with knowing that of the operators we have seen so far, || has
the lowest precedence, then comes &&, then the comparison operators (>, ==,
and so on), and then the rest. This order has been chosen such that, in typical
expressions like the following one, as few parentheses as possible are necessary:

1 + 1 == 2 && 10 * 10 > 50

The last logical operator I will discuss is not unary, not binary, but ternary,
operating on three values. It is written with a question mark and a colon, like
this:

17

console.log(true ? 1 : 2);
// → 1
console.log(false ? 1 : 2);
// → 2

This one is called the conditional operator (or sometimes just ternary opera-
tor since it is the only such operator in the language). The value on the left of
the question mark “picks” which of the other two values will come out. When
it is true, it chooses the middle value, and when it is false, the value on the
right.

Empty values

There are two special values, written null and undefined, that are used to
denote the absence of a meaningful value. They are themselves values, but
they carry no information.

Many operations in the language that don’t produce a meaningful value
(you’ll see some later) yield undefined simply because they have to yield some
value.

The difference in meaning between undefined and null is an accident of
JavaScript’s design, and it doesn’t matter most of the time. In the cases where
you actually have to concern yourself with these values, I recommend treating
them as mostly interchangeable.

Automatic type conversion

In the Introduction, I mentioned that JavaScript goes out of its way to accept
almost any program you give it, even programs that do odd things. This is
nicely demonstrated by the following expressions:

console.log(8 * null)
// → 0
console.log("5" - 1)
// → 4
console.log("5" + 1)
// → 51
console.log("five" * 2)
// → NaN
console.log(false == 0)
// → true

18

When an operator is applied to the “wrong” type of value, JavaScript will
quietly convert that value to the type it needs, using a set of rules that often
aren’t what you want or expect. This is called type coercion. The null in the
first expression becomes 0, and the "5" in the second expression becomes 5
(from string to number). Yet in the third expression, + tries string concate-
nation before numeric addition, so the 1 is converted to "1" (from number to
string).

When something that doesn’t map to a number in an obvious way (such as
"five" or undefined) is converted to a number, you get the value NaN. Further
arithmetic operations on NaN keep producing NaN, so if you find yourself getting
one of those in an unexpected place, look for accidental type conversions.

When comparing values of the same type using ==, the outcome is easy to
predict: you should get true when both values are the same, except in the case
of NaN. But when the types differ, JavaScript uses a complicated and confusing
set of rules to determine what to do. In most cases, it just tries to convert
one of the values to the other value’s type. However, when null or undefined
occurs on either side of the operator, it produces true only if both sides are one
of null or undefined.

console.log(null == undefined);
// → true
console.log(null == 0);
// → false

That behavior is often useful. When you want to test whether a value has a
real value instead of null or undefined, you can compare it to null with the
== (or !=) operator.

But what if you want to test whether something refers to the precise value
false? The rules for converting strings and numbers to Boolean values state
that 0, NaN, and the empty string ("") count as false, while all the other values
count as true. Because of this, expressions like 0 == false and "" == false are
also true. When you do not want any automatic type conversions to happen,
there are two additional operators: === and !==. The first tests whether a value
is precisely equal to the other, and the second tests whether it is not precisely
equal. So "" === false is false as expected.

I recommend using the three-character comparison operators defensively to
prevent unexpected type conversions from tripping you up. But when you’re
certain the types on both sides will be the same, there is no problem with using
the shorter operators.

19

Short-circuiting of logical operators

The logical operators && and || handle values of different types in a peculiar
way. They will convert the value on their left side to Boolean type in order
to decide what to do, but depending on the operator and the result of that
conversion, they will return either the original left-hand value or the right-
hand value.

The || operator, for example, will return the value to its left when that can
be converted to true and will return the value on its right otherwise. This has
the expected effect when the values are Boolean, and does something analogous
for values of other types.

console.log(null || "user")
// → user
console.log("Agnes" || "user")
// → Agnes

We can use this functionality as a way to fall back on a default value. If you
have a value that might be empty, you can put || after it with a replacement
value. If the initial value can be converted to false, you’ll get the replacement
instead.

The && operator works similarly, but the other way around. When the value
to its left is something that converts to false, it returns that value, and otherwise
it returns the value on its right.

Another important property of these two operators is that the part to their
right is evaluated only when necessary. In the case of true || X, no matter
what X is—even if it’s a piece of program that does something terrible—the
result will be true, and X is never evaluated. The same goes for false && X,
which is false and will ignore X. This is called short-circuit evaluation.

The conditional operator works in a similar way. Of the second and third
value, only the one that is selected is evaluated.

Summary

We looked at four types of JavaScript values in this chapter: numbers, strings,
Booleans, and undefined values.

Such values are created by typing in their name (true, null) or value (13
, "abc"). You can combine and transform values with operators. We saw
binary operators for arithmetic (+, -, *, /, and %), string concatenation (+),
comparison (==, !=, ===, !==, <, >, <=, >=), and logic (&&, ||), as well as several

20

unary operators (- to negate a number, ! to negate logically, and typeof to
find a value’s type) and a ternary operator (?:) to pick one of two values based
on a third value.

This gives you enough information to use JavaScript as a pocket calculator,
but not much more. The next chapter will start tying these expressions together
into basic programs.

21

“And my heart glows bright red under my filmy, translucent skin and
they have to administer 10cc of JavaScript to get me to come back.
(I respond well to toxins in the blood.) Man, that stuff will kick the
peaches right out your gills!”

—_why, Why’s (Poignant) Guide to Ruby

Chapter 2

Program Structure

In this chapter, we start to do things that can actually be called programming.
We will expand our command of the JavaScript language beyond the nouns
and sentence fragments we’ve seen so far, to the point where we can express
meaningful prose.

Expressions and statements

In Chapter 1, we made values and applied operators to them to get new values.
Creating values like this is the main substance of any JavaScript program. But
that substance has to be framed in a larger structure to be useful. So that’s
what we’ll get to next.

A fragment of code that produces a value is called an expression. Every value
that is written literally (such as 22 or "psychoanalysis") is an expression. An
expression between parentheses is also an expression, as is a binary operator
applied to two expressions or a unary operator applied to one.

This shows part of the beauty of a language-based interface. Expressions
can contain other expressions in a way very similar to the way subsentences in
human languages are nested—a subsentence can contain its own subsentences,
and so on. This allows us to build expressions that describe arbitrarily complex
computations.

If an expression corresponds to a sentence fragment, a JavaScript statement
corresponds to a full sentence. A program is a list of statements.

The simplest kind of statement is an expression with a semicolon after it.
This is a program:

1;
!false;

It is a useless program, though. An expression can be content to just produce
a value, which can then be used by the enclosing code. A statement stands on

22

its own, so it amounts to something only if it affects the world. It could display
something on the screen—that counts as changing the world—or it could change
the internal state of the machine in a way that will affect the statements that
come after it. These changes are called side effects. The statements in the
previous example just produce the values 1 and true and then immediately
throw them away. This leaves no impression on the world at all. When you
run this program, nothing observable happens.

In some cases, JavaScript allows you to omit the semicolon at the end of a
statement. In other cases, it has to be there, or the next line will be treated
as part of the same statement. The rules for when it can be safely omitted
are somewhat complex and error-prone. So in this book, every statement that
needs a semicolon will always get one. I recommend you do the same, at least
until you’ve learned more about the subtleties of missing semicolons.

Bindings

How does a program keep an internal state? How does it remember things?
We have seen how to produce new values from old values, but this does not
change the old values, and the new value has to be immediately used or it will
dissipate again. To catch and hold values, JavaScript provides a thing called a
binding, or variable:

let caught = 5 * 5;

That’s a second kind of statement. The special word (keyword) let indicates
that this sentence is going to define a binding. It is followed by the name of
the binding and, if we want to immediately give it a value, by an = operator
and an expression.

The previous statement creates a binding called caught and uses it to grab
hold of the number that is produced by multiplying 5 by 5.

After a binding has been defined, its name can be used as an expression. The
value of such an expression is the value the binding currently holds. Here’s an
example:

let ten = 10;
console.log(ten * ten);
// → 100

When a binding points at a value, that does not mean it is tied to that

23

value forever. The = operator can be used at any time on existing bindings to
disconnect them from their current value and have them point to a new one:

let mood = "light";
console.log(mood);
// → light
mood = "dark";
console.log(mood);
// → dark

You should imagine bindings as tentacles, rather than boxes. They do not
contain values; they grasp them—two bindings can refer to the same value.
A program can only access the values that it still has a reference to. When
you need to remember something, you grow a tentacle to hold on to it or you
reattach one of your existing tentacles to it.

Let’s look at another example. To remember the number of dollars that
Luigi still owes you, you create a binding. And then when he pays back $35,
you give this binding a new value:

let luigisDebt = 140;
luigisDebt = luigisDebt - 35;
console.log(luigisDebt);
// → 105

When you define a binding without giving it a value, the tentacle has nothing
to grasp, so it ends in thin air. If you ask for the value of an empty binding,
you’ll get the value undefined.

A single let statement may define multiple bindings. The definitions must
be separated by commas.

let one = 1, two = 2;
console.log(one + two);
// → 3

The words var and const can also be used to create bindings, in a way similar
to let.

var name = "Ayda";
const greeting = "Hello ";
console.log(greeting + name);
// → Hello Ayda

24

The first, var (short for “variable”), is the way bindings were declared in
pre-2015 JavaScript. We’ll get back to the precise way it differs from let in
the next chapter. For now, remember that it mostly does the same thing, but
we’ll rarely use it in this book because it has some confusing properties.

The word const stands for constant. It defines a constant binding, which
points at the same value for as long as it lives. This is useful for bindings that
give a name to a value so that you can easily refer to it later.

Binding names

Binding names can be any word. Digits can be part of binding names—catch22
is a valid name, for example—but the name must not start with a digit. A
binding name may include dollar signs ($) or underscores (_), but no other
punctuation or special characters.

Words with a special meaning, such as let, are keywords, and they may not
be used as binding names. There are also a number of words that are “reserved
for use” in future versions of JavaScript, which also can’t be used as binding
names. The full list of keywords and reserved words is rather long:

break case catch class const continue debugger default
delete do else enum export extends false finally for
function if implements import interface in instanceof let
new package private protected public return static super
switch this throw true try typeof var void while with yield

Don’t worry about memorizing these. When creating a binding produces an
unexpected syntax error, see if you’re trying to define a reserved word.

The environment

The collection of bindings and their values that exist at a given time is called
the environment. When a program starts up, this environment is not empty. It
always contains bindings that are part of the language standard, and most of the
time, it also has bindings that provide ways to interact with the surrounding
system. For example, in a browser, there are functions to interact with the
currently loaded website and to read mouse and keyboard input.

25

Functions

A lot of the values provided in the default environment have the type function.
A function is a piece of program wrapped in a value. Such values can be applied
in order to run the wrapped program. For example, in a browser environment,
the binding prompt holds a function that shows a little dialog box asking for
user input. It is used like this:

prompt("Enter passcode");

Executing a function is called invoking, calling, or applying it. You can
call a function by putting parentheses after an expression that produces a
function value. Usually you’ll directly use the name of the binding that holds
the function. The values between the parentheses are given to the program
inside the function. In the example, the prompt function uses the string that
we give it as the text to show in the dialog box. Values given to functions are
called arguments. Different functions might need a different number or different
types of arguments.

The prompt function isn’t used much in modern web programming, mostly
because you have no control over the way the resulting dialog looks, but can
be helpful in toy programs and experiments.

The console.log function

In the examples, I used console.log to output values. Most JavaScript sys-
tems (including all modern web browsers and Node.js) provide a console.log
function that writes out its arguments to some text output device. In browsers,
the output lands in the JavaScript console. This part of the browser interface
is hidden by default, but most browsers open it when you press F12 or, on
Mac, Command-Option-I. If that does not work, search through the menus for
an item named “developer tools” or similar.

Though binding names cannot contain period characters, console.log does
have one. This is because console.log isn’t a simple binding. It is actually an

26

expression that retrieves the log property from the value held by the console
binding. We will find out exactly what this means in Chapter 4.

Return values

Showing a dialog box or writing text to the screen is a side effect. A lot of
functions are useful because of the side effects they produce. Functions may
also produce values, in which case they don’t need to have a side effect to
be useful. For example, the function Math.max takes any amount of number
arguments and gives back the greatest.

console.log(Math.max(2, 4));
// → 4

When a function produces a value, it is said to return that value. Anything
that produces a value is an expression in JavaScript, which means function
calls can be used within larger expressions. Here a call to Math.min, which is
the opposite of Math.max, is used as part of a plus expression:

console.log(Math.min(2, 4) + 100);
// → 102

The next chapter explains how to write your own functions.

Control flow

When your program contains more than one statement, the statements are
executed as if they are a story, from top to bottom. This example program
has two statements. The first one asks the user for a number, and the second,
which is executed after the first, shows the square of that number.

let theNumber = Number(prompt("Pick a number"));
console.log("Your number is the square root of " +

theNumber * theNumber);

The function Number converts a value to a number. We need that conversion
because the result of prompt is a string value, and we want a number. There
are similar functions called String and Boolean that convert values to those
types.

27

Here is the rather trivial schematic representation of straight-line control
flow:

Conditional execution

Not all programs are straight roads. We may, for example, want to create
a branching road, where the program takes the proper branch based on the
situation at hand. This is called conditional execution.

Conditional execution is created with the if keyword in JavaScript. In the
simple case, we want some code to be executed if, and only if, a certain condition
holds. We might, for example, want to show the square of the input only if the
input is actually a number.

let theNumber = Number(prompt("Pick a number"));
if (!Number.isNaN(theNumber)) {

console.log("Your number is the square root of " +
theNumber * theNumber);

}

With this modification, if you enter “parrot”, no output is shown.
The if keyword executes or skips a statement depending on the value of

a Boolean expression. The deciding expression is written after the keyword,
between parentheses, followed by the statement to execute.

The Number.isNaN function is a standard JavaScript function that returns
true only if the argument it is given is NaN. The Number function happens to
return NaN when you give it a string that doesn’t represent a valid number.
Thus, the condition translates to “unless theNumber is not-a-number, do this”.

The statement below the if is wrapped in curly braces ({ and }) in this
example. Those can be used to group any number of statements into a single
statement, called a block. You could also have omitted them in this case,
since they only hold a single statement, but to avoid having to think about
whether they are needed or not, most JavaScript programmers use them in
every wrapped statement like this. We’ll mostly follow that convention in this
book, except for the occasional one-liner.

28

if (1 + 1 == 2) console.log("It's true");
// → It's true

You often won’t just have code that executes when a condition holds true,
but also code that handles the other case. This alternate path is represented
by the second arrow in the diagram. The else keyword can be used, together
with if, to create two separate, alternative execution paths.

let theNumber = Number(prompt("Pick a number"));
if (!Number.isNaN(theNumber)) {

console.log("Your number is the square root of " +
theNumber * theNumber);

} else {
console.log("Hey. Why didn't you give me a number?");

}

If we have more than two paths to choose from, multiple if/else pairs can
be “chained” together. Here’s an example:

let num = Number(prompt("Pick a number"));

if (num < 10) {
console.log("Small");

} else if (num < 100) {
console.log("Medium");

} else {
console.log("Large");

}

The program will first check whether num is less than 10. If it is, it chooses
that branch, shows "Small", and is done. If it isn’t, it takes the else branch,
which itself contains a second if. If the second condition (< 100) holds, that
means the number is between 10 and 100, and "Medium" is shown. If it doesn’t,
the second and last else branch is chosen.

The schema for this program looks something like this:

29

while and do loops

Consider a program that outputs all even numbers from 0 to 12. One way to
write this is as follows:

console.log(0);
console.log(2);
console.log(4);
console.log(6);
console.log(8);
console.log(10);
console.log(12);

That works, but the idea of writing a program is to make something less
work, not more. If we needed all even numbers less than 1,000, this approach
would be unworkable. What we need is a way to run a piece of code multiple
times. This form of control flow is called a loop:

Looping control flow allows us to go back to some point in the program where
we were before and repeat it with our current program state. If we combine
this with a binding that counts, we can do something like this:

let number = 0;
while (number <= 12) {

console.log(number);
number = number + 2;

}
// → 0
// → 2
// … etcetera

A statement starting with the keyword while creates a loop. The word while
is followed by an expression in parentheses and then a statement, much like if.
The loop keeps entering that statement as long as the expression produces a
value that gives true when converted to Boolean.

The number binding demonstrates the way a binding can track the progress
of a program. Every time the loop repeats, number gets a value that is 2 more
than its previous value. At the beginning of every repetition, it is compared

30

with the number 12 to decide whether the program’s work is finished.
As an example that actually does something useful, we can now write a

program that calculates and shows the value of 210 (2 to the 10th power). We
use two bindings: one to keep track of our result and one to count how often
we have multiplied this result by 2. The loop tests whether the second binding
has reached 10 yet and, if not, updates both bindings.

let result = 1;
let counter = 0;
while (counter < 10) {

result = result * 2;
counter = counter + 1;

}
console.log(result);
// → 1024

The counter could also have started at 1 and checked for <= 10, but, for
reasons that will become apparent in Chapter 4, it is a good idea to get used
to counting from 0.

A do loop is a control structure similar to a while loop. It differs only on one
point: a do loop always executes its body at least once, and it starts testing
whether it should stop only after that first execution. To reflect this, the test
appears after the body of the loop:

let yourName;
do {

yourName = prompt("Who are you?");
} while (!yourName);
console.log(yourName);

This program will force you to enter a name. It will ask again and again until
it gets something that is not an empty string. Applying the ! operator will
convert a value to Boolean type before negating it, and all strings except ""
convert to true. This means the loop continues going round until you provide
a non-empty name.

Indenting Code

In the examples, I’ve been adding spaces in front of statements that are part of
some larger statement. These are not required—the computer will accept the
program just fine without them. In fact, even the line breaks in programs are

31

optional. You could write a program as a single long line if you felt like it.
The role of this indentation inside blocks is to make the structure of the

code stand out. In code where new blocks are opened inside other blocks,
it can become hard to see where one block ends and another begins. With
proper indentation, the visual shape of a program corresponds to the shape of
the blocks inside it. I like to use two spaces for every open block, but tastes
differ—some people use four spaces, and some people use tab characters. The
important thing is that each new block adds the same amount of space.

if (false != true) {
console.log("That makes sense.");
if (1 < 2) {

console.log("No surprise there.");
}

}

Most code editor programs will help by automatically indenting new lines
the proper amount.

for loops

Many loops follow the pattern seen in the while examples. First, a “counter”
binding is created to track the progress of the loop. Then comes a while loop,
usually with a test expression that checks whether the counter has reached
its end value. At the end of the loop body, the counter is updated to track
progress.

Because this pattern is so common, JavaScript and similar languages provide
a slightly shorter and more comprehensive form, the for loop:

for (let number = 0; number <= 12; number = number + 2) {
console.log(number);

}
// → 0
// → 2
// … etcetera

This program is exactly equivalent to the earlier even-number-printing exam-
ple. The only change is that all the statements that are related to the “state”
of the loop are grouped together after for.

The parentheses after a for keyword must contain two semicolons. The part
before the first semicolon initializes the loop, usually by defining a binding.

32

The second part is the expression that checks whether the loop must continue.
The final part updates the state of the loop after every iteration. In most cases,
this is shorter and clearer than a while construct.

This is the code that computes 210, using for instead of while:

let result = 1;
for (let counter = 0; counter < 10; counter = counter + 1) {

result = result * 2;
}
console.log(result);
// → 1024

Breaking Out of a Loop

Having the looping condition produce false is not the only way a loop can fin-
ish. There is a special statement called break that has the effect of immediately
jumping out of the enclosing loop.

This program illustrates the break statement. It finds the first number that
is both greater than or equal to 20 and divisible by 7.

for (let current = 20; ; current = current + 1) {
if (current % 7 == 0) {

console.log(current);
break;

}
}
// → 21

Using the remainder (%) operator is an easy way to test whether a number
is divisible by another number. If it is, the remainder of their division is zero.

The for construct in the example does not have a part that checks for the
end of the loop. This means that the loop will never stop unless the break
statement inside is executed.

If you were to remove that break statement or you accidentally write an
end condition that always produces true, your program would get stuck in an
infinite loop. A program stuck in an infinite loop will never finish running,
which is usually a bad thing.

The continue keyword is similar to break, in that it influences the progress
of a loop. When continue is encountered in a loop body, control jumps out of
the body and continues with the loop’s next iteration.

33

Updating bindings succinctly

Especially when looping, a program often needs to “update” a binding to hold
a value based on that binding’s previous value.

counter = counter + 1;

JavaScript provides a shortcut for this:

counter += 1;

Similar shortcuts work for many other operators, such as result *= 2 to
double result or counter -= 1 to count downward.

This allows us to shorten our counting example a little more.

for (let number = 0; number <= 12; number += 2) {
console.log(number);

}

For counter += 1 and counter -= 1, there are even shorter equivalents:
counter++ and counter--.

Dispatching on a value with switch

It is not uncommon for code to look like this:

if (x == "value1") action1();
else if (x == "value2") action2();
else if (x == "value3") action3();
else defaultAction();

There is a construct called switch that is intended to express such a “dis-
patch” in a more direct way. Unfortunately, the syntax JavaScript uses for
this (which it inherited from the C/Java line of programming languages) is
somewhat awkward—a chain of if statements may look better. Here is an
example:

switch (prompt("What is the weather like?")) {
case "rainy":

console.log("Remember to bring an umbrella.");
break;

34

case "sunny":
console.log("Dress lightly.");

case "cloudy":
console.log("Go outside.");
break;

default:
console.log("Unknown weather type!");
break;

}

You may put any number of case labels inside the block opened by switch.
The program will start executing at the label that corresponds to the value
that switch was given, or at default if no matching value is found. It will
continue executing, even across other labels, until it reaches a break statement.
In some cases, such as the "sunny" case in the example, this can be used to
share some code between cases (it recommends going outside for both sunny
and cloudy weather). But be careful—it is easy to forget such a break, which
will cause the program to execute code you do not want executed.

Capitalization

Binding names may not contain spaces, yet it is often helpful to use multiple
words to clearly describe what the binding represents. These are pretty much
your choices for writing a binding name with several words in it:

fuzzylittleturtle
fuzzy_little_turtle
FuzzyLittleTurtle
fuzzyLittleTurtle

The first style can be hard to read. I rather like the look of the underscores,
though that style is a little painful to type. The standard JavaScript functions,
and most JavaScript programmers, follow the bottom style—they capitalize
every word except the first. It is not hard to get used to little things like that,
and code with mixed naming styles can be jarring to read, so we follow this
convention.

In a few cases, such as the Number function, the first letter of a binding is
also capitalized. This was done to mark this function as a constructor. What
a constructor is will become clear in Chapter 6. For now, the important thing
is not to be bothered by this apparent lack of consistency.

35

Comments

Often, raw code does not convey all the information you want a program to
convey to human readers, or it conveys it in such a cryptic way that people
might not understand it. At other times, you might just want to include some
related thoughts as part of your program. This is what comments are for.

A comment is a piece of text that is part of a program but is completely
ignored by the computer. JavaScript has two ways of writing comments. To
write a single-line comment, you can use two slash characters (//) and then
the comment text after it.

let accountBalance = calculateBalance(account);
// It's a green hollow where a river sings
accountBalance.adjust();
// Madly catching white tatters in the grass.
let report = new Report();
// Where the sun on the proud mountain rings:
addToReport(accountBalance, report);
// It's a little valley, foaming like light in a glass.

A // comment goes only to the end of the line. A section of text between
/* and */ will be ignored in its entirety, regardless of whether it contains line
breaks. This is useful for adding blocks of information about a file or a chunk
of program.

/*
I first found this number scrawled on the back of one of
an old notebook. Since then, it has often dropped by,
showing up in phone numbers and the serial numbers of
products that I've bought. It obviously likes me, so I've
decided to keep it.

*/
const myNumber = 11213;

Summary

You now know that a program is built out of statements, which themselves
sometimes contain more statements. Statements tend to contain expressions,
which themselves can be built out of smaller expressions.

Putting statements after one another gives you a program that is executed

36

from top to bottom. You can introduce disturbances in the flow of control
by using conditional (if, else, and switch) and looping (while, do, and for)
statements.

Bindings can be used to file pieces of data under a name, and they are useful
for tracking state in your program. The environment is the set of bindings
that are defined. JavaScript systems always put a number of useful standard
bindings into your environment.

Functions are special values that encapsulate a piece of program. You can
invoke them by writing functionName(argument1, argument2). Such a function
call is an expression, and may produce a value.

Exercises

If you are unsure how to try your solutions to exercises, refer to the introduc-
tion.

Each exercise starts with a problem description. Read that and try to solve
the exercise. If you run into problems, consider reading the hints at the end
of the book. Full solutions to the exercises are not included in this book, but
you can find them online at eloquentjavascript.net/code. If you want to learn
something from the exercises, I recommend looking at the solutions only after
you’ve solved the exercise, or at least after you’ve attacked it long and hard
enough to have a slight headache.

Looping a triangle

Write a loop that makes seven calls to console.log to output the following
triangle:

#
##
###
####
#####
######
#######

It may be useful to know that you can find the length of a string by writing
.length after it:

let abc = "abc";
console.log(abc.length);

37

https://eloquentjavascript.net/code#2

// → 3

FizzBuzz

Write a program that uses console.log to print all the numbers from 1 to 100,
with two exceptions. For numbers divisible by 3, print "Fizz" instead of the
number, and for numbers divisible by 5 (and not 3), print "Buzz" instead.

When you have that working, modify your program to print "FizzBuzz", for
numbers that are divisible by both 3 and 5 (and still print "Fizz" or "Buzz"
for numbers divisible by only one of those).

(This is actually an interview question that has been claimed to weed out
a significant percentage of programmer candidates. So if you solved it, your
labor market value just went up.)

Chess board

Write a program that creates a string that represents an 8×8 grid, using newline
characters to separate lines. At each position of the grid there is either a space
or a "#" character. The characters should form a chess board.

Passing this string to console.log should show something like this:

#
#
#

#
#

#
#

#

When you have a program that generates this pattern, define a binding size
= 8 and change the program so that it works for any size, outputting a grid
of the given width and height.

38

“People think that computer science is the art of geniuses but the
actual reality is the opposite, just many people doing things that
build on each other, like a wall of mini stones.”

—Donald Knuth

Chapter 3

Functions

Functions are the bread and butter of JavaScript programming. The concept
of wrapping a piece of program in a value has many uses. It gives us a way
to structure larger programs, to reduce repetition, to associate names with
subprograms, and to isolate these subprograms from each other.

The most obvious application of functions is defining new vocabulary. Cre-
ating new words in prose is usually bad style. But in programming, it is
indispensable.

Typical adult English speakers have some 20,000 words in their vocabulary.
Few programming languages come with 20,000 commands built in. And the
vocabulary that is available tends to be more precisely defined, and thus less
flexible, than in human language. Therefore, we usually have to introduce new
concepts to avoid repeating ourselves too much.

Defining a function

A function definition is a regular binding where the value of the binding is
a function. For example, this code defines square to refer to a function that
produces the square of a given number:

const square = function(x) {
return x * x;

};

console.log(square(12));
// → 144

A function is created with an expression that starts with the keyword function
. Functions have a set of parameters (in this case, only x) and a body, which
contains the statements that are to be executed when the function is called.
The function body of a function created this way must always be wrapped in
braces, even when it consists of only a single statement.

39

A function can have multiple parameters or no parameters at all. In the
following example, makeNoise does not list any parameter names, whereas power
lists two:

const makeNoise = function() {
console.log("Pling!");

};

makeNoise();
// → Pling!

const power = function(base, exponent) {
let result = 1;
for (let count = 0; count < exponent; count++) {

result *= base;
}
return result;

};

console.log(power(2, 10));
// → 1024

Some functions produce a value, such as power and square, and some don’t,
such as makeNoise, whose only result is a side effect. A return statement
determines the value the function returns. When control comes across such
a statement, it immediately jumps out of the current function and gives the
returned value to the code that called the function. A return keyword without
an expression after it will cause the function to return undefined. Functions
that don’t have a return statement at all, such as makeNoise, similarly return
undefined.

Parameters to a function behave like regular bindings, but their initial values
are given by the caller of the function, not the code in the function itself.

Bindings and scopes

Each binding has a scope, which is the part of the program in which the binding
is visible. For bindings defined outside of any function or block, the scope is
the whole program—you can refer to such bindings wherever you want. These
are called global.

But bindings created for function parameters or declared inside a function
can only be referenced in that function, so they are known as local bindings.

40

Every time the function is called, new instances of these bindings are created.
This provides some isolation between functions—each function call acts in its
own little world (its local environment) and can often be understood without
knowing a lot about what’s going on in the global environment.

Bindings declared with let and const are in fact local to the block that they
are declared in, so if you create one of those inside of a loop, the code before and
after the loop cannot “see” it. In pre-2015 JavaScript, only functions created
new scopes, so old-style bindings, created with the var keyword, are visible
throughout the whole function that they appear in—or throughout the global
scope, if they are not in a function.

let x = 10;
if (true) {

let y = 20;
var z = 30;
console.log(x + y + z);
// → 60

}
// y is not visible here
console.log(x + z);
// → 40

Each scope can “look out” into the scope around it, so x is visible inside the
block in the example. The exception is when multiple bindings have the same
name—in that case, code can only see the innermost one. For example, when
the code inside the halve function refers to n, it is seeing its own n, not the
global n.

const halve = function(n) {
return n / 2;

};

let n = 10;
console.log(halve(100));
// → 50
console.log(n);
// → 10

41

Nested scope

JavaScript distinguishes not just global and local bindings. Blocks and functions
can be created inside other blocks and functions, producing multiple degrees
of locality.

For example, this function—which outputs the ingredients needed to make
a batch of hummus—has another function inside it:

const hummus = function(factor) {
const ingredient = function(amount, unit, name) {

let ingredientAmount = amount * factor;
if (ingredientAmount > 1) {

unit += "s";
}
console.log(`${ingredientAmount} ${unit} ${name}`);

};
ingredient(1, "can", "chickpeas");
ingredient(0.25, "cup", "tahini");
ingredient(0.25, "cup", "lemon juice");
ingredient(1, "clove", "garlic");
ingredient(2, "tablespoon", "olive oil");
ingredient(0.5, "teaspoon", "cumin");

};

The code inside the ingredient function can see the factor binding from
the outer function. But its local bindings, such as unit or ingredientAmount,
are not visible in the outer function.

In short, each local scope can also see all the local scopes that contain it. The
set of bindings visible inside a block is determined by the place of that block
in the program text. Each local scope can also see all the local scopes that
contain it, and all scopes can see the global scope. This approach to binding
visibility is called lexical scoping.

Functions as values

A function binding usually simply acts as a name for a specific piece of the
program. Such a binding is defined once and never changed. This makes it
easy to confuse the function and its name.

But the two are different. A function value can do all the things that other
values can do—you can use it in arbitrary expressions, not just call it. It is
possible to store a function value in a new binding, pass it as an argument to

42

a function, and so on. Similarly, a binding that holds a function is still just a
regular binding and can, if not constant, be assigned a new value, like so:

let launchMissiles = function() {
missileSystem.launch("now");

};
if (safeMode) {

launchMissiles = function() {/* do nothing */};
}

In Chapter 5, we will discuss the interesting things that can be done by
passing around function values to other functions.

Declaration notation

There is a slightly shorter way to create a function binding. When the function
keyword is used at the start of a statement, it works differently.

function square(x) {
return x * x;

}

This is a function declaration. The statement defines the binding square and
points it at the given function. It is slightly easier to write and doesn’t require
a semicolon after the function.

There is one subtlety with this form of function definition.

console.log("The future says:", future());

function future() {
return "You'll never have flying cars";

}

The preceding code works, even though the function is defined below the code
that uses it. Function declarations are not part of the regular top-to-bottom
flow of control. They are conceptually moved to the top of their scope and can
be used by all the code in that scope. This is sometimes useful because it offers
the freedom to order code in a way that seems meaningful, without worrying
about having to define all functions before they are used.

43

Arrow functions

There’s a third notation for functions, which looks very different from the
others. Instead of the function keyword, it uses an arrow (=>) made up of
equals and greater-than characters (not to be confused with the greater-than-
or-equal operator, which is written >=).

const power = (base, exponent) => {
let result = 1;
for (let count = 0; count < exponent; count++) {

result *= base;
}
return result;

};

The arrow comes after the list of parameters and is followed by the function’s
body. It expresses something like “this input (the parameters) produces this
result (the body)”.

When there is only one parameter name, you can omit the parentheses
around the parameter list. If the body is a single expression, rather than a
block in braces, that expression will be returned from the function. So these
two definitions of square do the same thing:

const square1 = (x) => { return x * x; };
const square2 = x => x * x;

When an arrow function has no parameters at all, its parameter list is just
an empty set of parentheses.

const horn = () => {
console.log("Toot");

};

There’s no very good reason to have both arrow functions and function
expressions in the language. Apart from a minor detail, which we’ll discuss
in Chapter 6, they do the same thing. Arrow functions were added in 2015,
mostly to make it possible to write small function expressions in a less verbose
way. We’ll be using them a lot in Chapter 5.

44

The call stack

The way control flows through functions is somewhat involved. Let’s take a
closer look at it. Here is a simple program that makes a few function calls:

function greet(who) {
console.log("Hello " + who);

}
greet("Harry");
console.log("Bye");

A run through this program goes roughly like this: the call to greet causes
control to jump to the start of that function (line 2). The function calls console
.log, which takes control, does its job, and then returns control to line 2. There
it reaches the end of the greet function, so it returns to the place that called it,
which is line 4. The line after that calls console.log again. After that returns,
the program reaches its end.

We could show the flow of control schematically like this:

not in function
in greet

in console.log
in greet

not in function
in console.log

not in function

Because a function has to jump back to the place that called it when it re-
turns, the computer must remember the context from which the call happened.
In one case, console.log has to return to the greet function when it is done.
In the other case, it returns to the end of the program.

The place where the computer stores this context is the call stack. Every
time a function is called, the current context is stored on top of this stack.
When a function returns, it removes the top context from the stack and uses
that context to continue execution.

Storing this stack requires space in the computer’s memory. When the stack
grows too big, the computer will fail with a message like “out of stack space”
or “too much recursion”. The following code illustrates this by asking the
computer a really hard question that causes an infinite back-and-forth between
two functions. Rather, it would be infinite, if the computer had an infinite
stack. As it is, we will run out of space, or “blow the stack”.

45

function chicken() {
return egg();

}
function egg() {

return chicken();
}
console.log(chicken() + " came first.");
// → ??

Optional Arguments

The following code is allowed and executes without any problem:

function square(x) { return x * x; }
console.log(square(4, true, "hedgehog"));
// → 16

We defined square with only one parameter. Yet when we call it with three,
the language doesn’t complain. It ignores the extra arguments and computes
the square of the first one.

JavaScript is extremely broad-minded about the number of arguments you
pass to a function. If you pass too many, the extra ones are ignored. If you
pass too few, the missing parameters get assigned the value undefined.

The downside of this is that it is possible—likely, even—that you’ll acciden-
tally pass the wrong number of arguments to functions. And no one will tell
you about it.

The upside is that this behavior can be used to allow a function to be called
with different amounts of arguments. For example, this minus function tries to
imitate the - operator by acting on either one or two arguments:

function minus(a, b) {
if (b === undefined) return -a;
else return a - b;

}

console.log(minus(10));
// → -10
console.log(minus(10, 5));
// → 5

46

If you write an = operator after a parameter, followed by an expression, the
value of that expression will replace the argument when it is not given.

For example, this version of power makes its second argument optional. If
you don’t provide it or pass the value undefined, it will default to two, and the
function will behave like square.

function power(base, exponent = 2) {
let result = 1;
for (let count = 0; count < exponent; count++) {

result *= base;
}
return result;

}

console.log(power(4));
// → 16
console.log(power(2, 6));
// → 64

In the next chapter, we will see a way in which a function body can get at
the whole list of arguments it was passed. This is helpful because it makes
it possible for a function to accept any number of arguments. For example,
console.log does this—it outputs all of the values it is given.

console.log("C", "O", 2);
// → C O 2

Closure

The ability to treat functions as values, combined with the fact that local
bindings are re-created every time a function is called, brings up an interesting
question. What happens to local bindings when the function call that created
them is no longer active?

The following code shows an example of this. It defines a function, wrapValue,
that creates a local binding. It then returns a function that accesses and returns
this local binding.

function wrapValue(n) {
let local = n;
return () => local;

}

47

let wrap1 = wrapValue(1);
let wrap2 = wrapValue(2);
console.log(wrap1());
// → 1
console.log(wrap2());
// → 2

This is allowed and works as you’d hope—both instances of the binding can
still be accessed. This situation is a good demonstration of the fact that local
bindings are created anew for every call, and different calls can’t trample on
one another’s local bindings.

This feature—being able to reference a specific instance of a local binding in
an enclosing scope—is called closure. A function that references bindings from
local scopes around it is called a closure. This behavior not only frees you from
having to worry about lifetimes of bindings but also makes it possible to use
function values in some creative ways.

With a slight change, we can turn the previous example into a way to create
functions that multiply by an arbitrary amount:

function multiplier(factor) {
return number => number * factor;

}

let twice = multiplier(2);
console.log(twice(5));
// → 10

The explicit local binding from the wrapValue example isn’t really needed
since a parameter is itself a local binding.

Thinking about programs like this takes some practice. A good mental model
is to think of function values as containing both the code in their body and the
environment in which they are created. When called, the function body sees
the environment in which it was created, not the environment in which it is
called.

In the example, multiplier is called and creates an environment in which its
factor parameter is bound to 2. The function value it returns, which is stored
in twice, remembers this environment. So when that is called, it multiplies its
argument by 2.

48

Recursion

It is perfectly okay for a function to call itself, as long as it doesn’t do it so
often that it overflows the stack. A function that calls itself is called recursive.
Recursion allows some functions to be written in a different style. Take, for
example, this alternative implementation of power:

function power(base, exponent) {
if (exponent == 0) {

return 1;
} else {

return base * power(base, exponent - 1);
}

}

console.log(power(2, 3));
// → 8

This is rather close to the way mathematicians define exponentiation and
arguably describes the concept more clearly than the looping variant. The
function calls itself multiple times with ever smaller exponents to achieve the
repeated multiplication.

But this implementation has one problem: in typical JavaScript implementa-
tions, it’s about three times slower than the looping version. Running through
a simple loop is generally cheaper than calling a function multiple times.

The dilemma of speed versus elegance is an interesting one. You can see it as
a kind of continuum between human-friendliness and machine-friendliness. Al-
most any program can be made faster by making it bigger and more convoluted.
The programmer has to decide on an appropriate balance.

In the case of the power function, the inelegant (looping) version is still fairly
simple and easy to read. It doesn’t make much sense to replace it with the
recursive version. Often, though, a program deals with such complex concepts
that giving up some efficiency in order to make the program more straightfor-
ward is helpful.

Worrying about efficiency can be a distraction. It’s yet another factor that
complicates program design, and when you’re doing something that’s already
difficult, that extra thing to worry about can be paralyzing.

Therefore, always start by writing something that’s correct and easy to un-
derstand. If you’re worried that it’s too slow—which it usually isn’t, since
most code simply isn’t executed often enough to take any significant amount
of time—you can measure afterwards and improve it if necessary.

49

Recursion is not always just an inefficient alternative to looping. Some prob-
lems really are easier to solve with recursion than with loops. Most often these
are problems that require exploring or processing several “branches”, each of
which might branch out again into even more branches.

Consider this puzzle: by starting from the number 1 and repeatedly either
adding 5 or multiplying by 3, an infinite amount of new numbers can be pro-
duced. How would you write a function that, given a number, tries to find a
sequence of such additions and multiplications that produces that number?

For example, the number 13 could be reached by first multiplying by 3 and
then adding 5 twice, whereas the number 15 cannot be reached at all.

Here is a recursive solution:

function findSolution(target) {
function find(current, history) {

if (current == target) {
return history;

} else if (current > target) {
return null;

} else {
return find(current + 5, `(${history} + 5)`) ||

find(current * 3, `(${history} * 3)`);
}

}
return find(1, "1");

}

console.log(findSolution(24));
// → (((1 * 3) + 5) * 3)

Note that this program doesn’t necessarily find the shortest sequence of op-
erations. It is satisfied when it finds any sequence at all.

It is okay if you don’t see how it works right away. Let’s work through it,
since it makes for a great exercise in recursive thinking.

The inner function find does the actual recursing. It takes two arguments:
The current number and a string that records how we reached this number. If
it finds a solution, it returns a string that shows how to get to the target. If
no solution can be found starting from this number, it returns null.

To do this, the function performs one of three actions. If the current number
is the target number, the current history is a way to reach that target, so it
is returned. If the current number is greater than the target, there’s no sense
in further exploring this branch because both adding and multiplying will only

50

make the number bigger, so it returns null. And finally, if we’re still below the
target number, the function tries both possible paths that start from the current
number by calling itself twice, once for addition and once for multiplication. If
the first call returns something that is not null, it is returned. Otherwise, the
second call is returned, regardless of whether it produces a string or null.

To better understand how this function produces the effect we’re looking for,
let’s look at all the calls to find that are made when searching for a solution
for the number 13.

find(1, "1")
find(6, "(1 + 5)")

find(11, "((1 + 5) + 5)")
find(16, "(((1 + 5) + 5) + 5)")

too big
find(33, "(((1 + 5) + 5) * 3)")

too big
find(18, "((1 + 5) * 3)")

too big
find(3, "(1 * 3)")

find(8, "((1 * 3) + 5)")
find(13, "(((1 * 3) + 5) + 5)")

found!

The indentation indicates the depth of the call stack. The first time find is
called, it starts by calling itself to explore the solution that starts with (1 + 5).
That call will further recurse to explore every continued solution that yields a
number less than or equal to the target number. Since it doesn’t find one that
hits the target, it returns null back to the first call. There the || operator
causes the call that explores (1 * 3) to happen. This search has more luck—
its first recursive call, through yet another recursive call, hits upon the target
number. That innermost call returns a string, and each of the || operators
in the intermediate calls passes that string along, ultimately returning the
solution.

Growing functions

There are two more or less natural ways for functions to be introduced into
programs.

The first is that you find yourself writing very similar code multiple times.
We’d prefer not to do that. Having more code means more space for mistakes
to hide and more material to read for people trying to understand the program.

51

So we take the repeated functionality, find a good name for it, and put it into
a function.

The second way is that you find you need some functionality that you haven’t
written yet and that sounds like it deserves its own function. You’ll start by
naming the function, and then you’ll write its body. You might even start
writing code that uses the function before you actually define the function
itself.

How difficult it is to find a good name for a function is a good indication
of how clear a concept it is that you’re trying to wrap. Let’s go through an
example.

We want to write a program that prints two numbers, the numbers of cows
and chickens on a farm, with the words Cows and Chickens after them, and
zeros padded before both numbers so that they are always three digits long.

007 Cows
011 Chickens

This asks for a function of two arguments—the number of cows and the
number of chickens. Let’s get coding.

function printFarmInventory(cows, chickens) {
let cowString = String(cows);
while (cowString.length < 3) {

cowString = "0" + cowString;
}
console.log(`${cowString} Cows`);
let chickenString = String(chickens);
while (chickenString.length < 3) {

chickenString = "0" + chickenString;
}
console.log(`${chickenString} Chickens`);

}
printFarmInventory(7, 11);

Writing .length after a string expression will give us the length of that string.
Thus, the while loops keep adding zeros in front of the number strings until
they are at least three characters long.

Mission accomplished! But just as we are about to send the farmer the code
(along with a hefty invoice), she calls and tells us she’s also started keeping
pigs, and couldn’t we please extend the software to also print pigs?

We sure can. But just as we’re in the process of copying and pasting those

52

four lines one more time, we stop and reconsider. There has to be a better way.
Here’s a first attempt:

function printZeroPaddedWithLabel(number, label) {
let numberString = String(number);
while (numberString.length < 3) {

numberString = "0" + numberString;
}
console.log(`${numberString} ${label}`);

}

function printFarmInventory(cows, chickens, pigs) {
printZeroPaddedWithLabel(cows, "Cows");
printZeroPaddedWithLabel(chickens, "Chickens");
printZeroPaddedWithLabel(pigs, "Pigs");

}

printFarmInventory(7, 11, 3);

It works! But that name, printZeroPaddedWithLabel, is a little awkward.
It conflates three things—printing, zero-padding, and adding a label—into a
single function.

Instead of lifting out the repeated part of our program wholesale, let’s try
to pick out a single concept.

function zeroPad(number, width) {
let string = String(number);
while (string.length < width) {

string = "0" + string;
}
return string;

}

function printFarmInventory(cows, chickens, pigs) {
console.log(`${zeroPad(cows, 3)} Cows`);
console.log(`${zeroPad(chickens, 3)} Chickens`);
console.log(`${zeroPad(pigs, 3)} Pigs`);

}

printFarmInventory(7, 16, 3);

A function with a nice, obvious name like zeroPadmakes it easier for someone
who reads the code to figure out what it does. And such a function is useful in

53

more situations than just this specific program. For example, you could use it
to help print nicely aligned tables of numbers.

How smart and versatile should our function be? We could write anything,
from a terribly simple function that can only pad a number to be three charac-
ters wide, to a complicated generalized number-formatting system that handles
fractional numbers, negative numbers, alignment of decimal dots, padding with
different characters, and so on.

A useful principle is to not add cleverness unless you are absolutely sure
you’re going to need it. It can be tempting to write general “frameworks” for
every bit of functionality you come across. Resist that urge. You won’t get any
real work done—you’ll just be writing code that you never use.

Functions and side effects

Functions can be roughly divided into those that are called for their side effects
and those that are called for their return value. (Though it is definitely also
possible to both have side effects and return a value.)

The first helper function in the farm example, printZeroPaddedWithLabel,
is called for its side effect: it prints a line. The second version, zeroPad, is
called for its return value. It is no coincidence that the second is useful in more
situations than the first. Functions that create values are easier to combine in
new ways than functions that directly perform side effects.

A pure function is a specific kind of value-producing function that not only
has no side effects but also doesn’t rely on side effects from other code—for
example, it doesn’t read global bindings whose value might change. A pure
function has the pleasant property that, when called with the same arguments,
it always produces the same value (and doesn’t do anything else). A call to
such a function can be substituted by its return value without changing the
meaning of the code. When you are not sure that a pure function is working
correctly, you can test it by simply calling it, and know that if it works in that
context, it will work in any context. Nonpure functions tend to require more
scaffolding to test.

Still, there’s no need to feel bad when writing functions that are not pure or
to wage a holy war to purge them from your code. Side effects are often useful.
There’d be no way to write a pure version of console.log, for example, and
console.log is good to have. Some operations are also easier to express in an
efficient way when we use side effects, so computing speed can be a reason to
avoid purity.

54

Summary

This chapter taught you how to write your own functions. The function key-
word, when used as an expression, can create a function value. When used as
a statement, it can be used to declare a binding and give it a function as its
value. Arrow functions are yet another way to create functions.

// Define f to hold a function value
const f = function(a) {

console.log(a + 2);
};

// Declare g to be a function
function g(a, b) {

return a * b * 3.5;
}

// A less verbose function value
let h = a => a % 3;

A key aspect in understanding functions is understanding scopes. Each block
creates a new scope. Parameters and bindings declared in a given scope are
local, and not visible from the outside. Bindings declared with var behave
differently—they end up in the nearest function scope or the global scope.

Separating the tasks your program performs into different functions is help-
ful. You won’t have to repeat yourself as much, and functions can help organize
a program by grouping code into pieces that do specific things.

Exercises

Minimum

The previous chapter introduced the standard function Math.min that returns
its smallest argument. We can build something like that now. Write a function
min that takes two arguments and returns their minimum.

Recursion

We’ve seen that % (the remainder operator) can be used to test whether a
number is even or odd by using % 2 to see whether it’s divisible by two. Here’s
another way to define whether a positive whole number is even or odd:

55

• Zero is even.

• One is odd.

• For any other number N, its evenness is the same as N - 2.

Define a recursive function isEven corresponding to this description. The
function should accept a single parameter (a positive, whole number) and return
a Boolean.

Test it on 50 and 75. See how it behaves on -1. Why? Can you think of a
way to fix this?

Bean counting

You can get the Nth character, or letter, from a string by writing "string"[N].
The returned value will be a string containing only one character (for example,
"b"). The first character has position zero, which causes the last one to be
found at position string.length - 1. In other words, a two-character string
has length 2, and its characters have positions 0 and 1.

Write a function countBs that takes a string as its only argument and returns
a number that indicates how many uppercase “B” characters there are in the
string.

Next, write a function called countChar that behaves like countBs, except
it takes a second argument that indicates the character that is to be counted
(rather than counting only uppercase “B” characters). Rewrite countBs to
make use of this new function.

56

“On two occasions I have been asked, ‘Pray, Mr. Babbage, if you put
into the machine wrong figures, will the right answers come out?’
[...] I am not able rightly to apprehend the kind of confusion of ideas
that could provoke such a question.”
—Charles Babbage, Passages from the Life of a Philosopher (1864)

Chapter 4

Data Structures: Objects and Arrays

Numbers, Booleans, and strings are the atoms that data structures are built
from. Many types of information require more than one atom, though. Ob-
jects allow us to group values—including other objects—together to build more
complex structures.

The programs we have built so far have been limited by the fact that they
were operating only on simple data types. This chapter will introduce basic
data structures. By the end of it, you’ll know enough to start writing useful
programs.

The chapter will work through a more or less realistic programming example,
introducing concepts as they apply to the problem at hand. The example code
will often build on functions and bindings that were introduced earlier in the
text.

The online coding sandbox for the book (eloquentjavascript.net/code) pro-
vides a way to run code in the context of a specific chapter. If you decide to
work through the examples in another environment, be sure to first download
the full code for this chapter from the sandbox page.

The weresquirrel

Every now and then, usually between eight and ten in the evening, Jacques
finds himself transforming into a small furry rodent with a bushy tail.

On one hand, Jacques is quite glad that he doesn’t have classic lycanthropy.
Turning into a squirrel does cause fewer problems than turning into a wolf.
Instead of having to worry about accidentally eating the neighbor (that would
be awkward), he worries about being eaten by the neighbor’s cat. After two
occasions where he woke up on a precariously thin branch in the crown of an
oak, naked and disoriented, he has taken to locking the doors and windows of
his room at night and putting a few walnuts on the floor to keep himself busy.

That takes care of the cat and tree problems. But Jacques would prefer to
get rid of his condition entirely. The irregular occurrences of the transformation

57

https://eloquentjavascript.net/code

make him suspect that they might be triggered by something. For a while, he
believed that it happened only on days when he had been near oak trees. But
avoiding oak trees did not stop the problem.

Switching to a more scientific approach, Jacques has started keeping a daily
log of everything he does on a given day and whether he changed form. With
this data he hopes to narrow down the conditions that trigger the transforma-
tions.

The first thing he needs is a data structure to store this information.

Data sets

To work with a chunk of digital data, we’ll first have to find a way to represent
it in our machine’s memory. Say, for example, that we want to represent a
collection of the numbers 2, 3, 5, 7, and 11.

We could get creative with strings—after all, strings can have any length, so
we can put a lot of data into them—and use "2 3 5 7 11" as our representation.
But this is awkward. You’d have to somehow extract the digits and convert
them back to numbers to access them.

Fortunately, JavaScript provides a data type specifically for storing sequences
of values. It is called an array and is written as a list of values between square
brackets, separated by commas.

let listOfNumbers = [2, 3, 5, 7, 11];
console.log(listOfNumbers[2]);
// → 5
console.log(listOfNumbers[0]);
// → 2
console.log(listOfNumbers[2 - 1]);
// → 3

The notation for getting at the elements inside an array also uses square
brackets. A pair of square brackets immediately after an expression, with
another expression inside of them, will look up the element in the left-hand
expression that corresponds to the index given by the expression in the brackets.

The first index of an array is zero, not one. So the first element is retrieved
with listOfNumbers[0]. Zero-based counting has a long tradition in technology,
and in certain ways makes a lot of sense, but it takes some getting used to.
Think of the index as the amount of items to skip, counting from the start of
the array.

58

Properties

We’ve seen a few suspicious-looking expressions like myString.length (to get
the length of a string) and Math.max (the maximum function) in past chapters.
These are expressions that access a property of some value. In the first case,
we access the length property of the value in myString. In the second, we
access the property named max in the Math object (which is a collection of
mathematics-related constants and functions).

Almost all JavaScript values have properties. The exceptions are null and
undefined. If you try to access a property on one of these nonvalues, you get
an error.

null.length;
// → TypeError: null has no properties

The two main ways to access properties in JavaScript are with a dot and with
square brackets. Both value.x and value[x] access a property on value—but
not necessarily the same property. The difference is in how x is interpreted.
When using a dot, the word after the dot is the literal name of the property.
When using square brackets, the expression between the brackets is evaluated to
get the property name. Whereas value.x fetches the property of value named
“x”, value[x] tries to evaluate the expression x and uses the result, converted
to a string, as the property name.

So if you know that the property you are interested in is called color, you say
value.color. If you want to extract the property named by the value held in
the binding i, you say value[i]. Property names are strings. They can be any
string, but the dot notation only works with names that look like valid binding
names. So if you want to access a property named 2 or John Doe, you must
use square brackets: value[2] or value["John Doe"].

The elements in an array are stored as the array’s properties, using numbers
as property names. Because you can’t use the dot notation with numbers, and
usually want to use a binding that holds the index anyway, you have to use the
bracket notation to get at them.

The length property of an array tells us how many elements it has. This
property name is a valid binding name, and we know its name in advance, so
to find the length of an array, you typically write array.length because that’s
easier to write than array["length"].

59

Methods

Both string and array objects contain, in addition to the length property, a
number of properties that hold function values.

let doh = "Doh";
console.log(typeof doh.toUpperCase);
// → function
console.log(doh.toUpperCase());
// → DOH

Every string has a toUpperCase property. When called, it will return a copy
of the string in which all letters have been converted to uppercase. There is
also toLowerCase, going the other way.

Interestingly, even though the call to toUpperCase does not pass any argu-
ments, the function somehow has access to the string "Doh", the value whose
property we called. How this works is described in Chapter 6.

Properties that contain functions are generally called methods of the value
they belong to. As in, “toUpperCase is a method of a string”.

This example demonstrates two methods you can use to manipulate arrays:

let sequence = [1, 2, 3];
sequence.push(4);
sequence.push(5);
console.log(sequence);
// → [1, 2, 3, 4, 5]
console.log(sequence.pop());
// → 5
console.log(sequence);
// → [1, 2, 3, 4]

The push method adds values to the end of an array, and the pop method
does the opposite, removing the last value in the array and returning it.

These somewhat silly names are the traditional terms for operations on a
stack. A stack, in programming, is a data structure that allows you to push
values into it and pop them out again in the opposite order, so that the thing
that was added last is removed first. These are common in programming—you
might remember the function call stack from the previous chapter, which is an
instance of the same idea.

60

Objects

Back to the weresquirrel. A set of daily log entries can be represented as an
array. But the entries do not consist of just a number or a string—each entry
needs to store a list of activities and a Boolean value that indicates whether
Jacques turned into a squirrel or not. Ideally, we would like to group these
together into a single value and then put those grouped values into an array of
log entries.

Values of the type object are arbitrary collections of properties. One way to
create an object is by using curly braces as an expression.

let day1 = {
squirrel: false,
events: ["work", "touched tree", "pizza", "running"]

};
console.log(day1.squirrel);
// → false
console.log(day1.wolf);
// → undefined
day1.wolf = false;
console.log(day1.wolf);
// → false

Inside the braces, there is a list of properties separated by commas. Each
property has a name followed by a colon and a value. When an object is written
over multiple lines, indenting it like in the example helps with readability.
Properties whose names aren’t valid binding names or valid numbers have to
be quoted.

let descriptions = {
work: "Went to work",
"touched tree": "Touched a tree"

};

This means that curly braces have two meanings in JavaScript. At the start
of a statement, they start a block of statements. In any other position, they
describe an object. Fortunately, it is rarely useful to start a statement with
a curly-brace object, so the ambiguity between these two is not much of a
problem.

Reading a property that doesn’t exist will give you the value undefined.
It is possible to assign a value to a property expression with the = operator.

61

This will replace the property’s value if it already existed or create a new
property on the object if it didn’t.

To briefly return to our tentacle model of bindings—property bindings are
similar. They grasp values, but other bindings and properties might be holding
onto those same values. You may think of objects as octopuses with any number
of tentacles, each of which has a name tattooed on it.

The delete operator cuts off a tentacle from such an octopus. It is a unary
operator that, when applied to an object property, will remove the named
property from the object. This is not a common thing to do, but it is possible.

let anObject = {left: 1, right: 2};
console.log(anObject.left);
// → 1
delete anObject.left;
console.log(anObject.left);
// → undefined
console.log("left" in anObject);
// → false
console.log("right" in anObject);
// → true

The binary in operator, when applied to a string and an object, tells you
whether that object has a property with that name. The difference between
setting a property to undefined and actually deleting it is that, in the first
case, the object still has the property (it just doesn’t have a very interesting
value), whereas in the second case the property is no longer present and in will
return false.

To find out what properties an object has, you can use the Object.keys
function. You give it an object, and it returns an array of strings—the object’s
property names.

console.log(Object.keys({x: 0, y: 0, z: 2}));
// → ["x", "y", "z"]

There’s an Object.assign function that copies all properties from one object
into another.

let objectA = {a: 1, b: 2};
Object.assign(objectA, {b: 3, c: 4});
console.log(objectA);
// → {a: 1, b: 3, c: 4}

62

Arrays, then, are just a kind of object specialized for storing sequences of
things. If you evaluate typeof [], it produces "object". You can see them as
long, flat octopuses with all their tentacles in a neat row, labeled with numbers.

We will represent Jacques’ journal as an array of objects.

let journal = [
{events: ["work", "touched tree", "pizza",

"running", "television"],
squirrel: false},

{events: ["work", "ice cream", "cauliflower",
"lasagna", "touched tree", "brushed teeth"],

squirrel: false},
{events: ["weekend", "cycling", "break", "peanuts",

"beer"],
squirrel: true},

/* and so on... */
];

Mutability

We will get to actual programming real soon now. First there’s one more piece
of theory to understand.

We saw that object values can be modified. The types of values discussed in
earlier chapters, such as numbers, strings, and Booleans, are all immutable—it
is impossible to change values of those types. You can combine them and derive
new values from them, but when you take a specific string value, that value
will always remain the same. The text inside it cannot be changed. If you
have a string that contains "cat", it is not possible for other code to change a
character in your string to make it spell "rat".

Objects work differently. You can change their properties, causing a single
object value to have different content at different times.

When we have two numbers, 120 and 120, we can consider them precisely
the same number, whether or not they refer to the same physical bits. With
objects, there is a difference between having two references to the same object
and having two different objects that contain the same properties. Consider
the following code:

let object1 = {value: 10};
let object2 = object1;

63

let object3 = {value: 10};

console.log(object1 == object2);
// → true
console.log(object1 == object3);
// → false

object1.value = 15;
console.log(object2.value);
// → 15
console.log(object3.value);
// → 10

The object1 and object2 bindings grasp the same object, which is why
changing object1 also changes the value of object2. They are said to have the
same identity. The binding object3 points to a different object, which initially
contains the same properties as object1 but lives a separate life.

Bindings can also be changeable or constant, but this is separate from the
way their values behave. Even though number values don’t change, you can
use a let binding to keep track of a changing number by changing the value
the binding points at. Similarly, though a const binding to an object can itself
not be changed and will continue to point at the same object, the contents of
that object might change.

const score = {visitors: 0, home: 0};
// This is okay
score.visitors = 1;
// This isn't allowed
score = {visitors: 1, home: 1};

When you compare objects with JavaScript’s == operator, it compares by
identity: It will produce true only if both objects are precisely the same value.
Comparing different objects will return false, even if they have identical prop-
erties. There is no “deep” comparison operation built into JavaScript, which
compares objects by contents, but it is possible to write it yourself (which is
one of the exercises at the end of this chapter).

The lycanthrope's log

So Jacques starts up his JavaScript interpreter and sets up the environment he
needs to keep his journal.

64

let journal = [];

function addEntry(events, squirrel) {
journal.push({events, squirrel});

}

Note that the object added to the journal looks a little odd. Instead of
declaring properties like events: events, it just gives a property name. This
is a short-hand that means the same thing—if a property name in curly brace
notation isn’t followed by a value, its value is taken from the binding with the
same name.

So then, every evening at ten—or sometimes the next morning, after climbing
down from the top shelf of his bookcase—Jacques records the day.

addEntry(["work", "touched tree", "pizza", "running",
"television"], false);

addEntry(["work", "ice cream", "cauliflower", "lasagna",
"touched tree", "brushed teeth"], false);

addEntry(["weekend", "cycling", "break", "peanuts",
"beer"], true);

Once he has enough data points, he intends to use statistics to find out which
of these events may be related to the squirrelifications.

Correlation is a measure of dependence between statistical variables. A sta-
tistical variable is not quite the same as a programming variable. In statistics
you typically have a set of measurements, and each variable is measured for
every measurement. Correlation between variables is usually expressed as a
value that ranges from -1 to 1. Zero correlation means the variables are not
related. A correlation of one indicates that the two are perfectly related—if
you know one, you also know the other. Negative one also means that the
variables are perfectly related but that they are opposites—when one is true,
the other is false.

To compute the measure of correlation between two Boolean variables, we
can use the phi coefficient (φ). This is a formula whose input is a frequency
table containing the amount of times the different combinations of the variables
were observed. The output of the formula is a number between -1 and 1 that
describes the correlation.

We could take the event of eating pizza and put that in a frequency table
like this, where each number indicates the amount of times that combination
occurred in our measurements:

65

No squirrel, no pizza76

Squirrel, no pizza 4

No squirrel, pizza 9

Squirrel, pizza 1

If we call that table n, we can compute φ using the following formula:

φ =
n11n00 − n10n01√

n1•n0•n•1n•0
(4.1)

(If at this point you’re putting the book down to focus on a terrible flashback
to 10th grade math class—hold on! I do not intend to torture you with endless
pages of cryptic notation—just this one formula for now. And even with this
one, all we do is turn it into JavaScript.)

The notation n01 indicates the number of measurements where the first vari-
able (squirrelness) is false (0) and the second variable (pizza) is true (1). In
the pizza table, n01 is 9.

The value n1• refers to the sum of all measurements where the first variable
is true, which is 5 in the example table. Likewise, n•0 refers to the sum of the
measurements where the second variable is false.

So for the pizza table, the part above the division line (the dividend) would
be 1×76−4×9 = 40, and the part below it (the divisor) would be the square
root of 5×85×10×80, or

√
340000. This comes out to φ ≈ 0.069, which is tiny.

Eating pizza does not appear to have influence on the transformations.

Computing correlation

We can represent a two-by-two table in JavaScript with a four-element array
([76, 9, 4, 1]). We could also use other representations, such as an array con-
taining two two-element arrays ([[76, 9], [4, 1]]) or an object with property
names like "11" and "01", but the flat array is simple and makes the expres-
sions that access the table pleasantly short. We’ll interpret the indices to the
array as two-bit binary numbers, where the leftmost (most significant) digit
refers to the squirrel variable and the rightmost (least significant) digit refers
to the event variable. For example, the binary number 10 refers to the case

66

where Jacques did turn into a squirrel, but the event (say, “pizza”) didn’t oc-
cur. This happened four times. And since binary 10 is 2 in decimal notation,
we will store this number at index 2 of the array.

This is the function that computes the φ coefficient from such an array:

function phi(table) {
return (table[3] * table[0] - table[2] * table[1]) /

Math.sqrt((table[2] + table[3]) *
(table[0] + table[1]) *
(table[1] + table[3]) *
(table[0] + table[2]));

}

console.log(phi([76, 9, 4, 1]));
// → 0.068599434

This is a direct translation of the φ formula into JavaScript. Math.sqrt
is the square root function, as provided by the Math object in a standard
JavaScript environment. We have to add two fields from the table to get fields
like n1• because the sums of rows or columns are not stored directly in our data
structure.

Jacques kept his journal for three months. The resulting data set is available
in the coding sandbox for this chapter (eloquentjavascript.net/code#4), where
it is stored in the JOURNAL binding, and in a downloadable file.

To extract a two-by-two table for a specific event from the journal, we must
loop over all the entries and tally how many times the event occurs in relation
to squirrel transformations.

function tableFor(event, journal) {
let table = [0, 0, 0, 0];
for (let i = 0; i < journal.length; i++) {

let entry = journal[i], index = 0;
if (entry.events.includes(event)) index += 1;
if (entry.squirrel) index += 2;
table[index] += 1;

}
return table;

}

console.log(tableFor("pizza", JOURNAL));
// → [76, 9, 4, 1]

67

https://eloquentjavascript.net/code#4
https://eloquentjavascript.net/code#4
https://eloquentjavascript.net/code/journal.js

Arrays have an includes method that checks whether a given value exists in
the array. The function uses that to determine whether the event name it is
interested in is part of the event list for a given day.

The body of the loop in tableFor figures out which box in the table each
journal entry falls into by checking whether the entry contains the specific event
it’s interested in and whether the event happens alongside a squirrel incident.
The loop then adds one to the correct box in the table.

We now have the tools we need to compute individual correlations. The only
step remaining is to find a correlation for every type of event that was recorded
and see whether anything stands out.

Array loops

In the tableFor function, there’s a loop like this:

for (let i = 0; i < JOURNAL.length; i++) {
let entry = JOURNAL[i];
// Do something with entry

}

This kind of loop is common in classical JavaScript—going over arrays one
element at a time is something that comes up a lot, and to do that you’d run
a counter over the length of the array and pick out each element in turn.

There is a simpler way to write such loops in modern JavaScript.

for (let entry of JOURNAL) {
console.log(`${entry.events.length} events.`);

}

When a for loop looks like this, with the word of after a variable definition,
it will loop over the elements of the value given after of. This works not only
for arrays, but also for strings and some other data structures. We’ll discuss
how it works in Chapter 6.

The final analysis

We need to compute a correlation for every type of event that occurs in the
data set. To do that, we first need to find every type of event.

function journalEvents(journal) {

68

let events = [];
for (let entry of journal) {

for (let event of entry.events) {
if (!events.includes(event)) {

events.push(event);
}

}
}
return events;

}

console.log(journalEvents(JOURNAL));
// → ["carrot", "exercise", "weekend", "bread", …]

By going over all the events, and adding those that aren’t already in there
to the events array, the function collects every type of event.

Using that, we can see all the correlations.

for (let event of journalEvents(JOURNAL)) {
console.log(event + ":", phi(tableFor(event, JOURNAL)));

}
// → carrot: 0.0140970969
// → exercise: 0.0685994341
// → weekend: 0.1371988681
// → bread: -0.0757554019
// → pudding: -0.0648203724
// and so on...

Most correlations seem to lie close to zero. Eating carrots, bread, or pudding
apparently does not trigger squirrel-lycanthropy. It does seem to occur some-
what more often on weekends. Let’s filter the results to show only correlations
greater than 0.1 or less than -0.1.

for (let event of journalEvents(JOURNAL)) {
let correlation = phi(tableFor(event, JOURNAL));
if (correlation > 0.1 || correlation < -0.1) {

console.log(event + ":", correlation);
}

}
// → weekend: 0.1371988681
// → brushed teeth: -0.3805211953
// → candy: 0.1296407447
// → work: -0.1371988681

69

// → spaghetti: 0.2425356250
// → reading: 0.1106828054
// → peanuts: 0.5902679812

A-ha! There are two factors with a correlation that’s clearly stronger than
the others. Eating peanuts has a strong positive effect on the chance of turning
into a squirrel, whereas brushing his teeth has a significant negative effect.

Interesting. Let’s try something.

for (let entry of JOURNAL) {
if (entry.events.includes("peanuts") &&

!entry.events.includes("brushed teeth")) {
entry.events.push("peanut teeth");

}
}
console.log(phi(tableFor("peanut teeth", JOURNAL)));
// → 1

That’s a strong result. The phenomenon occurs precisely when Jacques eats
peanuts and fails to brush his teeth. If only he weren’t such a slob about dental
hygiene, he’d have never even noticed his affliction.

Knowing this, Jacques stops eating peanuts altogether and finds that his
transformations don’t come back.

For a few years, things go great for Jacques. But at some point he loses his
job. Because he lives in a nasty country where having no job means having
no medical services, he is forced to take employment with a circus where he
performs as The Incredible Squirrelman, stuffing his mouth with peanut butter
before every show.

One day, fed up with this pitiful existence, Jacques fails to change back into
his human form, hops through a crack in the circus tent, and vanishes into the
forest. He is never seen again.

Further arrayology

Before finishing the chapter, I want to introduce you to a few more object-
related concepts. I’ll start by introducing some generally useful array methods.

We saw push and pop, which add and remove elements at the end of an array,
earlier in this chapter. The corresponding methods for adding and removing
things at the start of an array are called unshift and shift.

70

let todoList = [];
function remember(task) {

todoList.push(task);
}
function getTask() {

return todoList.shift();
}
function rememberUrgently(task) {

todoList.unshift(task);
}

That program manages a queue of tasks. You add tasks to the end of the
queue by calling remember("groceries"), and when you’re ready to do some-
thing, you call getTask() to get (and remove) the front item from the queue.
The rememberUrgently function also adds a task but adds it to the front instead
of the back of the queue.

To search for a specific value, arrays provide an indexOf method. It searches
through the array from the start to the end and returns the index at which the
requested value was found—or -1 if it wasn’t found. To search from the end
instead of the start, there’s a similar method called lastIndexOf.

console.log([1, 2, 3, 2, 1].indexOf(2));
// → 1
console.log([1, 2, 3, 2, 1].lastIndexOf(2));
// → 3

Both indexOf and lastIndexOf take an optional second argument that indi-
cates where to start searching.

Another fundamental array method is slice, which takes start and end in-
dices and returns an array that has only the elements between them. The start
index is inclusive, the end index exclusive.

console.log([0, 1, 2, 3, 4].slice(2, 4));
// → [2, 3]
console.log([0, 1, 2, 3, 4].slice(2));
// → [2, 3, 4]

When the end index is not given, slice will take all of the elements after the
start index. You can also omit the start index to copy the entire array.

The concat method can be used to glue arrays together to create a new array,
similar to what the + operator does for strings.

71

The following example shows both concat and slice in action. It takes an
array and an index, and it returns a new array that is a copy of the original
array with the element at the given index removed:

function remove(array, index) {
return array.slice(0, index)

.concat(array.slice(index + 1));
}
console.log(remove(["a", "b", "c", "d", "e"], 2));
// → ["a", "b", "d", "e"]

If you pass concat an argument that is not an array, that value will be added
to the new array as if it were a one-element array.

Strings and their properties

We can read properties like length and toUpperCase from string values. But if
you try to add a new property, it doesn’t stick.

let kim = "Kim";
kim.age = 88;
console.log(kim.age);
// → undefined

Values of type string, number, and Boolean are not objects, and though
the language doesn’t complain if you try to set new properties on them, it
doesn’t actually store those properties. As mentioned before, such values are
immutable and cannot be changed.

But these types do have built-in properties. Every string value has a number
of methods. Some very useful ones are slice and indexOf, which resemble the
array methods of the same name.

console.log("coconuts".slice(4, 7));
// → nut
console.log("coconut".indexOf("u"));
// → 5

One difference is that a string’s indexOf can search for a string containing
more than one character, whereas the corresponding array method looks only
for a single element.

72

console.log("one two three".indexOf("ee"));
// → 11

The trim method removes whitespace (spaces, newlines, tabs, and similar
characters) from the start and end of a string.

console.log(" okay \n ".trim());
// → okay

The zeroPad function from the previous chapter also exists as a method.
It is called padStart and takes the desired length and padding character as
arguments.

console.log(String(6).padStart(3, "0"));
// → 006

You can split a string on every occurrence of another string with split, and
join it together again with join.

let sentence = "Secretarybirds specialize in stomping";
let words = sentence.split(" ");
console.log(words);
// → ["Secretarybirds", "specialize", "in", "stomping"]
console.log(words.join(". "));
// → Secretarybirds. specialize. in. stomping

A string can be repeated with the repeat method, which creates a new string
containing multiple copies of the original string, glued together.

console.log("LA".repeat(3));
// → LALALA

We have already seen the string type’s length property. Accessing the indi-
vidual characters in a string looks like accessing array elements (with a caveat
that we’ll discuss in Chapter 5).

let string = "abc";
console.log(string.length);
// → 3
console.log(string[1]);
// → b

73

Rest parameters

It can be useful for a function to accept any number of arguments. For example,
Math.max computes the maximum of all the arguments it is given.

To write such a function, you put three dots before the function’s last pa-
rameter, like this:

function max(...numbers) {
let result = -Infinity;
for (let number of numbers) {

if (number > result) result = number;
}
return result;

}
console.log(max(4, 1, 9, -2));
// → 9

When such a function is called, the rest parameter is bound to an array
containing all further arguments. If there are other parameters before it, their
values aren’t part of that array. When, as in max, it is the only parameter, it
will hold all arguments.

You can use a similar three-dot notation to call a function with an array of
arguments.

let numbers = [5, 1, 7];
console.log(max(...numbers));
// → 7

This “spreads” out the array into the function call, passing its elements as
separate arguments. It is possible to include an array like that along with other
arguments, as in max(9, ...numbers, 2).

Square bracket array notation similarly allows the triple-dot operator to
spread another array into the new array:

let words = ["never", "fully"];
console.log(["will", ...words, "understand"]);
// → ["will", "never", "fully", "understand"]

74

The Math object

As we’ve seen, Math is a grab-bag of number-related utility functions, such as
Math.max (maximum), Math.min (minimum), and Math.sqrt (square root).

The Math object is used as a container to group a bunch of related function-
ality. There is only one Math object, and it is almost never useful as a value.
Rather, it provides a namespace so that all these functions and values do not
have to be global bindings.

Having too many global bindings “pollutes” the namespace. The more names
have been taken, the more likely you are to accidentally overwrite the value of
some existing binding. For example, it’s not unlikely to want to name some-
thing max in one of your programs. Since JavaScript’s built-in max function is
tucked safely inside the Math object, we don’t have to worry about overwriting
it.

Many languages will stop you, or at least warn you, when you are defining
a binding with a name that is already taken. JavaScript does this for bindings
you declared with let or const but—perversely—not for standard bindings,
nor for bindings declared with var or function.

Back to the Math object. If you need to do trigonometry, Math can help. It
contains cos (cosine), sin (sine), and tan (tangent), as well as their inverse
functions, acos, asin, and atan, respectively. The number π (pi)—or at least
the closest approximation that fits in a JavaScript number—is available as Math
.PI. There is an old programming tradition of writing the names of constant
values in all caps.

function randomPointOnCircle(radius) {
let angle = Math.random() * 2 * Math.PI;
return {x: radius * Math.cos(angle),

y: radius * Math.sin(angle)};
}
console.log(randomPointOnCircle(2));
// → {x: 0.3667, y: 1.966}

If sines and cosines are not something you are familiar with, don’t worry.
When they are used in this book, in Chapter 14, I’ll explain them.

The previous example used Math.random. This is a function that returns a
new pseudorandom number between zero (inclusive) and one (exclusive) every
time you call it.

console.log(Math.random());
// → 0.36993729369714856

75

console.log(Math.random());
// → 0.727367032552138
console.log(Math.random());
// → 0.40180766698904335

Though computers are deterministic machines—they always react the same
way if given the same input—it is possible to have them produce numbers
that appear random. To do that, the machine keeps some hidden value, and
whenever you ask for a new random number, it performs complicated com-
putations on this hidden value to create a new value. It stores a new value
and returns some number derived from it. That way, it can produce ever new,
hard-to-predict numbers in a way that seems random.

If we want a whole random number instead of a fractional one, we can use
Math.floor (which rounds down to the nearest whole number) on the result of
Math.random.

console.log(Math.floor(Math.random() * 10));
// → 2

Multiplying the random number by 10 gives us a number greater than or
equal to zero and below 10. Since Math.floor rounds down, this expression
will produce, with equal chance, any number from 0 through 9.

There are also the functions Math.ceil (for “ceiling”, which rounds up to
a whole number), Math.round (to the nearest whole number), and Math.abs,
which takes the absolute value of a number, meaning it negates negative values
but leaves positive ones as they are.

Destructuring

Let’s go back to the phi function for a moment:

function phi(table) {
return (table[3] * table[0] - table[2] * table[1]) /

Math.sqrt((table[2] + table[3]) *
(table[0] + table[1]) *
(table[1] + table[3]) *
(table[0] + table[2]));

}

One of the reasons this function is awkward to read is that we have a binding

76

pointing at our array, but we’d much prefer to have bindings for the elements
of the array, that is, let n00 = table[0] and so on. Fortunately, there is a
succinct way to do this in JavaScript.

function phi([n00, n01, n10, n11]) {
return (n11 * n00 - n10 * n01) /

Math.sqrt((n10 + n11) * (n00 + n01) *
(n01 + n11) * (n00 + n10));

}

This also works for bindings created with let, var, or const. If you know the
value you are binding is an array, you can use square brackets to “look inside”
of the value, binding its contents.

A similar trick works for objects, using braces instead of square brackets.

let {name} = {name: "Faraji", age: 23};
console.log(name);
// → Faraji

Note that if you try to destructure null or undefined, you get an error, much
as you would if you directly try to access a property of those values.

JSON

Because properties only grasp their value, rather than contain it, objects and
arrays are stored in the computer’s memory as sequences of bits holding the
addresses—the place in memory—of their contents. So an array with another
array inside of it consists of (at least) one memory region for the inner array,
and another for the outer array, containing (among other things) a binary
number that represents the position of the inner array.

If you want to save data in a file for later, or send it to another computer over
the network, you have to somehow convert these tangles of memory addresses
to a description that can be stored or sent. You could send over your entire
computer memory along with the address of the value you’re interested in, I
suppose, but that doesn’t seem like the best approach.

What we can do is serialize the data. That means it is converted into a
flat description. A popular serialization format is called JSON (pronounced
“Jason”), which stands for JavaScript Object Notation. It is widely used as a
data storage and communication format on the Web, even in languages other
than JavaScript.

77

JSON looks similar to JavaScript’s way of writing arrays and objects, with a
few restrictions. All property names have to be surrounded by double quotes,
and only simple data expressions are allowed—no function calls, bindings, or
anything that involves actual computation. Comments are not allowed in
JSON.

A journal entry might look like this when represented as JSON data:

{
"squirrel": false,
"events": ["work", "touched tree", "pizza", "running"]

}

JavaScript gives us the functions JSON.stringify and JSON.parse to convert
data to and from this format. The first takes a JavaScript value and returns
a JSON-encoded string. The second takes such a string and converts it to the
value it encodes.

let string = JSON.stringify({squirrel: false,
events: ["weekend"]});

console.log(string);
// → {"squirrel":false,"events":["weekend"]}
console.log(JSON.parse(string).events);
// → ["weekend"]

Summary

Objects and arrays (which are a specific kind of object) provide ways to group
several values into a single value. Conceptually, this allows us to put a bunch
of related things in a bag and run around with the bag, instead of wrapping
our arms around all of the individual things and trying to hold on to them
separately.

Most values in JavaScript have properties, the exceptions being null and
undefined. Properties are accessed using value.prop or value["prop"]. Ob-
jects tend to use names for their properties and store more or less a fixed set
of them. Arrays, on the other hand, usually contain varying amounts of con-
ceptually identical values and use numbers (starting from 0) as the names of
their properties.

There are some named properties in arrays, such as length and a number of
methods. Methods are functions that live in properties and (usually) act on

78

the value they are a property of.
You can iterate over arrays using a special kind of for loop—for (let

element of array).

Exercises

The sum of a range

The introduction of this book alluded to the following as a nice way to compute
the sum of a range of numbers:

console.log(sum(range(1, 10)));

Write a range function that takes two arguments, start and end, and returns
an array containing all the numbers from start up to (and including) end.

Next, write a sum function that takes an array of numbers and returns the
sum of these numbers. Run the example program and see whether it does
indeed return 55.

As a bonus assignment, modify your range function to take an optional third
argument that indicates the “step” value used when building the array. If no
step is given, the elements go up by increments of one, corresponding to the
old behavior. The function call range(1, 10, 2) should return [1, 3, 5, 7,
9]. Make sure it also works with negative step values so that range(5, 2, -1)
produces [5, 4, 3, 2].

Reversing an array

Arrays have a reversemethod which changes the array by inverting the order in
which its elements appear. For this exercise, write two functions, reverseArray
and reverseArrayInPlace. The first, reverseArray, takes an array as argument
and produces a new array that has the same elements in the inverse order. The
second, reverseArrayInPlace, does what the reverse method does: it modifies
the array given as argument by reversing its elements. Neither may use the
standard reverse method.

Thinking back to the notes about side effects and pure functions in the
previous chapter, which variant do you expect to be useful in more situations?
Which one runs faster?

79

A list

Objects, as generic blobs of values, can be used to build all sorts of data struc-
tures. A common data structure is the list (not to be confused with array). A
list is a nested set of objects, with the first object holding a reference to the
second, the second to the third, and so on.

let list = {
value: 1,
rest: {

value: 2,
rest: {

value: 3,
rest: null

}
}

};

The resulting objects form a chain, like this:

value: 1
rest:

value: 2
rest:

value: 3
rest: null

A nice thing about lists is that they can share parts of their structure. For
example, if I create two new values {value: 0, rest: list} and {value: -1,
rest: list} (with list referring to the binding defined earlier), they are both
independent lists, but they share the structure that makes up their last three
elements. The original list is also still a valid three-element list.

Write a function arrayToList that builds up a list structure like the one
shown when given [1, 2, 3] as argument. Also write a listToArray function
that produces an array from a list. Then add a helper function prepend, which
takes an element and a list and creates a new list that adds the element to the
front of the input list, and nth, which takes a list and a number and returns
the element at the given position in the list (with zero referring to the first
element) or undefined when there is no such element.

If you haven’t already, also write a recursive version of nth.

Deep comparison

The == operator compares objects by identity. But sometimes you’d prefer to
compare the values of their actual properties.

80

Write a function deepEqual that takes two values and returns true only if they
are the same value or are objects with the same properties, where the values
of the properties are equal when compared with a recursive call to deepEqual.

To find out whether values should be compared directly (use the === operator
for that) or have their properties compared, you can use the typeof operator.
If it produces "object" for both values, you should do a deep comparison.
But you have to take one silly exception into account: because of a historical
accident, typeof null also produces "object".

The Object.keys function will be useful when you need to go over the prop-
erties of objects to compare them.

81

“There are two ways of constructing a software design: One way is
to make it so simple that there are obviously no deficiencies, and the
other way is to make it so complicated that there are no obvious
deficiencies.”

—C.A.R. Hoare, 1980 ACM Turing Award Lecture

Chapter 5

Higher-Order Functions

A large program is a costly program, and not just because of the time it takes
to build. Size almost always involves complexity, and complexity confuses
programmers. Confused programmers, in turn, introduce mistakes (bugs) into
programs. A large program then provides a lot of space for these bugs to hide,
making them hard to find.

Let’s briefly go back to the final two example programs in the introduction.
The first is self-contained and six lines long:

let total = 0, count = 1;
while (count <= 10) {

total += count;
count += 1;

}
console.log(total);

The second relies on two external functions and is one line long:

console.log(sum(range(1, 10)));

Which one is more likely to contain a bug?
If we count the size of the definitions of sum and range, the second program

is also big—even bigger than the first. But still, I’d argue that it is more likely
to be correct.

It is more likely to be correct because the solution is expressed in a vocabulary
that corresponds to the problem being solved. Summing a range of numbers
isn’t about loops and counters. It is about ranges and sums.

The definitions of this vocabulary (the functions sum and range) will still
involve loops, counters, and other incidental details. But because they are
expressing simpler concepts than the program as a whole, they are easier to
get right.

82

Abstraction

In the context of programming, these kinds of vocabularies are usually called
abstractions. Abstractions hide details and give us the ability to talk about
problems at a higher (or more abstract) level.

As an analogy, compare these two recipes for pea soup:

Put 1 cup of dried peas per person into a container. Add water
until the peas are well covered. Leave the peas in water for at least
12 hours. Take the peas out of the water and put them in a cooking
pan. Add 4 cups of water per person. Cover the pan and keep the
peas simmering for two hours. Take half an onion per person. Cut
it into pieces with a knife. Add it to the peas. Take a stalk of
celery per person. Cut it into pieces with a knife. Add it to the
peas. Take a carrot per person. Cut it into pieces. With a knife!
Add it to the peas. Cook for 10 more minutes.

And the second recipe:

Per person: 1 cup dried split peas, half a chopped onion, a stalk of
celery, and a carrot.
Soak peas for 12 hours. Simmer for 2 hours in 4 cups of water (per
person). Chop and add vegetables. Cook for 10 more minutes.

The second is shorter and easier to interpret. But you do need to understand
a few more cooking-related words—soak, simmer, chop, and, I guess, vegetable.

When programming, we can’t rely on all the words we need to be waiting for
us in the dictionary. Thus you might fall into the pattern of the first recipe—
work out the precise steps the computer has to perform, one by one, blind to
the higher-level concepts that they express.

It is a useful skill, in programming, to notice when you are working at too
low a level of abstraction.

Abstracting repetition

Plain functions, as we’ve seen them so far, are a good way to build abstractions.
But sometimes they fall short.

It is common for a program to do something a given number of times. You
can write a for loop for that, like this:

83

for (let i = 0; i < 10; i++) {
console.log(i);

}

Can we abstract “doing something N times” as a function? Well, it’s easy
to write a function that calls console.log N times.

function repeatLog(n) {
for (let i = 0; i < n; i++) {

console.log(i);
}

}

But what if we want to do something other than logging the numbers? Since
“doing something” can be represented as a function and functions are just
values, we can pass our action as a function value.

function repeat(n, action) {
for (let i = 0; i < n; i++) {

action(i);
}

}

repeat(3, console.log);
// → 0
// → 1
// → 2

You don’t have to pass a predefined function to repeat. Often, you’d want
to create a function value on the spot instead.

let labels = [];
repeat(5, i => {

labels.push(`Unit ${i + 1}`);
});
console.log(labels);
// → ["Unit 1", "Unit 2", "Unit 3", "Unit 4", "Unit 5"]

This is structured a little like a for loop—it first describes the kind of loop
and then provides a body. However, the body is now written as a function
value, which is wrapped in the parentheses of the call to repeat. This is why
it has to be closed with the closing brace and closing parenthesis. In cases like

84

this example, where the body is a single small expression, you could also omit
the curly braces and write the loop on a single line.

Higher-order functions

Functions that operate on other functions, either by taking them as arguments
or by returning them, are called higher-order functions. Since we have already
seen that functions are regular values, there is nothing particularly remarkable
about the fact that such functions exist. The term comes from mathemat-
ics, where the distinction between functions and other values is taken more
seriously.

Higher-order functions allow us to abstract over actions, not just values.
They come in several forms. For example, you can have functions that create
new functions.

function greaterThan(n) {
return m => m > n;

}
let greaterThan10 = greaterThan(10);
console.log(greaterThan10(11));
// → true

And you can have functions that change other functions.

function noisy(f) {
return (...args) => {

console.log("calling with", args);
let result = f(...args);
console.log("called with", args, ", returned", result);
return result;

};
}
noisy(Math.min)(3, 2, 1);
// → calling with [3, 2, 1]
// → called with [3, 2, 1] , returned 1

You can even write functions that provide new types of control flow.

function unless(test, then) {
if (!test) then();

}

85

repeat(3, n => {
unless(n % 2 == 1, () => {

console.log(n, "is even");
});

});
// → 0 is even
// → 2 is even

There is a built-in array method, forEach that provides something like a
for/of loop as a higher-order function.

["A", "B"].forEach(l => console.log(l));
// → A
// → B

Script data set

One area where higher-order functions shine is data processing. In order to
process data, we’ll need some actual data. This chapter will use a data set
about scripts—writing systems such as Latin, Cyrillic, or Arabic.

Remember Unicode from Chapter 1, the system that assigns a number to
each character in written language. Most of these characters are associated
with a specific script. The standard contains 140 different scripts—81 are still
in use today, and 59 are historic.

Though I can only fluently read Latin characters, I appreciate the fact that
people are writing texts in at least 80 other writing systems, many of which I
wouldn’t even recognize. For example, here’s a sample of Tamil handwriting.

The example data set contains some pieces of information about the 140
scripts defined in Unicode. It is available in the coding sandbox for this chapter
(eloquentjavascript.net/code#5) as the SCRIPTS binding. The binding contains
an array of objects, each of which describes a script.

{
name: "Coptic",
ranges: [[994, 1008], [11392, 11508], [11513, 11520]],

86

https://eloquentjavascript.net/code#5
https://eloquentjavascript.net/code#5

direction: "ltr",
year: -200,
living: false,
link: "https://en.wikipedia.org/wiki/Coptic_alphabet"

}

Such an object tells you the name of the script, the Unicode ranges assigned
to it, the direction in which it is written, the (approximate) origin time, whether
it is still in use, and a link to more information. Direction may be "ltr" for left-
to-right, "rtl" for right-to-left (the way Arabic and Hebrew text are written),
or "ttb" for top-to-bottom (as with Mongolian writing).

The ranges property contains an array of Unicode character ranges, each
of which is a two-element array containing a lower and upper bound. Any
character codes within these ranges are assigned to the script. The lower bound
is inclusive (code 994 is a Coptic character), and the upper bound non-inclusive
(code 1008 isn’t).

Filtering arrays

To find the scripts in the data set that are still in use, the following function
might be helpful. It filters out the elements in an array that don’t pass a test:

function filter(array, test) {
let passed = [];
for (let element of array) {

if (test(element)) {
passed.push(element);

}
}
return passed;

}

console.log(filter(SCRIPTS, script => script.living));
// → [{name: "Adlam", …}, …]

The function uses the argument named test, a function value, to fill a “gap”
in the computation—the process of deciding which elements to collect.

Note how the filter function, rather than deleting elements from the ex-
isting array, builds up a new array with only the elements that pass the test.
This function is pure. It does not modify the array it is given.

Like forEach, filter is a standard array method. The example defined the

87

function only in order to show what it does internally. From now on, we’ll use
it like this instead:

console.log(SCRIPTS.filter(s => s.direction == "ttb"));
// → [{name: "Mongolian", …}, …]

Transforming with map

Say we have an array of objects representing scripts, produced by filtering the
SCRIPTS array somehow. But we want an array of names, which is easier to
inspect.

The map method transforms an array by applying a function to all of its
elements and building a new array from the returned values. The new array
will have the same length as the input array, but its content will have been
mapped to a new form by the function.

function map(array, transform) {
let mapped = [];
for (let element of array) {

mapped.push(transform(element));
}
return mapped;

}

let rtlScripts = SCRIPTS.filter(s => s.direction == "rtl");
console.log(map(rtlScripts, s => s.name));
// → ["Adlam", "Arabic", "Imperial Aramaic", …]

Like forEach and filter, map is a standard array method.

Summarizing with reduce

Another common thing to do with arrays is computing a single value from
them. Our recurring example, summing a collection of numbers, is an instance
of this. Another example would be finding the script with the most characters.

The higher-order operation that represents this pattern is called reduce (some-
times also called fold). It builds a value by repeatedly taking a single element
from the array and combining it with the current value. When summing num-
bers, you’d start with the number zero and, for each element, add that to the

88

sum.
The parameters to reduce are, apart from the array, a combining function

and a start value. This function is a little less straightforward than filter and
map, so look closely:

function reduce(array, combine, start) {
let current = start;
for (let element of array) {

current = combine(current, element);
}
return current;

}

console.log(reduce([1, 2, 3, 4], (a, b) => a + b, 0));
// → 10

The standard array method reduce, which of course corresponds to this
function, has an added convenience. If your array contains at least one element,
you are allowed to leave off the start argument. The method will take the first
element of the array as its start value and start reducing at the second element.

console.log([1, 2, 3, 4].reduce((a, b) => a + b));
// → 10

To use reduce (twice) to find the script with the most characters, we can
write something like this:

function characterCount(script) {
return script.ranges.reduce((count, [from, to]) => {

return count + (to - from);
}, 0);

}

console.log(SCRIPTS.reduce((a, b) => {
return characterCount(a) < characterCount(b) ? b : a;

}));
// → {name: "Han", …}

The characterCount function reduces the ranges assigned to a script by sum-
ming their sizes. Note the use of destructuring in the parameter list of the
reducer function. The second call to reduce then uses this to find the largest
script by repeatedly comparing two scripts and returning the larger one.

89

The Han script has over 89,000 characters assigned to it in the Unicode
standard, making it by far the biggest writing system in the data set. Han
is a script (sometimes) used for Chinese, Japanese, and Korean text. Those
languages share a lot of characters, though they tend to write them differently.
The (US-based) Unicode Consortium decided to treat them as a single writing
system in order to save character codes. This is called Han unification and still
makes some people very angry.

Composability

Consider how we would have written the previous example (finding the biggest
script) without higher-order functions. The code is not that much worse.

let biggest = null;
for (let script of SCRIPTS) {

if (biggest == null ||
characterCount(biggest) < characterCount(script)) {

biggest = script;
}

}
console.log(biggest);
// → {name: "Han", …}

There are a few more bindings, and the program is four lines longer. But it
is still very readable.

Higher-order functions start to shine when you need to compose operations.
As an example, let’s write code that finds the average year of origin for living
and dead scripts in the data set.

function average(array) {
return array.reduce((a, b) => a + b) / array.length;

}

console.log(Math.round(average(
SCRIPTS.filter(s => s.living).map(s => s.year))));

// → 1185
console.log(Math.round(average(

SCRIPTS.filter(s => !s.living).map(s => s.year))));
// → 209

So the dead scripts in Unicode are, on average, older than the living ones.

90

This is not a terribly meaningful or surprising statistic. But I hope you’ll agree
that the code used to compute it isn’t hard to read. You can see it as a pipeline:
we start with all scripts, filter out the living (or dead) ones, take the years from
those, average them, and round the result.

You could definitely also write this computation as one big loop.

let total = 0, count = 0;
for (let script of SCRIPTS) {

if (script.living) {
total += script.year;
count += 1;

}
}
console.log(Math.round(total / count));
// → 1185

But it is harder to see what was being computed and how. And because
intermediate results aren’t represented as coherent values, it’d be a lot more
work to extract something like average into a separate function.

In terms of what the computer is actually doing, these two approaches are
also quite different. The first will build up new arrays when running filter
and map, whereas the second only computes some numbers, doing less work.
You can usually afford the readable approach, but if you’re processing huge
arrays, and doing so many times, the less abstract style might be worth the
extra speed.

Strings and character codes

One use of the data set would be figuring out what script a piece of text is
using. Let’s go through a program that does this.

Remember that each script has an array of character code ranges associated
with it. So given a character code, we could use a function like this to find the
corresponding script (if any):

function characterScript(code) {
for (let script of SCRIPTS) {

if (script.ranges.some(([from, to]) => {
return code >= from && code < to;

})) {
return script;

}
}

91

return null;
}

console.log(characterScript(121));
// → {name: "Latin", …}

The some method is another higher-order function. It takes a test function
and tells you if that function returns true for any of the elements in the array.

But how do we get the character codes in a string?
In Chapter 1 I mentioned that JavaScript strings are encoded as a sequence

of 16-bit numbers. These are called code units. A Unicode character code
was initially supposed to fit within such a unit (which gives you a little over
65,000 characters). When it became clear that wasn’t going to be enough,
many people balked at the need to use more memory per character. To address
these concerns, UTF-16, the format used by JavaScript strings, was invented.
It describes most common characters using a single 16-bit code unit, but uses
a pair of two such units for others.

UTF-16 is generally considered a bad idea today. It seems almost inten-
tionally designed to invite mistakes. It’s easy to write programs that pretend
code units and characters are the same thing. And if your language doesn’t use
two-unit characters, that will appear to work just fine. But as soon as some-
one tries to use such a program with some less common Chinese characters,
it breaks. Fortunately, with the advent of emoji, everybody has started us-
ing two-unit characters, and the burden of dealing with such problems is more
fairly distributed.

Unfortunately, obvious operations on JavaScript strings, such as getting their
length through the length property and accessing their content using square
brackets, deal only with code units.

// Two emoji characters, horse and shoe
let horseShoe = "🐴👟";
console.log(horseShoe.length);
// → 4
console.log(horseShoe[0]);
// → (Invalid half-character)
console.log(horseShoe.charCodeAt(0));
// → 55357 (Code of the half-character)
console.log(horseShoe.codePointAt(0));
// → 128052 (Actual code for horse emoji)

JavaScript’s charCodeAt method gives you a code unit, not a full character

92

code. The codePointAtmethod, added later, does give a full Unicode character.
So we could use that to get characters from a string. But the argument passed
to codePointAt is still an index into the sequence of code units. So to run over
all characters in a string, we’d still need to deal with the question of whether
a character takes up one or two code units.

In the previous chapter, I mentioned that a for/of loop can also be used on
strings. Like codePointAt, this type of loop was introduced at a time where
people were acutely aware of the problems with UTF-16. When you use it to
loop over a string, it gives you real characters, not code units.

let roseDragon = "🌹🐉";
for (let char of roseDragon) {

console.log(char);
}
// → 🌹
// → 🐉

If you have a character (which will be a string of one or two code units), you
can use codePointAt(0) to get its code.

Recognizing text

We have a characterScript function and a way to correctly loop over char-
acters. The next step would be to count the characters that belong to each
script. The following counting abstraction will be useful there:

function countBy(items, groupName) {
let counts = [];
for (let item of items) {

let name = groupName(item);
let known = counts.findIndex(c => c.name == name);
if (known == -1) {

counts.push({name, count: 1});
} else {

counts[known].count++;
}

}
return counts;

}

console.log(countBy([1, 2, 3, 4, 5], n => n > 2));
// → [{name: false, count: 2}, {name: true, count: 3}]

93

The countBy function expects a collection (anything that we can loop over
with for/of) and a function that computes a group name for a given element.
It returns an array of objects, each of which names a group and tells you the
amount of elements that were found in that group.

It uses another array method—findIndex. This method is somewhat like
indexOf, but instead of looking for a specific value, it finds the first value for
which the given function returns true. Like indexOf, it returns -1 when no such
element is found.

Using countBy, we can write the function that tells us which scripts are used
in a piece of text.

function textScripts(text) {
let scripts = countBy(text, char => {

let script = characterScript(char.codePointAt(0));
return script ? script.name : "none";

}).filter(({name}) => name != "none");

let total = scripts.reduce((n, {count}) => n + count, 0);
if (total == 0) return "No scripts found";

return scripts.map(({name, count}) => {
return `${Math.round(count * 100 / total)}% ${name}`;

}).join(", ");
}

console.log(textScripts('英国的狗说"woof", 俄罗斯的狗说"тяв"'));
// → 61% Han, 22% Latin, 17% Cyrillic

The function first counts the characters by name, using characterScript to
assign them a name, and falling back to the string "none" for characters that
aren’t part of any script. The filter call drops the entry for "none" from the
resulting array, since we aren’t interested in those characters.

To be able to compute percentages, we first need the total amount of char-
acters that belong to a script, which we can compute with reduce. If no such
characters are found, the function returns a specific string. Otherwise, it trans-
forms the counting entries into readable strings with map and then combines
them with join.

94

Summary

Being able to pass function values to other functions is a deeply useful aspect
of JavaScript. It allows us to write functions that model computations with
“gaps” in them. The code that calls these functions can fill in the gaps by
providing function values.

Arrays provide a number of useful higher-order methods. You can use
forEach to loop over the elements in an array. The filter method returns
a new array containing only the elements that pass the predicate function.
Transforming an array by putting each element through a function is done
with map. You can use reduce to combine all the elements in an array into
a single value. The some method tests whether any element matches a given
predicate function. And findIndex finds the position of the first element that
matches a predicate.

Exercises

Flattening

Use the reduce method in combination with the concat method to “flatten”
an array of arrays into a single array that has all the elements of the original
arrays.

Your own loop

Write a higher-order function loop that provides something like a for loop
statement. It takes a value, a test function, an update function, and a body
function. Each iteration, it first runs the test function on the current loop value
and stops if that returns false. Then it calls the body function, giving it the
current value. And finally, it calls the update function to create a new value
and starts from the beginning.

When defining the function, you can use a regular loop to do the actual
looping.

Everything

Analogous to the some method, arrays also have an every method. This one
returns true when the given function returns true for every element in the array.
In a way, some is a version of the || operator that acts on arrays, and every is
like the && operator.

95

Implement every as a function that takes an array and a predicate function
as parameters. Write two versions, one using a loop and one using the some
method.

Dominant writing direction

Write a function that computes the dominant writing direction in a string of
text. Remember that each script object has a direction property that can be
"ltr" (left-to-right), "rtl" (right-to-left), or "ttb" (top-to-bottom).

The dominant direction is the direction of a majority of the characters that
have a script associated with them. The characterScript and countBy func-
tions defined earlier in the chapter are probably useful here.

96

“An abstract data type is realized by writing a special kind of program
[…] which defines the type in terms of the operations which can be
performed on it.”

—Barbara Liskov, Programming with Abstract Data Types

Chapter 6

The Secret Life of Objects

Chapter 4 introduced JavaScript’s objects. In programming culture, we have a
thing called object-oriented programming, a set of techniques that use objects
(and related concepts) as the central principle of program organization.

Though no one really agrees on its precise definition, object-oriented pro-
gramming has shaped the design of many programming languages, including
JavaScript. This chapter will describe the way these ideas can be applied in
JavaScript.

Encapsulation

The core idea in object-oriented programming is to divide programs into smaller
pieces and make each piece responsible for managing its own state.

This way, some knowledge about the way a piece of the program works can
be kept local to that piece. Someone working on the rest of the program does
not have to remember or even be aware of that knowledge. Whenever these
local details change, only the code directly around it needs to be updated.

Different pieces of such a program interact with each other through inter-
faces, limited sets of functions or bindings that provide useful functionality at
a more abstract level, hiding its precise implementation.

Such program pieces are modeled using objects. Their interface consists of a
specific set of methods and properties. Properties that are part of the interface
are called public. The others, which outside code should not be touching, are
called private.

Many languages provide a way to distinguish public and private proper-
ties and will prevent outside code from accessing the private ones altogether.
JavaScript, once again taking the minimalist approach, does not. Not yet, at
least—there is work underway to add this to the language.

Even though the language doesn’t have this distinction built in, JavaScript
programmers are successfully using this idea. Typically, the available interface
is described in documentation or comments. It is also common to put an

97

underscore (_) character at the start of property names to indicate that those
properties are private.

Separating interface from implementation is a great idea. It is usually called
encapsulation.

Methods

Methods are nothing more than properties that hold function values. This is a
simple method:

let rabbit = {};
rabbit.speak = function(line) {

console.log(`The rabbit says '${line}'`);
};

rabbit.speak("I'm alive.");
// → The rabbit says 'I'm alive.'

Usually a method needs to do something with the object it was called on.
When a function is called as a method—looked up as a property and immedi-
ately called, as in object.method()—the binding called this in its body auto-
matically points at the object that it was called on.

function speak(line) {
console.log(`The ${this.type} rabbit says '${line}'`);

}
let whiteRabbit = {type: "white", speak};
let hungryRabbit = {type: "hungry", speak};

whiteRabbit.speak("Oh my ears and whiskers, " +
"how late it's getting!");

// → The white rabbit says 'Oh my ears and whiskers, how
// late it's getting!'
hungryRabbit.speak("I could use a carrot right now.");
// → The hungry rabbit says 'I could use a carrot right now.'

You can think of this as an extra parameter that is passed in a different
way. If you want to pass it explicitly, you can use a function’s call method,
which takes the this value as first argument and treats further arguments as
normal parameters.

speak.call(hungryRabbit, "Burp!");

98

// → The hungry rabbit says 'Burp!'

Since each function has its own this binding, whose value depends on the
way it is called, you cannot refer to the this of the wrapping scope in a regular
function defined with the function keyword.

Arrow functions are different—they do not bind their own this, but can see
the this binding of the scope around them. Thus, you can do something like
the following code, which references this from inside a local function:

function normalize() {
console.log(this.coords.map(n => n / this.length));

}
normalize.call({coords: [0, 2, 3], length: 5});
// → [0, 0.4, 0.6]

If I had written the argument to map using the function keyword, the code
wouldn’t work.

Prototypes

Watch closely.

let empty = {};
console.log(empty.toString);
// → function toString()…{}
console.log(empty.toString());
// → [object Object]

I pulled a property out of an empty object. Magic!
Well, not really. I have simply been withholding information about the way

JavaScript objects work. In addition to their set of properties, most objects
also have a prototype. A prototype is another object that is used as a fallback
source of properties. When an object gets a request for a property that it does
not have, its prototype will be searched for the property, then the prototype’s
prototype, and so on.

So who is the prototype of that empty object? It is the great ancestral
prototype, the entity behind almost all objects, Object.prototype.

console.log(Object.getPrototypeOf({}) ==
Object.prototype);

99

// → true
console.log(Object.getPrototypeOf(Object.prototype));
// → null

As you guess, Object.getPrototypeOf returns the prototype of an object.
The prototype relations of JavaScript objects form a tree-shaped structure,

and at the root of this structure sits Object.prototype. It provides a few
methods that show up in all objects, such as toString, which converts an
object to a string representation.

Many objects don’t directly have Object.prototype as their prototype, but
instead have another object that provides a different set of default proper-
ties. Functions derive from Function.prototype, and arrays derive from Array
.prototype.

console.log(Object.getPrototypeOf(Math.max) ==
Function.prototype);

// → true
console.log(Object.getPrototypeOf([]) ==

Array.prototype);
// → true

Such a prototype object will itself have a prototype, often Object.prototype,
so that it still indirectly provides methods like toString.

You can use Object.create to create an object with a specific prototype.

let protoRabbit = {
speak(line) {

console.log(`The ${this.type} rabbit says '${line}'`);
}

};
let killerRabbit = Object.create(protoRabbit);
killerRabbit.type = "killer";
killerRabbit.speak("SKREEEE!");
// → The killer rabbit says 'SKREEEE!'

A property like speak(line) in an object expression is a shorthand for defin-
ing a method. It creates a property called speak and gives it a function as its
value.

The “proto” rabbit acts as a container for the properties that are shared by all
rabbits. An individual rabbit object, like the killer rabbit, contains properties
that apply only to itself—in this case its type—and derives shared properties

100

from its prototype.

Classes

JavaScript’s prototype system can be interpreted as a somewhat informal take
on an object-oriented concept called classes. A class defines the shape of a
type of object—what methods and properties it has. Such an object is called
an instance of the class.

Prototypes are useful for defining properties for which all instances of a class
share the same value, such as methods. Properties that differ per instance,
such as our rabbits’ type property, need to be stored directly in the objects
themselves.

So in order to create an instance of a given class, you have to make an object
that derives from the proper prototype, but you also have to make sure it,
itself, has the properties that instances of this class are supposed to have. This
is what a constructor function does.

function makeRabbit(type) {
let rabbit = Object.create(protoRabbit);
rabbit.type = type;
return rabbit;

}

JavaScript provides a way to make defining this type of function easier. If
you put the keyword new in front of a function call, the function is treated as
a constructor. This means that an object with the right prototype is automat-
ically created, bound to this in the function, and returned at the end of the
function.

The prototype object used when constructing objects is found by taking the
prototype property of the constructor function.

function Rabbit(type) {
this.type = type;

}
Rabbit.prototype.speak = function(line) {

console.log(`The ${this.type} rabbit says '${line}'`);
};

let weirdRabbit = new Rabbit("weird");

Constructors (all functions, in fact) automatically get a property named

101

prototype, which by default holds a plain, empty object that derives from
Object.prototype. You can overwrite it with a new object if you want. Or you
can add properties to the existing object, as the example does.

By convention, the names of constructors are capitalized so that they can
easily be distinguished from other functions.

It is important to understand the distinction between the way a prototype
is associated with a constructor (through its prototype property) and the way
objects have a prototype (which can be found with Object.getPrototypeOf).
The actual prototype of a constructor is Function.prototype, since constructors
are functions. Its prototype property holds the prototype used for instances
created through it.

console.log(Object.getPrototypeOf(Rabbit) ==
Function.prototype);

// → true
console.log(Object.getPrototypeOf(weirdRabbit) ==

Rabbit.prototype);
// → true

Class notation

So JavaScript classes are constructor functions with a prototype property. That
is how they work, and until 2015, that was how you had to write them. These
days, we have a less awkward notation.

class Rabbit {
constructor(type) {

this.type = type;
}
speak(line) {

console.log(`The ${this.type} rabbit says '${line}'`);
}

}

let killerRabbit = new Rabbit("killer");
let blackRabbit = new Rabbit("black");

The class keyword starts a class declaration, which allows us to define a con-
structor and a set of methods all in a single place. Any number of methods may
be written inside the declaration’s curly braces. The one named constructor

102

is treated specially. It provides the actual constructor function, which will be
bound to the name Rabbit. The others are packaged into that constructor’s
prototype. Thus, the class declaration above is equivalent to the constructor
definition from the previous section. It just looks nicer.

Class declarations currently only allow methods—properties that hold functions—
to be added to the prototype. This can be somewhat inconvenient when you
want to save a non-function value in there. The next version of the language
will probably improve this. For now, you can create such properties by directly
manipulating the prototype after you’ve defined the class.

Like function, class can be used both in statement and in expression po-
sitions. When used as an expression, it doesn’t define a binding, but just
produces the constructor as a value. You are allowed to omit the class name
in a class expression.

let object = new class { getWord() { return "hello"; } };
console.log(object.getWord());
// → hello

Overriding derived properties

When you add a property to an object, whether it is present in the prototype or
not, the property is added to the object itself. If there was already a property
with the same name in the prototype, this property will no longer affect the
object, as it is now hidden behind the object’s own property.

Rabbit.prototype.teeth = "small";
console.log(killerRabbit.teeth);
// → small
killerRabbit.teeth = "long, sharp, and bloody";
console.log(killerRabbit.teeth);
// → long, sharp, and bloody
console.log(blackRabbit.teeth);
// → small
console.log(Rabbit.prototype.teeth);
// → small

The following diagram sketches the situation after this code has run. The
Rabbit and Object prototypes lie behind killerRabbit as a kind of backdrop,
where properties that are not found in the object itself can be looked up.

103

toString: <function>

...

teeth: "small"

speak: <function>

killerRabbit

teeth: "long, sharp, ..."

type: "killer"

Rabbit

prototype

Object

create: <function>

prototype

...

Overriding properties that exist in a prototype can be a useful thing to do. As
the rabbit teeth example shows, it can be used to express exceptional properties
in instances of a more generic class of objects, while letting the nonexceptional
objects take a standard value from their prototype.

Overriding is also used to give the standard function and array prototypes a
different toString method than the basic object prototype.

console.log(Array.prototype.toString ==
Object.prototype.toString);

// → false
console.log([1, 2].toString());
// → 1,2

Calling toString on an array gives a result similar to calling .join(",") on
it—it puts commas between the values in the array. Directly calling Object.
prototype.toString with an array produces a different string. That function
doesn’t know about arrays, so it simply puts the word object and the name of
the type between square brackets.

console.log(Object.prototype.toString.call([1, 2]));
// → [object Array]

Maps

We saw the word map used in the previous chapter for an operation that trans-
forms a data structure by applying a function its elements. Confusing as it is,
in programming the same word is also used for a related but rather different
thing.

A map (noun) is a data structure that associates values (the keys) with other
values. For example, you might want to map names to ages. It is possible to
use objects for this.

104

let ages = {
Boris: 39,
Liang: 22,
Júlia: 62

};

console.log(`Júlia is ${ages["Júlia"]}`);
// → Júlia is 62
console.log("Is Jack's age known?", "Jack" in ages);
// → Is Jack's age known? false
console.log("Is toString's age known?", "toString" in ages);
// → Is toString's age known? true

Here, the object’s property names are the people’s names, and the property
values their ages. But we certainly didn’t list anybody named toString in our
map. Yet, because plain objects derive from Object.prototype, it looks like
the property is there.

As such, using plain objects as maps is dangerous. There are several possible
ways to avoid this problem. First, it is possible to create objects with no
prototype. If you pass null to Object.create, the resulting object will not
derive from Object.prototype and can safely be used as a map.

console.log("toString" in Object.create(null));
// → false

Object property names must be strings. If you need a map whose keys can’t
easily be converted to strings—such as objects—you cannot use an object as
your map.

Fortunately, JavaScript comes with a class called Map that is written for this
exact purpose. It stores a mapping and allows any type of keys.

let ages = new Map();
ages.set("Boris", 39);
ages.set("Liang", 22);
ages.set("Júlia", 62);

console.log(`Júlia is ${ages.get("Júlia")}`);
// → Júlia is 62
console.log("Is Jack's age known?", ages.has("Jack"));
// → Is Jack's age known? false
console.log(ages.has("toString"));
// → false

105

The methods set, get, and has are part of the interface of the Map object.
Writing a data structure that can quickly update and search a large set of
values isn’t easy, but we don’t have to worry about that. Someone else did it
for us, and we can go through this simple interface to use their work.

If you do have a plain object that you need to treat as a map for some reason,
it is useful to know that Object.keys only returns an object’s own keys, not
those in the prototype. As an alternative to the in operator, you can use the
hasOwnProperty method, which ignores the object’s prototype.

console.log({x: 1}.hasOwnProperty("x"));
// → true
console.log({x: 1}.hasOwnProperty("toString"));
// → false

Polymorphism

When you call the String function (which converts a value to a string) on an
object, it will call the toString method on that object to try to create a mean-
ingful string from it. I mentioned that some of the standard prototypes define
their own version of toString so they can create a string that contains more
useful information than "[object Object]". You can also do that yourself.

Rabbit.prototype.toString = function() {
return `a ${this.type} rabbit`;

};

console.log(String(blackRabbit));
// → a black rabbit

This is a simple instance of a powerful idea. When a piece of code is written
to work with objects that have a certain interface—in this case, a toString
method—any kind of object that happens to support this interface can be
plugged into the code, and it will just work.

This technique is called polymorphism. Polymorphic code can work with
values of different shapes, as long as they support the interface it expects.

I mentioned in Chapter 4 that a for/of loop can loop over several kinds of
data structures. This is another case of polymorphism—such loops expect the
data structure to expose a specific interface, which arrays and strings do. And

106

you can also add this interface to your own objects! But before we can do that,
we need to know what symbols are.

Symbols

It is possible for multiple interfaces to use the same property name for different
things. For example, I could define an interface in which the toStringmethod is
supposed to convert the object into a piece of yarn. It would not be possible for
an object to conform to both that interface and the standard use of toString.

That would be a bad idea, and this problem isn’t that common. Most
JavaScript programmers simply don’t think about it. But the language de-
signers, whose job it is to think about this stuff, have provided us with a
solution anyway.

When I claimed that property names are strings, that wasn’t entirely ac-
curate. They usually are, but they can also be symbols. Symbols are values
created with the Symbol function. Unlike strings, newly created symbols are
unique—you cannot create the same symbol twice.

let sym = Symbol("name");
console.log(sym == Symbol("name"));
// → false
Rabbit.prototype[sym] = 55;
console.log(blackRabbit[sym]);
// → 55

The string you pass to Symbol is included when you convert it to a string,
and can make it easier to recognize a symbol when, for example, showing it in
the console. But it has no meaning beyond that—multiple symbols may have
the same name.

Being both unique and useable as property names makes symbols suitable
for defining interfaces that can peacefully live alongside other properties, no
matter what their names are.

const toStringSymbol = Symbol("toString");
Array.prototype[toStringSymbol] = function() {

return `${this.length} cm of blue yarn`;
};

console.log([1, 2].toString());
// → 1,2
console.log([1, 2][toStringSymbol]());

107

// → 2 cm of blue yarn

It is possible to include symbol properties in object expressions and classes
by using square brackets around the property name. That causes the property
name to be evaluated, much like the square bracket property access notation,
which allows us to refer to a binding that holds the symbol.

let stringObject = {
[toStringSymbol]() { return "a jute rope"; }

};
console.log(stringObject[toStringSymbol]());
// → a jute rope

The iterator interface

The object given to a for/of loop is expected to be iterable. This means that it
has a method named with the Symbol.iterator symbol (a symbol value defined
by the language, stored as a property of the Symbol function).

When called, that method should return an object that provides a second
interface, iterator. This is the actual thing that iterates. It has a next method
that returns the next result. That result should be an object with a value
property, providing the next value, if there is one, and a done property which
should be true when there are no more results and false otherwise.

Note that the next, value, and done property names are plain strings, not
symbols. Only Symbol.iterator, which is likely to be added to a lot of different
objects, is an actual symbol.

We can directly use this interface ourselves.

let okIterator = "OK"[Symbol.iterator]();
console.log(okIterator.next());
// → {value: "O", done: false}
console.log(okIterator.next());
// → {value: "K", done: false}
console.log(okIterator.next());
// → {value: undefined, done: true}

Let’s implement an iterable data structure. We’ll build a matrix class, acting
as a two-dimensional array.

108

class Matrix {
constructor(width, height, element = (x, y) => undefined) {

this.width = width;
this.height = height;
this.content = [];

for (let y = 0; y < height; y++) {
for (let x = 0; x < width; x++) {

this.content[y * width + x] = element(x, y);
}

}
}

get(x, y) {
return this.content[y * this.width + x];

}
set(x, y, value) {

this.content[y * this.width + x] = value;
}

}

The class stores its content in a single array of width × height elements. The
elements are stored row-by-row, so, for example, the third element in the fifth
row is (using zero-based indexing) stored at position 4 × width + 2.

The constructor function takes a width, height, and an optional content
function that will be used to fill in the initial values. There are get and set
methods to retrieve and update elements in the matrix.

When looping over a matrix, you are usually interested in the position of the
elements as well as the elements themselves, so we’ll have our iterator produce
objects with x, y, and value properties.

class MatrixIterator {
constructor(matrix) {

this.x = 0;
this.y = 0;
this.matrix = matrix;

}

next() {
if (this.y == this.matrix.height) return {done: true};

let value = {x: this.x,
y: this.y,
value: this.matrix.get(this.x, this.y)};

109

this.x++;
if (this.x == this.matrix.width) {

this.x = 0;
this.y++;

}
return {value, done: false};

}
}

The class tracks the progress of iterating over a matrix in its x and y prop-
erties. The next method starts by checking whether the bottom of the matrix
has been reached. If it hasn’t, it first creates the object holding the current
value and then updates its position, moving to the next row if necessary.

Let us set up the Matrix class to be iterable. Throughout this book, I’ll oc-
casionally use after-the-fact prototype manipulation to add methods to classes,
so that the individual pieces of code remain small and self-contained. In a reg-
ular program, where there is no need to split the code into small pieces, you’d
declare these methods directly in the class instead.

Matrix.prototype[Symbol.iterator] = function() {
return new MatrixIterator(this);

};

We can now loop over a matrix with for/of.

let matrix = new Matrix(2, 2, (x, y) => `value ${x},${y}`);
for (let {x, y, value} of matrix) {

console.log(x, y, value);
}
// → 0 0 value 0,0
// → 1 0 value 1,0
// → 0 1 value 0,1
// → 1 1 value 1,1

Getters, setters, and statics

Interfaces often consist mostly of methods, but it is also okay to include prop-
erties that hold non-function values. For example, Map objects have a size
property that tells you how many keys are stored in them.

It is not even necessary for such an object to compute and store such a

110

property directly in the instance. Even properties that are accessed directly
may hide a method call. Such methods are called getters, and they are defined
by writing get in front of the method name in an object expression or class
declaration.

let varyingSize = {
get size() {

return Math.floor(Math.random() * 100);
}

};

console.log(varyingSize.size);
// → 73
console.log(varyingSize.size);
// → 49

Whenever someone reads from this object’s size property, the associated
method is called. You can do a similar thing when a property is written to,
using a setter.

class Temperature {
constructor(celsius) {

this.celsius = celsius;
}
get fahrenheit() {

return this.celsius * 1.8 + 32;
}
set fahrenheit(value) {

this.celsius = (value - 32) / 1.8;
}

static fromFahrenheit(value) {
return new Temperature((value - 32) / 1.8);

}
}

let temp = new Temperature(22);
console.log(temp.fahrenheit);
// → 71.6
temp.fahrenheit = 86;
console.log(temp.celsius);
// → 30

111

The Temperature class allows you to read and write the temperature in either
degrees Celsius or degrees Fahrenheit, but internally only stores Celsius, and
automatically converts to Celsius in the fahrenheit getter and setter.

Sometimes you want to attach some properties directly to your constructor
function, rather than to the prototype. Such methods won’t have access to
a class instance but can, for example, be used to provide additional ways to
create instances.

Inside a class declaration, methods that have static written before their
name are stored on the constructor. So the Temperature class allows you to
write Temperature.fromFahrenheit(100) to create a temperature using degrees
Fahrenheit.

Inheritance

Some matrices are known to be symmetric. If you mirror a symmetric matrix
around its top-left-to-bottom-right diagonal, it stays the same. In other words,
the value stored at x,y is always the same as that at y,x.

Imagine we need a data structure like Matrix but one that enforces the fact
that the matrix is and remains symmetrical. We could write it from scratch,
but that would involve repeating some code very similar to what we already
wrote.

JavaScript’s prototype system makes it possible to create a new class, much
like the old class, but with new definitions for some of its properties. The
prototype for the new class derives from the old prototype but adds a new
definition for, say, the set method.

In object-oriented programming terms, this is called inheritance. The new
class inherits properties and behavior from the old class.

class SymmetricMatrix extends Matrix {
constructor(size, element = (x, y) => undefined) {

super(size, size, (x, y) => {
if (x < y) return element(y, x);
else return element(x, y);

});
}

set(x, y, value) {
super.set(x, y, value);
if (x != y) {

super.set(y, x, value);
}

}

112

}

let matrix = new SymmetricMatrix(5, (x, y) => `${x},${y}`);
console.log(matrix.get(2, 3));
// → 3,2

The use of the word extends indicates that this class shouldn’t be directly
based on the default Object prototype, but on some other class. This is called
the superclass. The derived class is the subclass.

To initialize a SymmetricMatrix instance, the constructor calls its superclass’
constructor through the super keyword. This is necessary because if this new
object is to behave (roughly) like a Matrix, it is going to need the instance
properties that matrices have. In order to ensure the matrix is symmetrical,
the constructor wraps the content method to swap the coordinates for values
below the diagonal.

The set method again uses super, but this time not to call the constructor,
but to call a specific method from the superclass’ set of methods. We are
redefining set but do want to use the original behavior. Because this.set
refers to the new set method, calling that wouldn’t work. Inside class methods,
super provides a way to call methods as they were defined in the superclass.

Inheritance allows us to build slightly different data types from existing data
types with relatively little work. It is a fundamental part of the object-oriented
tradition, alongside encapsulation and polymorphism. But while the latter two
are now generally regarded as wonderful ideas, inheritance is more controversial.

Whereas encapsulation and polymorphism can be used to separate pieces
of code from each other, reducing the tangledness of the overall program, in-
heritance fundamentally ties classes together, creating more tangle. When
inheriting from a class, you usually have to know more about how it works
than when simply using it. Inheritance can be a useful tool, and I use it now
and then in my own programs, but it shouldn’t be the first tool you reach for,
and you probably shouldn’t actively go looking for opportunities to construct
class hierarchies (family trees of classes).

The instanceof operator

It is occasionally useful to know whether an object was derived from a specific
class. For this, JavaScript provides a binary operator called instanceof.

console.log(
new SymmetricMatrix(2) instanceof SymmetricMatrix);

113

// → true
console.log(new SymmetricMatrix(2) instanceof Matrix);
// → true
console.log(new Matrix(2, 2) instanceof SymmetricMatrix);
// → false
console.log([1] instanceof Array);
// → true

The operator will see through inherited types, so a SymmetricMatrix is an
instance of Matrix. The operator can also be applied to standard constructors
like Array. Almost every object is an instance of Object.

Summary

So objects do more than just hold their own properties. They have prototypes,
which are other objects. They’ll act as if they have properties they don’t have
as long as their prototype has that property. Simple objects have Object.
prototype as their prototype.

Constructors, which are functions whose names usually start with a capital
letter, can be used with the new operator to create new objects. The new
object’s prototype will be the object found in the prototype property of the
constructor. You can make good use of this by putting the properties that all
values of a given type share into their prototype. There’s a class notation that
provides a clear way to define a constructor and its prototype.

You can define getters and setters to secretly call methods every time an
object’s property is accessed. Static methods are methods stored in a class’
constructor, rather than its prototype.

The instanceof operator can, given an object and a constructor, tell you
whether that object is an instance of that constructor.

One useful thing to do with objects is to specify an interface for them and
tell everybody that they are supposed to talk to your object only through that
interface. The rest of the details that make up your object are now encapsulated,
hidden behind the interface.

More than one type may implement the same interface. Code written to use
an interface automatically knows how to work with any number of different
objects that provide the interface. This is called polymorphism.

When implementing multiple classes that differ in only some details, it can
be helpful to write the new classes as subclasses of an existing class, inheriting
part of its behavior.

114

Exercises

A vector type

Write a class Vec that represents a vector in two-dimensional space. It takes
x and y parameters (numbers), which it should save to properties of the same
name.

Give the Vec prototype two methods, plus and minus, that take another
vector as a parameter and return a new vector that has the sum or difference
of the two vectors’ (this and the parameter) x and y values.

Add a getter property length to the prototype that computes the length of
the vector—that is, the distance of the point (x, y) from the origin (0, 0).

Groups

The standard JavaScript environment provides another data structure called
Set. Like an instance of Map, a set holds a collection of values. Unlike Map, it
does not associate other values with those—it just tracks which values are part
of the set. A value can only be part of a set once—adding it again doesn’t have
any effect.

Write a class called Group (since Set is already taken). Like Set, it has add,
delete, and has methods. Its constructor creates an empty group, add adds
a value to the group (but only if it isn’t already a member), delete removes
its argument from the group (if it was a member), and has returns a Boolean
value indicating whether its argument is a member of the group.

Use the === operator, or something equivalent such as indexOf, to determine
whether two values are the same.

Give the class a static from method that takes an iteratable object as argu-
ment and creates a group that contains all the values produced by iterating
over it.

Iterable groups

Make the Group class from the previous exercise iterable. Refer back to the
section about the iterator interface earlier in the chapter if you aren’t clear on
the exact form of the interface anymore.

If you used an array to represent the group’s members, don’t just return the
iterator created by calling the Symbol.iterator method on the array. That
would work, but it defeats the purpose of this exercise.

It is okay if your iterator behaves strangely when the group is modified during
iteration.

115

Borrowing a method

Earlier in the chapter I mentioned that an object’s hasOwnProperty can be
used as a more robust alternative to the in operator when you want to ignore
the prototype’s properties. But what if your map needs to include the word
"hasOwnProperty"? You won’t be able to call that method anymore, because
the object’s own property hides the method value.

Can you think of a way to call hasOwnProperty on an object that has its own
property by that name?

116

“[...] the question of whether Machines Can Think [...] is about as
relevant as the question of whether Submarines Can Swim.”

—Edsger Dijkstra, The Threats to Computing Science

Chapter 7

Project: A Robot

In “project” chapters, I’ll stop pummeling you with new theory for a brief mo-
ment and instead we’ll work through a program together. Theory is necessary
to learn to program, but reading and understanding actual programs is just as
important.

Our project in this chapter is to build an automaton, a little program that
performs a task in a virtual world. Our automaton will be a mail-delivery robot
picking up and dropping off parcels.

Meadowfield

The village of Meadowfield isn’t very big. It consists of 11 places with 14 roads
between them. It can be described with this array of roads:

const roads = [
"Alice's House-Bob's House", "Alice's House-Cabin",
"Alice's House-Post Office", "Bob's House-Town Hall",
"Daria's House-Ernie's House", "Daria's House-Town Hall",
"Ernie's House-Grete's House", "Grete's House-Farm",
"Grete's House-Shop", "Marketplace-Farm",
"Marketplace-Post Office", "Marketplace-Shop",
"Marketplace-Town Hall", "Shop-Town Hall"

];

117

The network of roads in the village forms a graph. A graph is a collection of
points (places in the village) with lines between them (roads). This graph will
be the world that our robot moves through.

The array of strings isn’t very easy to work with. What we’re interested in
is the destinations that we can reach from a given place. Let’s convert the list
of roads to a data structure that, for each place, tells us what can be reached
from there.

function buildGraph(edges) {
let graph = Object.create(null);
function addEdge(from, to) {

if (graph[from] == null) {
graph[from] = [to];

} else {
graph[from].push(to);

}
}
for (let [from, to] of edges.map(r => r.split("-"))) {

addEdge(from, to);
addEdge(to, from);

}
return graph;

}

const roadGraph = buildGraph(roads);

Given an array of edges, buildGraph creates a map object that, for each node,

118

stores an array of connected nodes.
It uses the split method to go from the road strings, which have the form

"Start-End", to two-element arrays containing the start and end as separate
strings.

The task

Our robot will be moving around the village. There are parcels in various
places, each addressed to some other place. The robot picks up parcels when
it comes to them and delivers them when it arrives at their destinations.

The automaton must decide, at each point, where to go next. It has finished
its task when all parcels have been delivered.

To be able to simulate this process, we must define a virtual world that can
describe it. This model tells us where the robot is and where the parcels are.
When the robot has decided to move somewhere, we need to update the model
to reflect the new situation.

If you’re thinking in terms of object-oriented programming, your first impulse
might be to start defining objects for the various elements in the world. A class
for the robot, one for a parcel, maybe one for places. These could then hold
properties that describe their current state, such as the pile of parcels at a
location, which we could change when updating the world.

This is wrong.
At least, it usually is. The fact that something sounds like an object does not

automatically mean that it should be an object in your program. Reflexively
writing classes for every concept in your application tends to leave you with a
collection of interconnected objects that each have their own internal, changing
state. Such programs are often hard to understand and thus easy to break.

Instead, let’s condense the village’s state down to the minimal set of values
that define it. There’s the robot’s current location and the collection of unde-
livered parcels, each of which has a current location and a destination address.
That’s it.

And while we’re at it, let’s make it so that we don’t change this state when
the robot moves, but rather compute a new state for the situation after the
move.

class VillageState {
constructor(place, parcels) {

this.place = place;
this.parcels = parcels;

}

119

move(destination) {
if (!roadGraph[this.place].includes(destination)) {

return this;
} else {

let parcels = this.parcels.map(p => {
if (p.place != this.place) return p;
return {place: destination, address: p.address};

}).filter(p => p.place != p.address);
return new VillageState(destination, parcels);

}
}

}

The move method is where the action happens. It first checks whether there
is a road going from the current place to the destination, and if not, it returns
the old state, since this is not a valid move.

Then it creates a new state with the destination as the robot’s new place. But
it also needs to create a new set of parcels—parcels that the robot is carrying
(that are at the robot’s current place) need to be moved along to the new place.
And parcels that are addressed to the new place need to be delivered—that is,
they need to be removed from the set of undelivered parcels. The call to map
takes care of the moving, and the call to filter does the delivering.

Parcel objects aren’t changed when they are moved, but recreated. The move
method gives us a new village state, but leaves the old one entirely intact.

let first = new VillageState(
"Post Office",
[{place: "Post Office", address: "Alice's House"}]

);
let next = first.move("Alice's House");

console.log(next.place);
// → Alice's House
console.log(next.parcels);
// → []
console.log(first.place);
// → Post Office

The move causes the parcel to be delivered, and this is reflected in the next
state. But the initial state still describes the situation where the robot is at
the post office and the parcel is undelivered.

120

Persistent data

Data structures that don’t change are called immutable or persistent. They
behave a lot like strings and numbers in that they are who they are, and stay
that way, rather than containing different things at different times.

In JavaScript, just about everything can be changed, so working with values
that are supposed to be persistent requires some restraint. There is a function
called Object.freeze that changes an object so that writing to its properties
is ignored. You could use that to make sure your objects aren’t changed, if
you want to be careful. Freezing does require the computer to do some extra
work, and having updates ignored is just about as likely to confuse someone as
having them do the wrong thing. So I usually prefer to just tell people that a
given object shouldn’t be messed with, and hope they remember it.

let object = Object.freeze({value: 5});
object.value = 10;
console.log(object.value);
// → 5

Why am I going out of my way to not change objects when the language is
obviously expecting me to?

Because it helps me understand my programs. This is about complexity
management again. When the objects in my system are fixed, stable things,
I can consider operations on them in isolation—moving to Alice’s house from
a given start state always produces the same new state. When objects change
over time, that adds a whole new dimension of complexity to this kind of
reasoning.

For a small system like the one we are building in this chapter, we could
handle that bit of extra complexity. But the most important limit on what kind
of systems we can build is how much we can understand. Anything that makes
your code easier to understand makes it possible to build a more ambitious
system.

Unfortunately, although understanding a system built on persistent data
structures is easier, designing one, especially when your programming language
isn’t helping, can be a little harder. We’ll look for opportunities to use persis-
tent data structures in this book, but we’ll also be using changeable ones.

121

Simulation

A delivery robot looks at the world and decides in which direction it wants
to move. As such, we could say that a robot is a function that takes a
VillageState object and returns the name of a nearby place.

Because we want robots to be able to remember things, so that they can
make and execute plans, we also pass them their memory and allow them to
return a new memory. Thus, the thing a robot returns is an object containing
both the direction it wants to move in and a memory value that will be given
back to it the next time it is called.

function runRobot(state, robot, memory) {
for (let turn = 0;; turn++) {

if (state.parcels.length == 0) {
console.log(`Done in ${turn} turns`);
break;

}
let action = robot(state, memory);
state = state.move(action.direction);
memory = action.memory;
console.log(`Moved to ${action.direction}`);

}
}

Consider what a robot has to do to “solve” a given state. It must pick up
all parcels by visiting every location that has a parcel, and deliver them by
visiting every location that a parcel is addressed to, but only after picking up
the parcel.

What is the dumbest strategy that could possibly work? The robot could
just walk in a random direction every turn. That means, with great likelihood,
that it will eventually run into all parcels, and then also at some point reach
the place where they should be delivered.

Here’s what that could look like:

function randomPick(array) {
let choice = Math.floor(Math.random() * array.length);
return array[choice];

}

function randomRobot(state) {
return {direction: randomPick(roadGraph[state.place])};

}

122

Remember that Math.random() returns a number between zero and one, but
always below one. Multiplying such a number by the length of an array and
then applying Math.floor to it gives us a random index for the array.

Since this robot does not need to remember anything, it ignores its second
argument (remember that JavaScript functions can be called with extra argu-
ments without ill effects) and omits the memory property in its returned object.

To put this sophisticated robot to work, we’ll first need a way to create a
new state with some parcels. A static method (written here by directly adding
a property to the constructor) is a good place to put that functionality.

VillageState.random = function(parcelCount = 5) {
let parcels = [];
for (let i = 0; i < parcelCount; i++) {

let address = randomPick(Object.keys(roadGraph));
let place;
do {

place = randomPick(Object.keys(roadGraph));
} while (place == address);
parcels.push({place, address});

}
return new VillageState("Post Office", parcels);

};

We don’t want any parcels that are sent from the same place that they are
addressed to. For this reason, the do loop keeps picking new places when it
gets one that’s equal to the address.

Let’s start up a virtual world.

runRobot(VillageState.random(), randomRobot);
// → Moved to Marketplace
// → Moved to Town Hall
// →…
// → Done in 63 turns

It takes the robot a lot of turns to deliver the parcels, because it isn’t planning
ahead very well. We’ll address that soon.

123

The mail truck's route

We should be able to do a lot better than the random robot. An easy improve-
ment would be to take a hint from the way real-world mail delivery works. If
we find a route that passes all places in the village, the robot could run that
route twice, at which point it is guaranteed to be done. Here is one such route
(starting from the post office).

const mailRoute = [
"Alice's House", "Cabin", "Alice's House", "Bob's House",
"Town Hall", "Daria's House", "Ernie's House",
"Grete's House", "Shop", "Grete's House", "Farm",
"Marketplace", "Post Office"

];

To implement the route-following robot, we’ll need to make use of robot
memory. The robot keeps the rest of its route in its memory and drops the
first element every turn.

function routeRobot(state, memory) {
if (memory.length == 0) {

memory = mailRoute;
}
return {direction: memory[0], memory: memory.slice(1)};

}

This robot is a lot faster already. It’ll take a maximum of 26 turns (twice
the 13-step route), but usually less.

Pathfinding

Still, I wouldn’t really call blindly following a fixed route intelligent behavior.
The robot could work more efficiently if it adjusted its behavior to the actual
work that needs to be done.

To do that, it has to be able to deliberately move towards a given parcel, or
towards the location where a parcel has to be delivered. Doing that, even when
the goal is more than one move away, will require some kind of route-finding
function.

The problem of finding a route through a graph is a typical search problem.
We can tell whether a given solution (a route) is a valid solution, but we can’t

124

directly compute the solution the way we could for 2 + 2. Instead, we have to
keep creating potential solutions until we find one that works.

The number of possible routes through a graph is infinite. But when search-
ing for a route from A to B, we are only interested in the ones that start at
A. We also don’t care about routes that visit the same place twice—those are
definitely not the most efficient route anywhere. So that cuts down on the
amount of routes that the route finder has to consider.

In fact, we are mostly interested in the shortest route. So we want to make
sure we look at short routes before we look at longer ones. A good approach
would be to “grow” routes from the starting point, exploring every reachable
place that hasn’t been visited yet, until a route reaches the goal. That way,
we’ll only explore routes that are potentially interesting, and find the shortest
route (or one of the shortest routes, if there are more than one) to the goal.

Here is a function that does this:

function findRoute(graph, from, to) {
let work = [{at: from, route: []}];
for (let i = 0; i < work.length; i++) {

let {at, route} = work[i];
for (let place of graph[at]) {

if (place == to) return route.concat(place);
if (!work.some(w => w.at == place)) {

work.push({at: place, route: route.concat(place)});
}

}
}

}

The exploring has to be done in the right order—the places that were reached
first have to be explored first. We can’t immediately explore a place as soon
as we reach it, because that would mean places reached from there would also
be explored immediately, and so on, even though there may be other, shorter
paths that haven’t yet been explored.

Therefore, the function keeps a work list. This is an array of places that
should be explored next, along with the route that got us there. It starts with
just the start position and an empty route.

The search then operates by taking the next item in the list and exploring
that, which means that all roads going from that place are looked at. If one
of them is the goal, a finished route can be returned. Otherwise, if we haven’t
looked at this place before, a new item is added to the list. If we have looked at
it before, since we are looking at short routes first, we’ve found either a longer

125

route to that place or one precisely as long as the existing one, and we don’t
need to explore it.

You can visually imagine this as a web of known routes crawling out from the
start location, growing evenly on all sides (but never tangling back into itself).
As soon as the first thread reaches the goal location, that thread is traced back
to the start, giving us our route.

Our code doesn’t handle the situation where there are no more work items
on the work list, because we know that our graph is connected, meaning that
every location can be reached from all other locations. We’ll always be able to
find a route between two points, and the search can’t fail.

function goalOrientedRobot({place, parcels}, route) {
if (route.length == 0) {

let parcel = parcels[0];
if (parcel.place != place) {

route = findRoute(roadGraph, place, parcel.place);
} else {

route = findRoute(roadGraph, place, parcel.address);
}

}
return {direction: route[0], memory: route.slice(1)};

}

This robot uses its memory value as a list of directions to move in, just like
the route-following robot. Whenever that list is empty, it has to figure out
what to do next. It takes the first undelivered parcel in the set and, if that
parcel hasn’t been picked up yet, plots a route towards it. If the parcel has been
picked up, it still needs to be delivered, so the robot creates a route towards
the delivery address instead.

This robot usually finishes the task of delivering 5 parcels in around 16 turns.
Slightly better than routeRobot, but still definitely not optimal.

Exercises

Measuring a robot

It’s hard to objectively compare robots by just letting them solve a few scenar-
ios. Maybe one robot just happened to get easier tasks, or the kind of tasks
that it is good at, whereas the other didn’t.

Write a function compareRobots that takes two robots (and their starting
memory). It should generate 100 tasks and let each of the robots solve each

126

of these tasks. When done, it should output the average number of steps each
robot took per task.

For the sake of fairness, make sure that you give each task to both robots,
rather than generating different tasks per robot.

Robot efficiency

Can you write a robot that finishes the delivery task faster than goalOrientedRobot
? If you observe that robot’s behavior, what obviously stupid things does it
do? How could those be improved?

If you solved the previous exercise, you might want to use your compareRobots
function to verify whether you improved the robot.

Persistent group

Most data structures provided in a standard JavaScript environment aren’t
very well suited for persistent use. Arrays have slice and concat methods,
which allow us to easily create new arrays without damaging the old one. But
Set, for example, has no methods for creating a new set with an item added or
removed.

Write a new class PGroup, similar to the Group class from Chapter 6, which
stores a set of values. Like Group, it has add, delete, and has methods.

Its add method, however, should return a new PGroup instance with the given
member added, and leave the old one unchanged. Similarly, delete creates a
new instance without a given member.

The class should work for values of any type, not just strings. It does not
have to be efficient when used with large amounts of values.

The constructor shouldn’t be part of the class’ interface (though you’ll defi-
nitely want to use it internally). Instead, there is an empty instance, PGroup.
empty, that can be used as a starting value.

Why do you only need one PGroup.empty value, rather than having a function
that creates a new, empty map every time?

127

“Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are, by
definition, not smart enough to debug it.”
—Brian Kernighan and P.J. Plauger, The Elements of Programming

Style

Chapter 8

Bugs and Errors

Flaws in computer programs are usually called bugs. It makes programmers
feel good to imagine them as little things that just happen to crawl into our
work. In reality, of course, we put them there ourselves.

If a program is crystallized thought, you can roughly categorize bugs into
those caused by the thoughts being confused, and those caused by mistakes
introduced while converting a thought to code. The former type is generally
harder to diagnose and fix than the latter.

Language

Many mistakes could automatically be pointed out to us by the computer, if it
knew enough about what we’re trying to do. But here JavaScript’s looseness
is a hindrance. Its concept of bindings and properties is vague enough that it
will rarely catch typos before actually running the program. And even then,
it allows you to do some clearly nonsensical things without complaint, such as
computing true * "monkey".

There are some things that JavaScript does complain about. Writing a pro-
gram that does not follow the language’s grammar will immediately make the
computer complain. Other things, such as calling something that’s not a func-
tion or looking up a property on an undefined value, will cause an error to be
reported when the program tries to perform the action.

But often, your nonsense computation will merely produce NaN (not a num-
ber) or an undefined value. And the program happily continues, convinced
that it’s doing something meaningful. The mistake will manifest itself only
later, after the bogus value has traveled through several functions. It might
not trigger an error at all but silently cause the program’s output to be wrong.
Finding the source of such problems can be difficult.

The process of finding mistakes—bugs—in programs is called debugging.

128

Strict mode

JavaScript can be made a little more strict by enabling strict mode. This is
done by putting the string "use strict" at the top of a file or a function body.
Here’s an example:

function canYouSpotTheProblem() {
"use strict";
for (counter = 0; counter < 10; counter++) {

console.log("Happy happy");
}

}

canYouSpotTheProblem();
// → ReferenceError: counter is not defined

Normally, when you forget to put let in front of your binding, as with
counter in the example, JavaScript quietly creates a global binding and uses
that. In strict mode an error is reported instead. This is very helpful. It should
be noted, though, that this doesn’t work when the binding in question already
exists as a global binding. In that case, the loop will still quietly overwrite the
value of the binding.

Another change in strict mode is that the this binding holds the value
undefined in functions that are not called as methods. When making such
a call outside of strict mode, this refers to the global scope object, which is
an object whose properties are the global bindings. So if you accidentally call
a method or constructor incorrectly in strict mode, JavaScript will produce
an error as soon as it tries to read something from this, rather than happily
writing to the global scope.

For example, consider the following code, which calls a constructor function
without the new keyword so that its this will not refer to a newly constructed
object:

function Person(name) { this.name = name; }
let ferdinand = Person("Ferdinand"); // oops
console.log(name);
// → Ferdinand

So the bogus call to Person succeeded but returned an undefined value and
created the global binding name. In strict mode, the result is different.

"use strict";

129

function Person(name) { this.name = name; }
let ferdinand = Person("Ferdinand"); // forgot new
// → TypeError: Cannot set property 'name' of undefined

We are immediately told that something is wrong. This is helpful.
Fortunately, constructors created with the class notation will always com-

plain if they are called without new, making this less of a problem even in
non-strict mode.

Strict mode does a few more things. It disallows giving a function multiple
parameters with the same name and removes certain problematic language
features entirely (such as the with statement, which is so wrong it is not further
discussed in this book).

In short, putting "use strict" at the top of your program rarely hurts and
might help you spot a problem.

Types

Some languages want to know the types of all your bindings and expressions
before even running a program. They will tell you right away when a type
is used in an inconsistent way. JavaScript considers types only when actually
running the program, and even there often tries to implicitly convert values to
the type it expects, so it’s not much help.

Still, types provide a useful framework for talking about programs. A lot of
mistakes come from being confused about the kind of value that goes into or
comes out of a function. If you have that information written down, you’re less
likely to get confused.

You could add a comment like this above the goalOrientedRobot function
from the last chapter, to describe its type.

// (WorldState, Array) → {direction: string, memory: Array}
function goalOrientedRobot(state, memory) {

// ...
}

There are a number of different conventions for annotating JavaScript pro-
grams with types.

One thing about types is that they need to introduce their own complexity
to be able to describe enough code to be useful. What do you think would be
the type of the randomPick function that returns a random element from an

130

array? You’d need to introduce a type variable, T, which can stand in for any
type, so that you can give randomPick a type like ([T])→T (function from an
array of Ts to a T).

When the types of a program are known, it is possible for the computer to
check them for you, pointing out mistakes before the program is run. There
are several JavaScript dialects that add types to the language and check them.
The most popular one is called TypeScript. If you are interested in adding
more rigor to your programs, I recommend you give it a try.

In this book, we’ll continue using raw, dangerous, untyped JavaScript code.

Testing

If the language is not going to do much to help us find mistakes, we’ll have to
find them the hard way: by running the program and seeing whether it does
the right thing.

Doing this by hand, again and again, is a really bad idea. Not only is
it annoying, it also tends to be ineffective, since it takes too much time to
exhaustively test everything every time you make a change.

Computers are good at repetitive tasks, and testing is the ideal repetitive
task. Automated testing is the process of writing a program that tests another
program. Writing tests is a bit more work than testing manually, but once
you’ve done it you gain a kind of superpower: it only takes you a few seconds
to verify that your program still behaves properly in all the situations you
wrote tests for. When you break something, you’ll immediately notice, rather
than randomly running into it at some later time.

Tests usually take the form of little labeled programs that verify some aspect
of your code. For example, a set of tests for the (standard, probably already
tested by someone else) toUpperCase method might look like this:

function test(label, body) {
if (!body()) console.log(`Failed: ${label}`);

}

test("convert Latin text to uppercase", () => {
return "hello".toUpperCase() == "HELLO";

});
test("convert Greek text to uppercase", () => {

return "Χαίρετε".toUpperCase() == "ΧΑΊΡΕΤΕ";
});
test("don't convert case-less characters", () => {

return " ".toUpperCase() == " ";

131

https://www.typescriptlang.org/

});

Writing tests like this tends to produce rather repetitive, awkward code. For-
tunately, there exist pieces of software that help you build and run collections
of tests (test suites) by providing a language (in the form of functions and
methods) suited to expressing tests and by outputting informative information
when a test fails. These are usually called test runners.

Some code is easier to test than other code. Generally, the more external
objects that the code interacts with, the harder it is to set up the context in
which to test it. The style of programming shown in the previous chapter,
which uses self-contained persistent values rather than changing objects, tends
to be easy to test.

Debugging

Once you notice that there is something wrong with your program because it
misbehaves or produces errors, the next step is to figure out what the problem
is.

Sometimes it is obvious. The error message will point at a specific line of
your program, and if you look at the error description and that line of code,
you can often see the problem.

But not always. Sometimes the line that triggered the problem is simply the
first place where a flaky value produced elsewhere gets used in an invalid way.
If you have been solving the exercises in earlier chapters, you will probably
have already experienced such situations.

The following example program tries to convert a whole number to a string
in a given base (decimal, binary, and so on) by repeatedly picking out the last
digit and then dividing the number to get rid of this digit. But the strange
output that it currently produces suggests that it has a bug.

function numberToString(n, base = 10) {
let result = "", sign = "";
if (n < 0) {

sign = "-";
n = -n;

}
do {

result = String(n % base) + result;
n /= base;

} while (n > 0);
return sign + result;

132

}
console.log(numberToString(13, 10));
// → 1.5e-3231.3e-3221.3e-3211.3e-3201.3e-3191.3e…-3181.3

Even if you see the problem already, pretend for a moment that you don’t.
We know that our program is malfunctioning, and we want to find out why.

This is where you must resist the urge to start making random changes
to the code to see if that makes it better. Instead, think. Analyze what is
happening and come up with a theory of why it might be happening. Then,
make additional observations to test this theory—or, if you don’t yet have a
theory, make additional observations to help you come up with one.

Putting a few strategic console.log calls into the program is a good way to
get additional information about what the program is doing. In this case, we
want n to take the values 13, 1, and then 0. Let’s write out its value at the
start of the loop.

13
1.3
0.13
0.013…

1.5e-323

Right. Dividing 13 by 10 does not produce a whole number. Instead of n /=
base, what we actually want is n = Math.floor(n / base) so that the number
is properly “shifted” to the right.

An alternative to using console.log to peek into the program’s behavior is to
use the debugger capabilities of your browser. Browsers come with the ability
to set a breakpoint on a specific line of your code. When the execution of the
program reaches a line with a breakpoint, it is paused, and you can inspect the
values of bindings at that point. I won’t go into details, as debuggers differ
from browser to browser, but look in your browser’s developer tools or search
the Web for more information.

Another way to set a breakpoint is to include a debugger statement (con-
sisting of simply that keyword) in your program. If the developer tools of
your browser are active, the program will pause whenever it reaches such a
statement.

133

Error propagation

Not all problems can be prevented by the programmer, unfortunately. If your
program communicates with the outside world in any way, it is possible to get
malformed input, to become overloaded with work, or to have the network fail.

If you’re only programming for yourself, you can afford to just ignore such
problems until they occur. But if you build something that is going to be used
by anybody else, you usually want the program to do better than just crash.
Sometimes the right thing to do is take the bad input in stride and continue
running. In other cases, it is better to report to the user what went wrong and
then give up. But in either situation, the program has to actively do something
in response to the problem.

Say you have a function promptInteger that asks the user for a whole number
and returns it. What should it return if the user inputs “orange”?

One option is to make it return a special value. Common choices for such
values are null, undefined, or -1.

function promptNumber(question) {
let result = Number(prompt(question));
if (Number.isNaN(result)) return null;
else return result;

}

console.log(promptNumber("How many trees do you see?"));

Now any code that calls promptNumber must check whether an actual number
was read and, failing that, must somehow recover—maybe by asking again or
by filling in a default value. Or it could again return a special value to its caller
to indicate that it failed to do what it was asked.

In many situations, mostly when errors are common and the caller should
be explicitly taking them into account, returning a special value is a good way
to indicate an error. It does, however, have its downsides. First, what if the
function can already return every possible kind of value? In such a function,
you’ll have to do something like wrap the result in an object to be able to
distinguish success from failure.

function lastElement(array) {
if (array.length == 0) {

return {failed: true};
} else {

return {element: array[array.length - 1]};
}

134

}

The second issue with returning special values is that it can lead to very
awkward code. If a piece of code calls promptNumber 10 times, it has to check
10 times whether null was returned. And if its response to finding null is to
simply return null itself, callers of the function will in turn have to check for
it, and so on.

Exceptions

When a function cannot proceed normally, what we would like to do is just
stop what we are doing and immediately jump to a place that knows how to
handle the problem. This is what exception handling does.

Exceptions are a mechanism that makes it possible for code that runs into
a problem to raise (or throw) an exception. An exception can be any value.
Raising one somewhat resembles a super-charged return from a function: it
jumps out of not just the current function but also out of its callers, all the
way down to the first call that started the current execution. This is called
unwinding the stack. You may remember the stack of function calls that was
mentioned in Chapter 3. An exception zooms down this stack, throwing away
all the call contexts it encounters.

If exceptions always zoomed right down to the bottom of the stack, they
would not be of much use. They’d just provide a novel way to blow up your
program. Their power lies in the fact that you can set “obstacles” along the
stack to catch the exception as it is zooming down. Once you’ve caught an
exception, you can do something with it to address the problem, and then
continue to run the program.

Here’s an example:

function promptDirection(question) {
let result = prompt(question);
if (result.toLowerCase() == "left") return "L";
if (result.toLowerCase() == "right") return "R";
throw new Error("Invalid direction: " + result);

}

function look() {
if (promptDirection("Which way?") == "L") {

return "a house";
} else {

return "two angry bears";

135

}
}

try {
console.log("You see", look());

} catch (error) {
console.log("Something went wrong: " + error);

}

The throw keyword is used to raise an exception. Catching one is done by
wrapping a piece of code in a try block, followed by the keyword catch. When
the code in the try block causes an exception to be raised, the catch block is
evaluated, with the name in parentheses bound to the exception value. After
the catch block finishes—or if the try block finishes without problems—the
program proceeds beneath the entire try/catch statement.

In this case, we used the Error constructor to create our exception value.
This is a standard JavaScript constructor that creates an object with a message
property. In most JavaScript environments, instances of this constructor also
gather information about the call stack that existed when the exception was
created, a so-called stack trace. This information is stored in the stack property
and can be helpful when trying to debug a problem: it tells us the function
where the problem occurred and which functions made the failing call.

Note that the look function completely ignores the possibility that promptDirection
might go wrong. This is the big advantage of exceptions: Error-handling code
is necessary only at the point where the error occurs and at the point where it
is handled. The functions in between can forget all about it.

Well, almost...

Cleaning up after exceptions

The effect of an exception is another kind of control flow. Every action that
might cause an exception, which is pretty much every function call and property
access, might cause control to suddenly leave your code.

That means that when code has several side effects, even if its “regular”
control flow looks like they’ll always all happen, an exception might prevent
some of them from taking place.

Here is some really bad banking code.

const accounts = {
a: 100,

136

b: 0,
c: 20

};

function getAccount() {
let accountName = prompt("Enter an account name");
if (!accounts.hasOwnProperty(accountName)) {

throw new Error(`No such account: ${accountName}`);
}
return accountName;

}

function transfer(from, amount) {
if (accounts[from] < amount) return;
accounts[from] -= amount;
accounts[getAccount()] += amount;

}

The transfer function transfers a sum of money from a given account to
another, asking for the name of the other account in the process. If given an
invalid account name, getAccount throws an exception.

But transfer first removes the money from the account, and then calls
getAccount before it adds it to another account. If it is broken off by an
exception at that point, it’ll just make the money disappear.

That code could have been written a little more intelligently, for example by
calling getAccount before it starts moving money around. But often problems
like this occur in more subtle ways. Even functions that don’t look like they
will throw an exception might do so in exceptional circumstances or when they
contain a programmer mistake.

One way to address this is to use fewer side effects. Again, a programming
style that computes new values instead of changing existing data helps. If a
piece of code stops running in the middle of creating a new value, no one ever
sees the half-finished value, and there is no problem.

But that isn’t always practical. So there is another feature that try state-
ments have. They may be followed by a finally block either instead of or in
addition to a catch block. A finally block says “no matter what happens, run
this code after trying to run the code in the try block.”

function transfer(from, amount) {
if (accounts[from] < amount) return;
let progress = 0;
try {

137

accounts[from] -= amount;
progress = 1;
accounts[getAccount()] += amount;
progress = 2;

} finally {
if (progress == 1) {

accounts[from] += amount;
}

}
}

This version of the function tracks its progress, and if, when leaving, it notices
that it was aborted at a point where it had created an inconsistent program
state, it repairs the damage it did.

Note that, even though the finally code is run when an exception leaves
the try block, it does not interfere with the exception. After the finally block
runs, the stack continues unwinding.

Writing programs that operate reliably even when exceptions pop up in un-
expected places is very hard. Many people simply don’t bother, and because
exceptions are typically reserved for exceptional circumstances, the problem
may occur so rarely that it is never even noticed. Whether that is a good thing
or a really bad thing depends on how much damage the software will do when
it fails.

Selective catching

When an exception makes it all the way to the bottom of the stack without
being caught, it gets handled by the environment. What this means differs
between environments. In browsers, a description of the error typically gets
written to the JavaScript console (reachable through the browser’s Tools or
Developer menu). Node.js, the browserless JavaScript environment we will
discuss in Chapter 20, is more careful about data corruption. It aborts the
whole process when an unhandled exception occurs.

For programmer mistakes, just letting the error go through is often the best
you can do. An unhandled exception is a reasonable way to signal a broken
program, and the JavaScript console will, on modern browsers, provide you
with some information about which function calls were on the stack when the
problem occurred.

For problems that are expected to happen during routine use, crashing with
an unhandled exception is a terrible strategy.

138

Invalid uses of the language, such as referencing a nonexistent binding, look-
ing up a property on null, or calling something that’s not a function, will also
result in exceptions being raised. Such exceptions can also be caught.

When a catch body is entered, all we know is that something in our try body
caused an exception. But we don’t know what, or which exception it caused.

JavaScript (in a rather glaring omission) doesn’t provide direct support for
selectively catching exceptions: either you catch them all or you don’t catch
any. This makes it tempting to assume that the exception you get is the one
you were thinking about when you wrote the catch block.

But it might not be. Some other assumption might be violated, or you might
have introduced a bug that is causing an exception. Here is an example that
attempts to keep on calling promptDirection until it gets a valid answer:

for (;;) {
try {

let dir = promtDirection("Where?"); // ← typo!
console.log("You chose ", dir);
break;

} catch (e) {
console.log("Not a valid direction. Try again.");

}
}

The for (;;) construct is a way to intentionally create a loop that doesn’t
terminate on its own. We break out of the loop only when a valid direction is
given. But we misspelled promptDirection, which will result in an “undefined
variable” error. Because the catch block completely ignores its exception value
(e), assuming it knows what the problem is, it wrongly treats the binding
error as indicating bad input. Not only does this cause an infinite loop, it also
“buries” the useful error message about the misspelled binding.

As a general rule, don’t blanket-catch exceptions unless it is for the purpose
of “routing” them somewhere—for example, over the network to tell another
system that our program crashed. And even then, think carefully about how
you might be hiding information.

So we want to catch a specific kind of exception. We can do this by checking
in the catch block whether the exception we got is the one we are interested
in and rethrowing it otherwise. But how do we recognize an exception?

We could compare its message property against the error message we happen
to expect. But that’s a shaky way to write code—we’d be using information
that’s intended for human consumption (the message) to make a programmatic
decision. As soon as someone changes (or translates) the message, the code will

139

stop working.
Rather, let’s define a new type of error and use instanceof to identify it.

class InputError extends Error {}

function promptDirection(question) {
let result = prompt(question);
if (result.toLowerCase() == "left") return "L";
if (result.toLowerCase() == "right") return "R";
throw new InputError("Invalid direction: " + result);

}

The new error class extends Error. It doesn’t define its own constructor,
which means that it inherits the Error constructor, which expects a string
message as argument. In fact, it doesn’t define anything at all—the class is
empty. InputError objects behave like Error objects, except that they have a
different class by which we can recognize them.

Now the loop can catch these more carefully.

for (;;) {
try {

let dir = promptDirection("Where?");
console.log("You chose ", dir);
break;

} catch (e) {
if (e instanceof InputError) {

console.log("Not a valid direction. Try again.");
} else {

throw e;
}

}
}

This will catch only instances of InputError and let unrelated exceptions
through. If you reintroduce the typo, the undefined binding error will be prop-
erly reported.

Assertions

Assertions are checks inside a program that verify that something is the way
it is supposed to be. They are used not to handle situations that can come up
in normal operation, but to find programmer mistakes.

140

If, for example, firstElement is described as a function that should never be
called on empty arrays, we might write it like this:

function firstElement(array) {
if (array.length == 0) {

throw new Error("firstElement called with []");
}
return array[0];

}

Now, instead of silently returning undefined (which you get when reading
an array property that does not exist), this will loudly blow up your program
as soon as you misuse it. This makes it less likely for such mistakes to go
unnoticed, and easier to find their cause when they occur.

I do not recommend trying to write assertions for every possible kind of bad
input. That’d be a lot of work and would lead to very noisy code. You’ll want
to reserve them for mistakes that are easy to make (or that you find yourself
making).

Summary

Mistakes and bad input are facts of life. An important part of programming is
finding, diagnosing, and fixing bugs. Problems can become easier to notice if
you have an automated test suite or add assertions to your programs.

Problems caused by factors outside the program’s control should usually
be handled gracefully. Sometimes, when the problem can be handled locally,
special return values are a good way to track them. Otherwise, exceptions may
be preferable.

Throwing an exception causes the call stack to be unwound until the next
enclosing try/catch block or until the bottom of the stack. The exception
value will be given to the catch block that catches it, which should verify that
it is actually the expected kind of exception and then do something with it.
To help address the unpredictable control flow caused by exceptions, finally
blocks can be used to ensure that a piece of code always runs when a block
finishes.

141

Exercises

Retry

Say you have a function primitiveMultiply that, in 20 percent of cases, mul-
tiplies two numbers, and in the other 80 percent, raises an exception of type
MultiplicatorUnitFailure. Write a function that wraps this clunky function
and just keeps trying until a call succeeds, after which it returns the result.

Make sure you handle only the exceptions you are trying to handle.

The locked box

Consider the following (rather contrived) object:

const box = {
locked: true,
unlock() { this.locked = false; },
lock() { this.locked = true; },
_content: [],
get content() {

if (this.locked) throw new Error("Locked!");
return this._content;

}
};

It is a box with a lock. There is an array in the box, but you can get at it only
when the box is unlocked. Directly accessing the private _content property is
forbidden.

Write a function called withBoxUnlocked that takes a function value as ar-
gument, unlocks the box, runs the function, and then ensures that the box
is locked again before returning, regardless of whether the argument function
returned normally or threw an exception.

142

“Some people, when confronted with a problem, think ‘I know, I’ll
use regular expressions.’ Now they have two problems.”

—Jamie Zawinski

Chapter 9

Regular Expressions

Programming tools and techniques survive and spread in a chaotic, evolutionary
way. It’s not always the pretty or brilliant ones that win but rather the ones
that function well enough within the right niche or happen to be integrated
with another successful piece of technology.

In this chapter, I will discuss one such tool, regular expressions. Regular
expressions are a way to describe patterns in string data. They form a small,
separate language that is part of JavaScript and many other languages and
systems.

Regular expressions are both terribly awkward and extremely useful. Their
syntax is cryptic, and the programming interface JavaScript provides for them
is clumsy. But they are a powerful tool for inspecting and processing strings.
Properly understanding regular expressions will make you a more effective pro-
grammer.

Creating a regular expression

A regular expression is a type of object. It can either be constructed with
the RegExp constructor or written as a literal value by enclosing a pattern in
forward slash (/) characters.

let re1 = new RegExp("abc");
let re2 = /abc/;

Both of those regular expression objects represent the same pattern: an a
character followed by a b followed by a c.

When using the RegExp constructor, the pattern is written as a normal string,
so the usual rules apply for backslashes.

The second notation, where the pattern appears between slash characters,
treats backslashes somewhat differently. First, since a forward slash ends the
pattern, we need to put a backslash before any forward slash that we want

143

to be part of the pattern. In addition, backslashes that aren’t part of special
character codes (like \n) will be preserved, rather than ignored as they are
in strings, and change the meaning of the pattern. Some characters, such as
question marks and plus signs, have special meanings in regular expressions and
must be preceded by a backslash if they are meant to represent the character
itself.

let eighteenPlus = /eighteen\+/;

Testing for matches

Regular expression objects have a number of methods. The simplest one is
test. If you pass it a string, it will return a Boolean telling you whether the
string contains a match of the pattern in the expression.

console.log(/abc/.test("abcde"));
// → true
console.log(/abc/.test("abxde"));
// → false

A regular expression consisting of only nonspecial characters simply repre-
sents that sequence of characters. If abc occurs anywhere in the string we are
testing against (not just at the start), test will return true.

Sets of characters

Finding out whether a string contains abc could just as well be done with a call
to indexOf. Regular expressions allow us to express more complicated patterns.

Say we want to match any number. In a regular expression, putting a set
of characters between square brackets makes that part of the expression match
any of the characters between the brackets.

Both of the following expressions match all strings that contain a digit:

console.log(/[0123456789]/.test("in 1992"));
// → true
console.log(/[0-9]/.test("in 1992"));
// → true

144

Within square brackets, a dash (-) between two characters can be used to
indicate a range of characters, where the ordering is determined by the char-
acter’s Unicode number. Characters 0 to 9 sit right next to each other in this
ordering (codes 48 to 57), so [0-9] covers all of them and matches any digit.

A number of common character groups have their own built-in shortcuts.
Digits are one of them: \d means the same thing as [0-9].
\d Any digit character
\w An alphanumeric character (“word character”)
\s Any whitespace character (space, tab, newline, and similar)
\D A character that is not a digit
\W A nonalphanumeric character
\S A nonwhitespace character
. Any character except for newline
So you could match a date and time format like 30-01-2003 15:20 with the

following expression:

let dateTime = /\d\d-\d\d-\d\d\d\d \d\d:\d\d/;
console.log(dateTime.test("30-01-2003 15:20"));
// → true
console.log(dateTime.test("30-jan-2003 15:20"));
// → false

That looks completely awful, doesn’t it? Half of it is backslashes, producing
a background noise that makes it hard to spot the actual pattern expressed.
We’ll see a slightly improved version of this expression later.

These backslash codes can also be used inside square brackets. For example,
[\d.] means any digit or a period character. But the period itself, between
square brackets, loses its special meaning. The same goes for other special
characters, such as +.

To invert a set of characters—that is, to express that you want to match any
character except the ones in the set—you can write a caret (^) character after
the opening bracket.

let notBinary = /[^01]/;
console.log(notBinary.test("1100100010100110"));
// → false
console.log(notBinary.test("1100100010200110"));
// → true

145

Repeating parts of a pattern

We now know how to match a single digit. What if we want to match a whole
number—a sequence of one or more digits?

When you put a plus sign (+) after something in a regular expression, it
indicates that the element may be repeated more than once. Thus, /\d+/
matches one or more digit characters.

console.log(/'\d+'/.test("'123'"));
// → true
console.log(/'\d+'/.test("''"));
// → false
console.log(/'\d*'/.test("'123'"));
// → true
console.log(/'\d*'/.test("''"));
// → true

The star (*) has a similar meaning but also allows the pattern to match zero
times. Something with a star after it never prevents a pattern from matching—
it’ll just match zero instances if it can’t find any suitable text to match.

A question mark makes a part of a pattern optional, meaning it may occur
zero times or one time. In the following example, the u character is allowed to
occur, but the pattern also matches when it is missing.

let neighbor = /neighbou?r/;
console.log(neighbor.test("neighbour"));
// → true
console.log(neighbor.test("neighbor"));
// → true

To indicate that a pattern should occur a precise number of times, use curly
braces. Putting {4} after an element, for example, requires it to occur exactly
four times. It is also possible to specify a range this way: {2,4} means the
element must occur at least twice and at most four times.

Here is another version of the date and time pattern that allows both single-
and double-digit days, months, and hours. It is also slightly easier to decipher.

let dateTime = /\d{1,2}-\d{1,2}-\d{4} \d{1,2}:\d{2}/;
console.log(dateTime.test("30-1-2003 8:45"));
// → true

146

You can also specify open-ended ranges when using curly braces by omitting
the number after the comma. So, {5,} means five or more times.

Grouping subexpressions

To use an operator like * or + on more than one element at a time, you have to
use parentheses. A part of a regular expression that is enclosed in parentheses
counts as a single element as far as the operators following it are concerned.

let cartoonCrying = /boo+(hoo+)+/i;
console.log(cartoonCrying.test("Boohoooohoohooo"));
// → true

The first and second + characters apply only to the second o in boo and hoo,
respectively. The third + applies to the whole group (hoo+), matching one or
more sequences like that.

The i at the end of the expression in the example makes this regular expres-
sion case insensitive, allowing it to match the uppercase B in the input string,
even though the pattern is itself all lowercase.

Matches and groups

The test method is the absolute simplest way to match a regular expression.
It tells you only whether it matched and nothing else. Regular expressions also
have an exec (execute) method that will return null if no match was found
and return an object with information about the match otherwise.

let match = /\d+/.exec("one two 100");
console.log(match);
// → ["100"]
console.log(match.index);
// → 8

An object returned from exec has an index property that tells us where in
the string the successful match begins. Other than that, the object looks like
(and in fact is) an array of strings, whose first element is the string that was
matched—in the previous example, this is the sequence of digits that we were
looking for.

String values have a match method that behaves similarly.

147

console.log("one two 100".match(/\d+/));
// → ["100"]

When the regular expression contains subexpressions grouped with paren-
theses, the text that matched those groups will also show up in the array.
The whole match is always the first element. The next element is the part
matched by the first group (the one whose opening parenthesis comes first in
the expression), then the second group, and so on.

let quotedText = /'([^']*)'/;
console.log(quotedText.exec("she said 'hello'"));
// → ["'hello'", "hello"]

When a group does not end up being matched at all (for example, when fol-
lowed by a question mark), its position in the output array will hold undefined.
Similarly, when a group is matched multiple times, only the last match ends
up in the array.

console.log(/bad(ly)?/.exec("bad"));
// → ["bad", undefined]
console.log(/(\d)+/.exec("123"));
// → ["123", "3"]

Groups can be useful for extracting parts of a string. If we don’t just want
to verify whether a string contains a date but also extract it and construct an
object that represents it, we can wrap parentheses around the digit patterns
and directly pick the date out of the result of exec.

But first, a brief detour, in which we discuss the built-in way to represent
date and time values in JavaScript.

The Date class

JavaScript has a standard class for representing dates—or rather, points in
time. It is called Date. If you simply create a date object using new, you get
the current date and time.

console.log(new Date());
// → Mon Nov 13 2017 16:19:11 GMT+0100 (CET)

You can also create an object for a specific time.

148

console.log(new Date(2009, 11, 9));
// → Wed Dec 09 2009 00:00:00 GMT+0100 (CET)
console.log(new Date(2009, 11, 9, 12, 59, 59, 999));
// → Wed Dec 09 2009 12:59:59 GMT+0100 (CET)

JavaScript uses a convention where month numbers start at zero (so De-
cember is 11), yet day numbers start at one. This is confusing and silly. Be
careful.

The last four arguments (hours, minutes, seconds, and milliseconds) are op-
tional and taken to be zero when not given.

Timestamps are stored as the number of milliseconds since the start of 1970,
in the UTC time zone. This follows a convention set by “Unix time”, which
was invented around that time. You can use negative numbers for times before
1970. The getTime method on a date object returns this number. It is big, as
you can imagine.

console.log(new Date(2013, 11, 19).getTime());
// → 1387407600000
console.log(new Date(1387407600000));
// → Thu Dec 19 2013 00:00:00 GMT+0100 (CET)

If you give the Date constructor a single argument, that argument is treated
as such a millisecond count. You can get the current millisecond count by
creating a new Date object and calling getTime on it or by calling the Date.now
function.

Date objects provide methods like getFullYear, getMonth, getDate, getHours
, getMinutes, and getSeconds to extract their components. Besides getFullYear
, there’s also getYear, which gives you a rather useless two-digit year value (such
as 93 or 14).

Putting parentheses around the parts of the expression that we are interested
in, we can now create a date object from a string.

function getDate(string) {
let [_, day, month, year] =

/(\d{1,2})-(\d{1,2})-(\d{4})/.exec(string);
return new Date(year, month - 1, day);

}
console.log(getDate("30-1-2003"));
// → Thu Jan 30 2003 00:00:00 GMT+0100 (CET)

149

The _ (underscore) binding is ignored, and only used to skip the full match
element in the array returned by exec.

Word and string boundaries

Unfortunately, getDate will also happily extract the nonsensical date 00-1-3000
from the string "100-1-30000". A match may happen anywhere in the string, so
in this case, it’ll just start at the second character and end at the second-to-last
character.

If we want to enforce that the match must span the whole string, we can add
the markers ^ and $. The caret matches the start of the input string, whereas
the dollar sign matches the end. So, /^\d+$/matches a string consisting entirely
of one or more digits, /^!/ matches any string that starts with an exclamation
mark, and /x^/ does not match any string (there cannot be an x before the
start of the string).

If, on the other hand, we just want to make sure the date starts and ends
on a word boundary, we can use the marker \b. A word boundary can be the
start or end of the string or any point in the string that has a word character
(as in \w) on one side and a nonword character on the other.

console.log(/cat/.test("concatenate"));
// → true
console.log(/\bcat\b/.test("concatenate"));
// → false

Note that a boundary marker doesn’t match an actual character. It just
enforces that the regular expression matches only when a certain condition
holds at the place where it appears in the pattern.

Choice patterns

Say we want to know whether a piece of text contains not only a number but a
number followed by one of the words pig, cow, or chicken, or any of their plural
forms.

We could write three regular expressions and test them in turn, but there is
a nicer way. The pipe character (|) denotes a choice between the pattern to its
left and the pattern to its right. So I can say this:

let animalCount = /\b\d+ (pig|cow|chicken)s?\b/;
console.log(animalCount.test("15 pigs"));

150

// → true
console.log(animalCount.test("15 pigchickens"));
// → false

Parentheses can be used to limit the part of the pattern that the pipe operator
applies to, and you can put multiple such operators next to each other to express
a choice between more than two alternatives.

The mechanics of matching

Conceptually, when you use exec or test the regular expression engine looks
for a match in your string by trying to match the expression first from the start
of the string, then from the second character, and so on until it finds a match
or reaches the end of the string. It’ll either return the first match that can be
found or fail to find any match at all.

To do the actual matching, the engine treats a regular expression something
like a flow diagram. This is the diagram for the livestock expression in the
previous example:

" "boundary boundary

Group #1

"chicken"

"cow"

"pig"

digit "s"

Our expression matches if we can find a path from the left side of the diagram
to the right side. We keep a current position in the string, and every time we
move through a box, we verify that the part of the string after our current
position matches that box.

So if we try to match "the 3 pigs" from position 4, our progress through
the flow chart would look like this:

• At position 4, there is a word boundary, so we can move past the first
box.

• Still at position 4, we find a digit, so we can also move past the second
box.

• At position 5, one path loops back to before the second (digit) box,
while the other moves forward through the box that holds a single space

151

character. There is a space here, not a digit, so we must take the second
path.

• We are now at position 6 (the start of “pigs”) and at the three-way
branch in the diagram. We don’t see “cow” or “chicken” here, but we do
see “pig”, so we take that branch.

• At position 9, after the three-way branch, one path skips the s box and
goes straight to the final word boundary, while the other path matches an
s. There is an s character here, not a word boundary, so we go through
the s box.

• We’re at position 10 (the end of the string) and can match only a word
boundary. The end of a string counts as a word boundary, so we go
through the last box and have successfully matched this string.

Backtracking

The regular expression /\b([01]+b|[\da-f]+h|\d+)\b/ matches either a binary
number followed by a b, a hexadecimal number (that is, base 16, with the letters
a to f standing for the digits 10 to 15) followed by an h, or a regular decimal
number with no suffix character. This is the corresponding diagram:

word boundary

group #1

One of:

“0”

“1”
“b”

One of:

digit

-“a” “f”
“h”

digit

word boundary

When matching this expression, it will often happen that the top (binary)
branch is entered even though the input does not actually contain a binary
number. When matching the string "103", for example, it becomes clear only
at the 3 that we are in the wrong branch. The string does match the expression,
just not the branch we are currently in.

152

So the matcher backtracks. When entering a branch, it remembers its current
position (in this case, at the start of the string, just past the first boundary box
in the diagram) so that it can go back and try another branch if the current one
does not work out. For the string "103", after encountering the 3 character, it
will start trying the branch for hexadecimal numbers, which fails again because
there is no h after the number. So it tries the decimal number branch. This
one fits, and a match is reported after all.

The matcher stops as soon as it finds a full match. This means that if
multiple branches could potentially match a string, only the first one (ordered
by where the branches appear in the regular expression) is used.

Backtracking also happens for repetition operators like + and *. If you
match /^.*x/ against "abcxe", the .* part will first try to consume the whole
string. The engine will then realize that it needs an x to match the pattern.
Since there is no x past the end of the string, the star operator tries to match
one character less. But the matcher doesn’t find an x after abcx either, so it
backtracks again, matching the star operator to just abc. Now it finds an x
where it needs it and reports a successful match from positions 0 to 4.

It is possible to write regular expressions that will do a lot of backtracking.
This problem occurs when a pattern can match a piece of input in many dif-
ferent ways. For example, if we get confused while writing a binary-number
regular expression, we might accidentally write something like /([01]+)+b/.

"b"

Group #1

One of:

"1"

"0"

If that tries to match some long series of zeros and ones with no trailing b
character, the matcher first goes through the inner loop until it runs out of
digits. Then it notices there is no b, so it backtracks one position, goes through
the outer loop once, and gives up again, trying to backtrack out of the inner
loop once more. It will continue to try every possible route through these two
loops. This means the amount of work doubles with each additional character.
For even just a few dozen characters, the resulting match will take practically
forever.

153

The replace method

String values have a replace method that can be used to replace part of the
string with another string.

console.log("papa".replace("p", "m"));
// → mapa

The first argument can also be a regular expression, in which case the first
match of the regular expression is replaced. When a g option (for global) is
added to the regular expression, all matches in the string will be replaced, not
just the first.

console.log("Borobudur".replace(/[ou]/, "a"));
// → Barobudur
console.log("Borobudur".replace(/[ou]/g, "a"));
// → Barabadar

It would have been sensible if the choice between replacing one match or all
matches was made through an additional argument to replace or by providing
a different method, replaceAll. But for some unfortunate reason, the choice
relies on a property of the regular expression instead.

The real power of using regular expressions with replace comes from the
fact that we can refer back to matched groups in the replacement string. For
example, say we have a big string containing the names of people, one name
per line, in the format Lastname, Firstname. If we want to swap these names
and remove the comma to get a Firstname Lastname format, we can use the
following code:

console.log(
"Liskov, Barbara\nMcCarthy, John\nWadler, Philip"

.replace(/(\w+), (\w+)/g, "$2 $1"));
// → Barbara Liskov
// John McCarthy
// Philip Wadler

The $1 and $2 in the replacement string refer to the parenthesized groups in
the pattern. $1 is replaced by the text that matched against the first group, $2
by the second, and so on, up to $9. The whole match can be referred to with
$&.

It is possible to pass a function—rather than a string—as the second argu-

154

ment to replace. For each replacement, the function will be called with the
matched groups (as well as the whole match) as arguments, and its return value
will be inserted into the new string.

Here’s a small example:

let s = "the cia and fbi";
console.log(s.replace(/\b(fbi|cia)\b/g,

str => str.toUpperCase()));
// → the CIA and FBI

And here’s a more interesting one:

let stock = "1 lemon, 2 cabbages, and 101 eggs";
function minusOne(match, amount, unit) {

amount = Number(amount) - 1;
if (amount == 1) { // only one left, remove the 's'

unit = unit.slice(0, unit.length - 1);
} else if (amount == 0) {

amount = "no";
}
return amount + " " + unit;

}
console.log(stock.replace(/(\d+) (\w+)/g, minusOne));
// → no lemon, 1 cabbage, and 100 eggs

This takes a string, finds all occurrences of a number followed by an alphanu-
meric word, and returns a string wherein every such occurrence is decremented
by one.

The (\d+) group ends up as the amount argument to the function, and the
(\w+) group gets bound to unit. The function converts amount to a number—
which always works, since it matched \d+—and makes some adjustments in
case there is only one or zero left.

Greed

It is possible to use replace to write a function that removes all comments
from a piece of JavaScript code. Here is a first attempt:

function stripComments(code) {
return code.replace(/\/\/.*|\/*[^]**\//g, "");

}
console.log(stripComments("1 + /* 2 */3"));

155

// → 1 + 3
console.log(stripComments("x = 10;// ten!"));
// → x = 10;
console.log(stripComments("1 /* a */+/* b */ 1"));
// → 1 1

The part before the or operator matches two slash characters followed by any
number of non-newline characters. The part for multiline comments is more
involved. We use [^] (any character that is not in the empty set of characters)
as a way to match any character. We cannot just use a period here because
block comments can continue on a new line, and the period character does not
match newline characters.

But the output for the last line appears to have gone wrong. Why?
The [^]* part of the expression, as I described in the section on backtracking,

will first match as much as it can. If that causes the next part of the pattern to
fail, the matcher moves back one character and tries again from there. In the
example, the matcher first tries to match the whole rest of the string and then
moves back from there. It will find an occurrence of */ after going back four
characters and match that. This is not what we wanted—the intention was to
match a single comment, not to go all the way to the end of the code and find
the end of the last block comment.

Because of this behavior, we say the repetition operators (+, *, ?, and {}
) are greedy, meaning they match as much as they can and backtrack from
there. If you put a question mark after them (+?, *?, ??, {}?), they become
nongreedy and start by matching as little as possible, matching more only when
the remaining pattern does not fit the smaller match.

And that is exactly what we want in this case. By having the star match
the smallest stretch of characters that brings us to a */, we consume one block
comment and nothing more.

function stripComments(code) {
return code.replace(/\/\/.*|\/*[^]*?*\//g, "");

}
console.log(stripComments("1 /* a */+/* b */ 1"));
// → 1 + 1

A lot of bugs in regular expression programs can be traced to unintentionally
using a greedy operator where a nongreedy one would work better. When using
a repetition operator, consider the nongreedy variant first.

156

Dynamically creating RegExp objects

There are cases where you might not know the exact pattern you need to match
against when you are writing your code. Say you want to look for the user’s
name in a piece of text and enclose it in underscore characters to make it stand
out. Since you will know the name only once the program is actually running,
you can’t use the slash-based notation.

But you can build up a string and use the RegExp constructor on that. Here’s
an example:

let name = "harry";
let text = "Harry is a suspicious character.";
let regexp = new RegExp("\\b(" + name + ")\\b", "gi");
console.log(text.replace(regexp, "_$1_"));
// → _Harry_ is a suspicious character.

When creating the \b boundary markers, we have to use two backslashes
because we are writing them in a normal string, not a slash-enclosed regular ex-
pression. The second argument to the RegExp constructor contains the options
for the regular expression—in this case, "gi" for global and case-insensitive.

But what if the name is "dea+hl[]rd" because our user is a nerdy teenager?
That would result in a nonsensical regular expression that won’t actually match
the user’s name.

To work around this, we can add backslashes before any character that has
a special meaning.

let name = "dea+hl[]rd";
let text = "This dea+hl[]rd guy is super annoying.";
let escaped = name.replace(/[\\[.+*?(){|^$]/g, "\\$&");
let regexp = new RegExp("\\b" + escaped + "\\b", "gi");
console.log(text.replace(regexp, "_$&_"));
// → This _dea+hl[]rd_ guy is super annoying.

The search method

The indexOf method on strings cannot be called with a regular expression. But
there is another method, search, that does expect a regular expression. Like
indexOf, it returns the first index on which the expression was found, or -1
when it wasn’t found.

157

console.log(" word".search(/\S/));
// → 2
console.log(" ".search(/\S/));
// → -1

Unfortunately, there is no way to indicate that the match should start at a
given offset (like we can with the second argument to indexOf), which would
often be useful.

The lastIndex property

The exec method similarly does not provide a convenient way to start searching
from a given position in the string. But it does provide an inconvenient way.

Regular expression objects have properties. One such property is source,
which contains the string that expression was created from. Another property
is lastIndex, which controls, in some limited circumstances, where the next
match will start.

Those circumstances are that the regular expression must have the global
(g) or sticky (y) option enabled, and the match must happen through the exec
method. Again, a less confusing solution would have been to just allow an
extra argument to be passed to exec, but confusion is an essential feature of
JavaScript’s regular expression interface.

let pattern = /y/g;
pattern.lastIndex = 3;
let match = pattern.exec("xyzzy");
console.log(match.index);
// → 4
console.log(pattern.lastIndex);
// → 5

If the match was successful, the call to exec automatically updates the
lastIndex property to point after the match. If no match was found, lastIndex
is set back to zero, which is also the value it has in a newly constructed regular
expression object.

The difference between the global and the sticky options is that, when sticky
is enabled, the match will only succeed if it starts directly at lastIndex, whereas
with global, it will search ahead for a position where a match can start.

let global = /abc/g;
console.log(global.exec("xyz abc"));

158

// → ["abc"]
let sticky = /abc/y;
console.log(sticky.exec("xyz abc"));
// → null

When using a shared regular expression value for multiple exec calls, these
automatic updates to the lastIndex property can cause problems. Your regular
expression might be accidentally starting at an index that was left over from a
previous call.

let digit = /\d/g;
console.log(digit.exec("here it is: 1"));
// → ["1"]
console.log(digit.exec("and now: 1"));
// → null

Another interesting effect of the global option is that it changes the way
the match method on strings works. When called with a global expression,
instead of returning an array similar to that returned by exec, match will find
all matches of the pattern in the string and return an array containing the
matched strings.

console.log("Banana".match(/an/g));
// → ["an", "an"]

So be cautious with global regular expressions. The cases where they are
necessary—calls to replace and places where you want to explicitly use lastIndex
—are typically the only places where you want to use them.

Looping over matches

A common thing to do is to scan through all occurrences of a pattern in a
string, in a way that gives us access to the match object in the loop body. We
can do this by using lastIndex and exec.

let input = "A string with 3 numbers in it... 42 and 88.";
let number = /\b\d+\b/g;
let match;
while (match = number.exec(input)) {

console.log("Found", match[0], "at", match.index);
}
// → Found 3 at 14

159

// Found 42 at 33
// Found 88 at 40

This makes use of the fact that the value of an assignment expression (=) is
the assigned value. So by using match = number.exec(input) as the condition
in the while statement, we perform the match at the start of each iteration,
save its result in a binding, and stop looping when no more matches are found.

Parsing an INI file

To conclude the chapter, we’ll look at a problem that calls for regular expres-
sions. Imagine we are writing a program to automatically collect information
about our enemies from the Internet. (We will not actually write that program
here, just the part that reads the configuration file. Sorry.) The configuration
file looks like this:

searchengine=https://duckduckgo.com/?q=$1
spitefulness=9.7

; comments are preceded by a semicolon...
; each section concerns an individual enemy
[larry]
fullname=Larry Doe
type=kindergarten bully
website=http://www.geocities.com/CapeCanaveral/11451

[davaeorn]
fullname=Davaeorn
type=evil wizard
outputdir=/home/marijn/enemies/davaeorn

The exact rules for this format (which is a widely used format, usually called
an INI file) are as follows:

• Blank lines and lines starting with semicolons are ignored.

• Lines wrapped in [and] start a new section.

• Lines containing an alphanumeric identifier followed by an = character
add a setting to the current section.

• Anything else is invalid.

160

Our task is to convert a string like this into an object whose properties
hold strings for sectionless settings and sub-objects for sections, with those
sub-objects holding the section’s settings.

Since the format has to be processed line by line, splitting up the file into
separate lines is a good start. We used string.split("\n") to do this in
Chapter 4. Some operating systems, however, use not just a newline character
to separate lines but a carriage return character followed by a newline ("\r\n").
Given that the split method also allows a regular expression as its argument,
we can use a regular expression like /\r?\n/ to split in a way that allows both
"\n" and "\r\n" between lines.

function parseINI(string) {
// Start with an object to hold the top-level fields
let result = {};
let section = result;
string.split(/\r?\n/).forEach(line => {

let match;
if (match = line.match(/^(\w+)=(.*)$/)) {

section[match[1]] = match[2];
} else if (match = line.match(/^\[(.*)\]$/)) {

section = result[match[1]] = {};
} else if (!/^\s*(;.*)?$/.test(line)) {

throw new Error("Line '" + line + "' is not valid.");
}

});
return result;

}

console.log(parseINI(`
name=Vasilis
[address]
city=Tessaloniki`));
// → {name: "Vasilis", address: {city: "Tessaloniki"}}

The code goes over the file’s lines and builds up an object. Properties at the
top are stored directly into that object, whereas properties found in sections are
stored in a separate section object. The section binding points at the object
for the current section.

There are two kinds of significant lines—section headers or property lines.
When a line is a regular property, it is stored in the current section. When it
is a section header, a new section object is created, and section is set to point
at it.

161

Note the recurring use of ^ and $ to make sure the expression matches the
whole line, not just part of it. Leaving these out results in code that mostly
works but behaves strangely for some input, which can be a difficult bug to
track down.

The pattern if (match = string.match(...)) is similar to the trick of using
an assignment as the condition for while. You often aren’t sure that your call
to match will succeed, so you can access the resulting object only inside an
if statement that tests for this. To not break the pleasant chain of else if
forms, we assign the result of the match to a binding and immediately use that
assignment as the test for the if statement.

If a line is not a section header or a property, the function checks whether it
is a comment or an empty line using the expression /^\s*(;.*)?$/. Do you see
how it works? The part between the parentheses will match comments, and
the ? makes sure it also matches lines containing only whitespace. When a line
doesn’t match any of the expected forms, the function throws an exception.

International characters

Because of JavaScript’s initial simplistic implementation and the fact that this
simplistic approach was later set in stone as standard behavior, JavaScript’s
regular expressions are rather dumb about characters that do not appear in
the English language. For example, as far as JavaScript’s regular expressions
are concerned, a “word character” is only one of the 26 characters in the Latin
alphabet (uppercase or lowercase), decimal digits, and, for some reason, the
underscore character. Things like é or ß, which most definitely are word char-
acters, will not match \w (and will match uppercase \W, the nonword category).

By a strange historical accident, \s (whitespace) does not have this problem
and matches all characters that the Unicode standard considers whitespace,
including things like the nonbreaking space and the Mongolian vowel separator.

Another problem is that, by default, regular expressions work on code units,
as discussed in Chapter 5, not actual characters. This means that characters
that are composed of two code units behave strangely.

console.log(/🍎{3}/.test("🍎🍎🍎"));
// → false
console.log(/<.>/.test("<🌹>"));
// → false
console.log(/<.>/u.test("<🌹>"));
// → true

162

The problem is that the 🍎 in the first line is treated as two code units, and
the {3} part is applied only to the second one. Similarly, the dot matches a
single code unit, not the two that make up the rose emoji.

You must add a u option (for Unicode) to your regular expression to make
it treat such characters properly. The wrong behavior remains the default,
unfortunately, because changing that might cause problems for existing code
that depends on it.

Though this was only just standardized and is, at the time of writing, not
widely supported yet, it is possible to use \p in a regular expression (that must
have the Unicode option enabled) to match all characters to which the Unicode
standard assigns a given property.

console.log(/\p{Script=Greek}/u.test("α"));
// → true
console.log(/\p{Script=Arabic}/u.test("α"));
// → false
console.log(/\p{Alphabetic}/u.test("α"));
// → true
console.log(/\p{Alphabetic}/u.test("!"));
// → false

Unicode defines a number of useful properties, though finding the one that
you need may not always be trivial. You can use the \p{Property=Value}
notation to match any character that has the given value for that property. If
the property name is left off, as in \p{Name}, the name is assumed to either be
a binary property such as Alphabetic or a category such as Number.

Summary

Regular expressions are objects that represent patterns in strings. They use
their own language to express these patterns.

163

/abc/ A sequence of characters
/[abc]/ Any character from a set of characters
/[^abc]/ Any character not in a set of characters
/[0-9]/ Any character in a range of characters
/x+/ One or more occurrences of the pattern x
/x+?/ One or more occurrences, nongreedy
/x*/ Zero or more occurrences
/x?/ Zero or one occurrence
/x{2,4}/ Two to four occurrences
/(abc)/ A group
/a|b|c/ Any one of several patterns
/\d/ Any digit character
/\w/ An alphanumeric character (“word character”)
/\s/ Any whitespace character
/./ Any character except newlines
/\b/ A word boundary
/^/ Start of input
/$/ End of input
A regular expression has a method test to test whether a given string

matches it. It also has a method exec that, when a match is found, returns
an array containing all matched groups. Such an array has an index property
that indicates where the match started.

Strings have a match method to match them against a regular expression
and a search method to search for one, returning only the starting position
of the match. Their replace method can replace matches of a pattern with a
replacement string or function.

Regular expressions can have options, which are written after the closing
slash. The i option makes the match case-insensitive. The g option makes
the expression global, which, among other things, causes the replace method
to replace all instances instead of just the first. The y option makes it sticky,
which means that it will not search ahead and skip part of the string when
looking for a match. The u option turns on Unicode mode, which fixes a
number of problems around the handling of characters that take up two code
units.

Regular expressions are a sharp tool with an awkward handle. They simplify
some tasks tremendously but can quickly become unmanageable when applied
to complex problems. Part of knowing how to use them is resisting the urge to
try to shoehorn things that they cannot cleanly express into them.

164

Exercises

It is almost unavoidable that, in the course of working on these exercises,
you will get confused and frustrated by some regular expression’s inexplicable
behavior. Sometimes it helps to enter your expression into an online tool like
debuggex.com to see whether its visualization corresponds to what you intended
and to experiment with the way it responds to various input strings.

Regexp golf

Code golf is a term used for the game of trying to express a particular program
in as few characters as possible. Similarly, regexp golf is the practice of writing
as tiny a regular expression as possible to match a given pattern, and only that
pattern.

For each of the following items, write a regular expression to test whether any
of the given substrings occur in a string. The regular expression should match
only strings containing one of the substrings described. Do not worry about
word boundaries unless explicitly mentioned. When your expression works, see
whether you can make it any smaller.

1. car and cat

2. pop and prop

3. ferret, ferry, and ferrari

4. Any word ending in ious

5. A whitespace character followed by a period, comma, colon, or semicolon

6. A word longer than six letters

7. A word without the letter e (or E)
Refer to the table in the chapter summary for help. Test each solution with

a few test strings.

Quoting style

Imagine you have written a story and used single quotation marks throughout
to mark pieces of dialogue. Now you want to replace all the dialogue quotes
with double quotes, while keeping the single quotes used in contractions like
aren’t.

Think of a pattern that distinguishes these two kinds of quote usage and
craft a call to the replace method that does the proper replacement.

165

https://www.debuggex.com/

Numbers again

Write an expression that matches only JavaScript-style numbers. It must sup-
port an optional minus or plus sign in front of the number, the decimal dot,
and exponent notation—5e-3 or 1E10— again with an optional sign in front of
the exponent. Also note that it is not necessary for there to be digits in front
of or after the dot, but the number cannot be a dot alone. That is, .5 and 5.
are valid JavaScript numbers, but a lone dot isn’t.

166

“Write code that is easy to delete, not easy to extend.”
—Tef, Programming is Terrible

Chapter 10

Modules

The ideal program has a crystal clear structure. The way it works is easy to
explain, and each part plays a well-defined role.

A typical real program grows organically. New pieces of functionality are
added as new needs come up. Structuring—and preserving structure—is addi-
tional work, work which will only pay off in the future, the next time someone
works on the program. So it is tempting to neglect it, and allow the parts of
the program to become deeply entangled.

This causes two practical issues. Firstly, understanding such a system is
hard. If everything can touch everything else, it is difficult to look at any
given piece in isolation. You are forced to build up a holistic understanding
of the whole thing. Secondly, if you want to use any of the functionality from
such a program in another situation, rewriting it may be easier than trying to
disentangle it from its context.

The term “big ball of mud” is often used for such large, structureless pro-
grams. Everything sticks together, and when you try to pick out a piece, the
whole thing comes apart and your hands get dirty.

Modules

Modules are an attempt to avoid these problems. A module is a piece of pro-
gram that specifies which other pieces it relies on (its dependencies) and which
functionality it provides for other modules to use (its interface).

Module interfaces have a lot in common with object interfaces, as we saw
them in Chapter 6. They make part of the module available to the outside
world and keep the rest private. By restricting the ways in which modules
interact with each other, the system becomes more like LEGO, where pieces
interact through well-defined connectors, and less like mud, where everything
mixes with everything.

The relations between modules are called dependencies. When a module
needs a piece from another module, it is said to depend on that module. When

167

this fact is clearly specified in the module itself, it can be used to figure out
which other modules need to be present to be able to use a given module and
to automatically load dependencies.

To separate modules in that way, each needs it own private scope.
Just putting your JavaScript code into different files does not satisfy these

requirements. The files still share the same global namespace. They can,
intentionally or accidentally, interfere with each other’s bindings. And the
dependency structure remains unclear. We can do better, as we’ll see later in
the chapter.

Designing a fitting module structure for a program can be difficult. In the
phase where you are still exploring the problem, trying out different things to
see what works, you might want to not worry about it too much, since it can
be a big distraction. Once you have something that feels solid, that’s a good
time to take a step back and organize it.

Packages

One of the advantages of building a program out of separate pieces, and being
actually able to run those pieces on their own, is that you might be able to
apply the same piece in different programs.

But how do you set this up? Say I want to use the parseINI function from
Chapter 9 in another program. If it is clear what the function depends on (in
this case, nothing), I can just copy all the necessary code into my new project
and use it. But then, if I find a mistake in that code, I’ll probably fix it in
whichever program I’m working with at the time and forget to also fix it in the
other program.

Once you start duplicating code, you’ll quickly find yourself wasting time
and energy moving copies around and keeping them up-to-date.

That’s where packages come in. A package is a chunk of code that can be
distributed (copied and installed). It may contain one or more modules, and
has information about which other packages it depends on. A package also
usually comes with documentation explaining what it does, so that people who
didn’t write it might still be able to use it.

When a problem is found in a package, or a new feature is added, the package
is updated. Now the programs that depend on it (which may also be packages)
can upgrade to the new version.

Working in this way requires infrastructure. We need a place to store and find
packages, and a convenient way to install and upgrade them. In the JavaScript
world, this infrastructure is provided by NPM (npmjs.org).

168

https://npmjs.org

NPM is two things: an online service where one can download (and upload)
packages, and a program (bundled with Node.js) that helps you install and
manage them.

At the time of writing, there are over half a million different packages avail-
able on NPM. A large portion of those are rubbish, I should mention, but
almost every useful, publicly available package can be found on there. For ex-
ample, an INI file parser, similar to the one we built in Chapter 9, is available
under the package name ini.

Chapter 20 will show how to install such packages locally using the npm
command-line program.

Having quality packages available for download is extremely valuable. It
means that we can often avoid reinventing a program that a hundred people
have written before, and get a solid, well-tested implementation at the press of
a few keys.

Software is cheap to copy, so once someone has written it, distributing it to
other people is an efficient process. But writing it in the first place is work,
and responding to people who have found problems in the code, or who want
to propose new features, is even more work.

By default, you own the copyright to the code you write, and other peo-
ple may only use it with your permission. But because some people are just
nice, and because publishing good software can help make you a little bit fa-
mous among programmers, many packages are published under a license that
explicitly allows other people to use it.

Most code on NPM is licensed this way. Some licenses require you to also
publish code that you build on top of the package under the same license.
Others are less demanding, just requiring that you keep the license with the
code as you distribute it. The JavaScript community mostly uses the latter
type of license. When using other people’s packages, make sure you are aware
of their license.

Improvised modules

Until 2015, the JavaScript language had no built-in module system. People
had been building large systems in JavaScript for over a decade though, and
they needed modules.

So they designed their own module systems on top of the language. You can
use JavaScript functions to create local scopes, and objects to represent module
interfaces.

This is a module for going between day names and numbers (as returned

169

by Date’s getDay method). Its interface consists of weekDay.name and weekDay
.number, and it hides its local binding names inside the scope of a function
expression that is immediately invoked.

const weekDay = function() {
const names = ["Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"];
return {

name(number) { return names[number]; },
number(name) { return names.indexOf(name); }

};
}();

console.log(weekDay.name(weekDay.number("Sunday")));
// → Sunday

This style of modules provides isolation, to a certain degree, but it does not
declare dependencies. Instead, it just puts its interface into the global scope
and expects its dependencies, if any, to do the same. For a long time this was
the main approach used in web programming, but it is mostly obsolete now.

If we want to make dependency relations part of the code, we’ll have to take
control of loading dependencies. Doing that requires being able to execute
strings as code. JavaScript can do this.

Evaluating data as code

There are several ways to take data (a string of code) and run it as part of the
current program.

The most obvious way is the special operator eval, which will execute a
string in the current scope. This is usually a bad idea because it breaks some
of the properties that scopes normally have, such as it being easily predictable
which binding a given name refers to.

const x = 1;
function evalAndReturnX(code) {

eval(code);
return x;

}

console.log(evalAndReturnX("var x = 2"));
// → 2

170

A less scary way of interpreting data as code is to use the Function con-
structor. It takes two arguments: a string containing a comma-separated list
of argument names and a string containing the function body.

let plusOne = Function("n", "return n + 1;");
console.log(plusOne(4));
// → 5

This is precisely what we need for a module system. We can wrap the
module’s code in a function and use that function’s scope as module scope.

CommonJS

The most widely used approach to bolted-on JavaScript modules is called Com-
monJS modules. Node.js uses it, and is the system used by most packages on
NPM.

The main concept in CommonJS modules is a function called require. When
you call this with the module name of a dependency, it makes sure the module
is loaded and returns its interface.

Because the loader wraps the module code in a function, modules automat-
ically get their own local scope. All they have to do is call require to access
their dependencies, and put their interface in the object bound to exports.

This example module provides a date-formatting function. It uses two pack-
ages from NPM—ordinal to convert numbers to strings like "1st" and "2nd",
and date-names to get the English names for weekdays and months. It exports
a single function, formatDate, which takes a Date object and a template string.

The template string may contain codes that direct the format, such as YYYY
for the full year and Do for the ordinal day of the month. You could give it a
string like "MMMM Do YYYY" to get output like “November 22nd 2017”.

const ordinal = require("ordinal");
const {days, months} = require("date-names");

exports.formatDate = function(date, format) {
return format.replace(/YYYY|M(MMM)?|Do?|dddd/g, tag => {

if (tag == "YYYY") return date.getFullYear();
if (tag == "M") return date.getMonth();
if (tag == "MMMM") return months[date.getMonth()];
if (tag == "D") return date.getDate();
if (tag == "Do") return ordinal(date.getDate());

171

if (tag == "dddd") return days[date.getDay()];
});

};

The interface of ordinal is a single function, whereas date-names exports an
object containing multiple things—the two values we use are arrays of names.
Destructuring is very convenient when creating bindings for imported inter-
faces.

The module adds its interface function to exports, so that modules that
depend on it get access to it. We could use the module like this:

const {formatDate} = require("./format-date");

console.log(formatDate(new Date(2017, 9, 13),
"dddd the Do"));

// → Friday the 13th

We can define require, in its most minimal form, like this:

require.cache = Object.create(null);

function require(name) {
if (!(name in require.cache)) {

let code = readFile(name);
let module = {exports: {}};
require.cache[name] = module;
let wrapper = Function("require, exports, module", code);
wrapper(require, module.exports, module);

}
return require.cache[name].exports;

}

In this code, readFile is a made-up function that reads a file and returns its
contents as a string. Standard JavaScript provides no such functionality—but
different JavaScript environments, such as the browser and Node.js, provide
their own ways of accessing files. The example just pretends that readFile
exists.

To avoid loading the same module multiple times, require keeps a store
(cache) of already loaded modules. When called, it first checks if the requested
module has been loaded and, if not, loads it. This involves reading the module’s
code, wrapping it in a function, and calling it.

172

The interface of the ordinal package we saw before is not an object, but
a function. A quirk of the CommonJS modules is that, though the module
system will create an empty interface object for you (bound to exports), you
can replace that with any value by overwriting module.exports. This is done
by many modules to export a single value instead of an interface object.

By defining require, exports, and module as parameters for the generated
wrapper function (and passing the appropriate values when calling it), the
loader makes sure that these bindings are available in the module’s scope.

The way the string given to require is translated to an actual filename or
web address differs in different systems. When it starts with "./" or "../",
it is generally interpreted as relative to the current module’s filename. So "./
format-date" would be the file named format-date.js in the same directory.

When the name isn’t relative, Node.js will look for an installed package by
that name. In the example code in this chapter, we’ll interpret such names as
refering to NPM packages. We’ll go into more detail on how to install and use
NPM modules in Chapter 20.

Now, instead of writing our own INI file parser, we can use one from NPM:

const {parse} = require("ini");

console.log(parse("x = 10\ny = 20"));
// → {x: "10", y: "20"}

ECMAScript modules

CommonJS modules work quite well and, in combination with NPM, have
allowed the JavaScript community to start sharing code on a large scale.

But they remain a bit of a duct-tape hack. The notation is slightly awkward—
the things you add to exports are not available in the local scope, for example.
And because require is a normal function call taking any kind of argument, not
just a string literal, it can be hard to determine the dependencies of a module
without running its code.

This is why the JavaScript standard from 2015 introduces its own, differ-
ent module system. It is usually called ES modules, where ES stands for
ECMAScript. The main concepts of dependencies and interfaces remain the
same, but the details differ. For one thing, the notation is now integrated into
the language. Instead of calling a function to access a dependency, you use a
special import keyword.

173

import ordinal from "ordinal";
import {days, months} from "date-names";

export function formatDate(date, format) { /* ... */ }

Similarly, the export keyword is used to export things. It may appear in
front of a function, class, or binding definition (let, const, or var).

An ES module’s interface is not a single value, but a set of named bind-
ings. The preceding module binds formatDate to a function. When you import
from another module, you import the binding, not the value, which means an
exporting module may change the value of the binding at any time, and the
modules that import it will see its new value.

When there is a binding named default, it is treated as the module’s main
exported value. If you import a module like ordinal in the example, without
braces around the binding name, you get its default binding. Such modules
can still export other bindings under different names alongside their default
export.

To create a default export, you write export default before an expression,
a function declaration, or a class declaration.

export default ["Winter", "Spring", "Summer", "Autumn"];

It is possible to rename imported binding using the word as.

import {days as dayNames} from "date-names";

console.log(dayNames.length);
// → 7

At the time of writing, the JavaScript community is in the process of adopt-
ing this module style. But it has been a slow process. It took a few years,
after the format was specified, for browsers and Node.js to start supporting it.
And though they mostly support it now, this support still has issues, and the
discussion on how such modules should be distributed through NPM is still
ongoing.

Many projects are written using ES modules and then automatically con-
verted to some other format when published. We are in a transitional period
in which two different module systems are used side-by-side, and it is useful to
be able to read and write code in either of them.

174

Building and bundling

In fact, many JavaScript projects aren’t even, technically, written in JavaScript.
There are extensions, such as the type checking dialect mentioned in Chapter
8, that are widely used. People also often start using planned extensions to the
language long before they have been added to the platforms that actually run
JavaScript.

To make this possible, they compile their code, translating it from their
chosen JavaScript dialect to plain old JavaScript—or even to a past version of
JavaScript—so that old browsers can run it.

Including a modular program that consists of 200 different files in a web page
produces its own problems. If fetching a single file over the network takes 50
milliseconds, loading the whole program takes 10 seconds, or maybe half that if
you can load several files simultaneously. That’s a lot of wasted time. Because
fetching a single big file tends to be faster than fetching a lot of tiny ones,
web programmers have started using tools that roll their programs (which they
painstakingly split into modules) back into a single big file before they publish
it to the Web. Such tools are called bundlers.

And we can go further. Apart from the number of files, the size of the
files also determines how fast they can be transferred over the network. Thus,
the JavaScript community has invented minifiers. These are tools that take
a JavaScript program and make it smaller by automatically removing com-
ments and whitespace, renaming bindings, and replacing pieces of code with
equivalent code that take up less space.

So it is not uncommon for the code that you find in an NPM package or that
runs on a web page to have gone through multiple stages of transformation—
converted from modern JavaScript to historic JavaScript, from ES module for-
mat to CommonJS, bundled, and minified. We won’t go into the details of
these tools in this book, since they tend to be boring and change rapidly. Just
be aware that the JavaScript code that you run is often not the code as it was
written.

Module design

Structuring programs is one of the subtler aspects of programming. Any non-
trivial piece of functionality can be modeled in various ways.

Good program design is subjective—there are trade-offs involved, and mat-
ters of taste. The best way to learn the value of well-structured design is to
read or work on a lot of programs and notice what works and what doesn’t.

175

Don’t assume that a painful mess is “just the way it is”. You can improve the
structure of almost everything by putting more thought into it.

One aspect of module design is ease of use. If you are designing something
that is intended to be used by multiple people—or even by yourself, in three
months when you no longer remember the specifics of what you did—it is
helpful if your interface is simple and predictable.

That may mean following existing conventions. A good example is the ini
package. This module imitates the standard JSON object by providing parse
and stringify (to write an INI file) functions, and, like JSON, converts between
strings and plain objects. So the interface is small and familiar, and after you’ve
worked with it once, you’re likely to remember how to use it.

Even if there’s no standard function or widely used package to imitate, you
can keep your modules predictable by using simple data structures and doing
a single, focused thing. Many of the INI-file parsing modules on NPM provide
a function that directly reads such a file from the hard disk and parses it,
for example. This makes it impossible to use such modules in the browser,
where we don’t have direct file system access, and adds complexity that would
have been better addressed by composing the module with some file-reading
function.

Which points to another helpful aspect of module design—the ease with
which something can be composed with other code. Focused modules that
compute values are applicable in a wider range of programs than bigger modules
that perform complicated actions with side effects. An INI file reader that
insists on reading the file from disk is useless in a scenario where the file’s
content comes from some other source.

Relatedly, stateful objects are sometimes useful or even necessary, but if
something can be done with a function, use a function. Several of the INI file
readers on NPM provide an interface style that require you to first create an
object, then load the file into your object, and finally use specialized methods
to get at the results. This type of thing is common in the object-oriented
tradition, and it’s terrible. Instead of making a single function call and moving
on, you have to perform the ritual of moving your object through various
states. And because the data is now wrapped in a specialized object type, all
code that interacts with it has to know about that type, creating unnecessary
interdependencies.

Often defining new data structures can’t be avoided—only a few very basic
ones are provided by the language standard, and many types of data have to
be more complex than an array or a map. But when an array suffices, use an
array.

An example of a slightly more complex data structure is the graph from

176

Chapter 7. There is no single obvious way to represent a graph in JavaScript.
In that chapter, we used an object whose properties hold arrays of strings—the
other nodes reachable from that node.

There are several different pathfinding packages on NPM, but none of them
uses this graph format. They usually allow the graph’s edges to have a weight,
the cost or distance associated with it, which isn’t possible in our representa-
tion.

For example, there’s the dijkstrajs package. A well-known approach to
path finding, quite similar to our findRoute function, is called Dijkstra’s algo-
rithm, after Edsger Dijkstra, who first wrote it down. The js suffix is often
added to package names to indicate the fact that they are written in JavaScript.
This dijkstrajs package uses a graph format similar to ours, but instead of
arrays, it uses objects whose property values are numbers—the weights of the
edges.

So if we wanted to use that package, we’d have to make sure that our graph
was stored in the format it expects.

const {find_path} = require("dijkstrajs");

let graph = {};
for (let node of Object.keys(roadGraph)) {

let edges = graph[node] = {};
for (let dest of roadGraph[node]) {

edges[dest] = 1;
}

}

console.log(find_path(graph, "Post Office", "Cabin"));
// → ["Post Office", "Alice's House", "Cabin"]

This can be a barrier to composition—when various packages are using dif-
ferent data structures to describe similar things, combining them is difficult.
Therefore, if you want to design for composability, find out what data struc-
tures other people are using and, when possible, follow their example.

Summary

Modules provide structure to bigger programs by separating the code into pieces
with clear interfaces and dependencies. The interface is the part of the module
that’s visible from other modules, and the dependencies are the other modules
that it makes use of.

177

Because JavaScript historically did not provide a module system, the Com-
monJS system was built on top of it. Then at some point it did get a built-in
system, which now coexists uneasily with the CommonJS system.

A package is a chunk of code that can be distributed on its own. NPM is a
repository of JavaScript packages. You can download all kinds of useful (and
useless) packages from it.

Exercises

A modular robot

These are the bindings that the project from Chapter 7 creates:

roads
buildGraph
roadGraph
VillageState
runRobot
randomPick
randomRobot
mailRoute
routeRobot
findRoute
goalOrientedRobot

If you were to write that project as a modular program, what modules would
you create? Which module would depend on which other module, and what
would their interfaces look like?

Which pieces are likely to be available pre-written on NPM? Would you
prefer to use an NPM package or write them yourself?

Roads module

Write a CommonJS module, based on the example from Chapter 7, that con-
tains the array of roads and exports the graph data structure representing them
as roadGraph. It should depend on a module ./graph, which exports a function
buildGraph that is used to build the graph. This function expects an array of
two-element arrays (the start and end points of the roads).

178

Circular dependencies

A circular dependency is a situation where module A depends on B, and B
also, directly or indirectly, depends on A. Many module systems simply forbid
this because whichever order you choose for loading such modules, you cannot
make sure that each module’s dependencies have been loaded before it runs.

CommonJS modules allow a limited form of cyclic dependencies. As long as
the modules do not replace their default exports object, and don’t access each
other’s interface until after they finish loading, cyclic dependencies are okay.

The require function given earlier in this chapter supports this type of de-
pendency cycle. Can you see how it handles cycles? What would go wrong
when a module in a cycle does replace its default exports object?

179

“Who can wait quietly while the mud settles?
Who can remain still until the moment of action?”

—Laozi, Tao Te Ching

Chapter 11

Asynchronous Programming

The central part of a computer, the part that carries out the individual steps
that make up our programs, is called the processor. The programs we have seen
so far are things that will keep the processor busy until they have finished their
work. The speed at which something like a loop that manipulates numbers can
be executed depends pretty much entirely on the speed of the processor.

But many programs interact with things outside of the processor. For ex-
ample, they may communicate over a computer network or request data from
the hard disk—which is a lot slower than getting it from memory.

When such a thing is happening, it would be a shame to let the processor
sit idle—there might be some other work it could do in the meantime. In
part, this is handled by your operating system, which will switch the processor
between multiple running programs. But that doesn’t help when we want a
single program to be able to make progress while it is waiting for a network
request.

Asynchronicity

In a synchronous programming model, things happen one at a time. When you
call a function that performs a long-running action, it only returns when the
action has finished and it can return the result. This stops your program for
the time the action takes.

An asynchronous model allows multiple things to happen at the same time.
When you start an action, your program continues to run. When the action
finishes, the program is informed and gets access to the result (for example,
the data read from disk).

We can compare synchronous and asynchronous programming using a small
example: a program that fetches two resources from the network and then
combines results.

In a synchronous environment, where the request function only returns after
it has done its work, the easiest way to perform this task is to make the requests

180

one after the other. This has the drawback that the second request will be
started only when the first has finished. The total time taken will be at least
the sum of the two response times.

The solution to this problem, in a synchronous system, is to start additional
threads of control. A thread is another running program whose execution may
be interleaved with other programs by the operating system—since most mod-
ern computers contain multiple processors, multiple threads may even run at
the same time, on different processors. A second thread could start the second
request, and then both threads wait for their results to come back, after which
they resynchronize to combine their results.

In the following diagram, the thick lines represent time the program spends
running normally, and the thin lines represent time spent waiting for the net-
work. In the synchronous model, the time taken by the network is part of the
timeline for a given thread of control. In the asynchronous model, starting a
network action conceptually causes a split in the timeline. The program that
initiated the action continues running, and the action happens alongside it,
notifying the program when it is finished.

synchronous, single thread of control

synchronous, two threads of control

asynchronous

Another way to describe the difference is that waiting for actions to finish
is implicit in the synchronous model, while it is explicit, under our control, in
the asynchronous one.

Asynchronicity cuts both ways. It makes expressing programs that do not
fit the straight-line model of control easier, but it can also make expressing
programs that do follow a straight line more awkward. We’ll see some ways to
address this awkwardness later in the chapter.

Both of the important JavaScript programming platforms—browsers and
Node.js—make operations that might take a while asynchronous, rather than
relying on threads. Since programming with threads is notoriously hard (under-
standing what a program does is much more difficult when it’s doing multiple
things at once), this is generally considered a good thing.

181

Crow tech

Most people are aware of the fact that crows are very smart birds. They can
use tools, plan ahead, remember things, and even communicate these things
among themselves.

What most people don’t know is that they are capable of many things that
they keep well hidden from us. I’ve been told by a reputable (if somewhat
eccentric) expert on corvids that crow technology is not far behind human
technology, and they are catching up.

For example, many crow cultures have the ability to construct computing
devices. These are not electronic, as human computing devices are, but operate
through the actions of tiny insects, a species closely related to the termite, that
has developed a symbiotic relationship with the crows. The birds provide them
with food, and in return the insects build and operate their complex colonies
which, with the help of the living creatures inside them, perform computations.

Such colonies are usually located in big, long-lived nests. The birds and
insects work together to build a network of bulbous clay structures, hidden
between the twigs of the nest, in which the insects live and work.

To communicate with other devices, these machines use light signals. The
crows embed pieces of reflective material in special communication stalks, and
the insects aim these to reflect light at another nest, encoding data as a sequence
of quick flashes. This means that only nests that have an unbroken visual
connection can communicate.

Our friend the corvid expert has mapped the network of crow nests in the
village of Hières-sur-Amby, on the banks of the river Rhône. This map shows
the nests and their connections.

In an astounding example of convergent evolution, crow computers run JavaScript.
In this chapter we’ll write some basic networking functions for them.

182

Callbacks

One approach to asynchronous programming is to make functions that perform
a slow action take an extra argument, a callback function. The action is started,
and when it finishes, the callback function is called with the result.

As an example, the setTimeout function, available both in Node.js and in
browsers, waits a given amount of milliseconds (a second is a thousand mil-
liseconds) and then calls a function.

setTimeout(() => console.log("Tick"), 500);

Waiting is not generally a very important type of work, but it can be useful
when doing something like updating an animation or checking whether some-
thing is taking longer than a given amount of time.

Performing multiple asynchronous actions in a row using callbacks means
that you have to keep passing new functions to handle the continuation of the
computation after the actions.

Most crow nest computers have a long-term data storage bulb, where pieces
of information are etched into twigs so that they can be retrieved later. Etching
or finding a piece of data takes a moment, so the interface to long-term storage
is asynchronous, and uses callback functions.

Storage bulbs store pieces of JSON-encodable data under names. A crow
might store information about the places where it’s hidden away food under
the name "food caches", which could hold an array of names that point at
other pieces of data, describing the actual cache. To look up a food cache in
the storage bulbs of the Big Oak nest, a crow could run code like this:

import {bigOak} from "./crow-tech";

bigOak.readStorage("food caches", caches => {
let firstCache = caches[0];
bigOak.readStorage(firstCache, info => {

console.log(info);
});

});

(All binding names and strings have been translated from crow language to
English.)

This style of programming is workable, but the indentation level increases
with each asynchronous action, because you end up in another function. Doing
more complicated things, like running multiple actions at the same time, can

183

get a little awkward.
Crow nest computers are built to communicate using request-response pairs.

That means one nest sends a message to another nest, which then immediately
sends a message back, confirming receipt and possibly including a reply to a
question asked in the message.

Each message is tagged with a type, which determines how it is handled. Our
code can define handlers for specific request types, and when such a request
comes in, the handler is called to produce a response.

The interface exported by the "./crow-tech"module provides callback-based
functions for communication. Nests have a send method that sends off a re-
quest. It expects the name of the target nest, the type of the request, and the
content of the request as its first three arguments, and a function to call when
a response comes in as its fourth and last argument.

bigOak.send("Cow Pasture", "note", "Let's caw loudly at 7PM",
() => console.log("Note delivered."));

But to make nests capable of receiving that request, we first have to define a
request type named "note". The code that handles the requests has to run not
just on this nest-computer, but on all nests that can receive messages of this
type. We’ll just assume that a crow flies over and installs our handler code on
all the nests.

import {defineRequestType} from "./crow-tech";

defineRequestType("note", (nest, content, source, done) => {
console.log(`${nest.name} received note: ${content}`);
done();

});

The defineRequestType function defines a new type of request. The example
adds support for "note" requests, which just sends a note to a given nest. Our
implementation calls console.log so that we can verify that the request arrived.
Nests have a name property that holds their name.

The fourth argument given to the handler, done, is a callback function that it
must call when it is done with the request. If we had used the handler’s return
value as the response value, that would mean that a request handler can’t itself
perform asynchronous actions. A function doing asynchronous work typically
returns before the work is done, having arranged for a callback to be called
when it completes. So we need some asynchronous mechanism—in this case,

184

another callback function—to signal when a response is available.
In a way, asynchronicity is contagious. Any function that calls a function that

works asynchronously must itself be asynchronous, using a callback or similar
mechanism to deliver its result. Calling callback is somewhat more involved
and error-prone than simply returning a value, so needing to structure large
parts of your program that way is not great.

Promises

Working with abstract concepts is often easier when those concepts can be
represented by values. In the case of asynchronous actions you could, instead
of arranging for a function to be called at some point in the future, return an
object that represents this future event.

This is what the standard class Promise is for. A promise is an asynchronous
action that may complete at some point and produce a value. It is able to
notify anyone who is interested when its value is available.

The easiest way to create a promise is by calling Promise.resolve. This
function ensures that the value you give it is wrapped in a promise. If it’s
already a promise, it is simply returned—otherwise, you get a new promise
that immediately finishes with your value as its result.

let fifteen = Promise.resolve(15);
fifteen.then(value => console.log(`Got ${value}`));
// → Got 15

To get the result of a promise, you can use its then method. This registers a
callback function to be called when the promise resolves and produces a value.
You can add multiple callbacks to a single promise, and they will be called,
even if you add them after the promise has already resolved (finished).

But that’s not all the then method does. It returns another promise, which
resolves to the value that the handler function returns or, if that returns a
promise, waits for that promise and then resolves to its result.

It is useful to think of promises as a device to move values into an asyn-
chronous reality. A normal value is simply there. A promised value is a value
that might already be there or might appear at some point in the future. Com-
putations defined in terms of promises act on such wrapped values and are
executed asynchronously as the values become available.

To create a promise, you can use Promise as a constructor. It has a some-
what odd interface—the constructor expects a function as argument, which it

185

immediately calls, passing it a function that it can use to resolve the promise.
It works this way, instead of for example with a resolve method, so that only
the code that created the promise can resolve it.

This is how you’d create a promise-based interface for the readStorage func-
tion.

function storage(nest, name) {
return new Promise(resolve => {

nest.readStorage(name, result => resolve(result));
});

}

storage(bigOak, "enemies")
.then(value => console.log("Got", value));

This asynchronous function returns a meaningful value. This is the main
advantage of promises—they simplify the use of asynchronous functions. In-
stead of having to pass around callbacks, promise-based functions look similar
to regular ones: they take input as arguments and return their output. The
only difference is that the output may not be available yet.

Failure

Regular JavaScript computations can fail by throwing an exception. Asyn-
chronous computations often need something like that. A network request
may fail, or some code that is as part of the asynchronous computation may
throw an exception.

One of the most pressing problems with the callback style of asynchronous
programming is that it makes it extremely difficult to make sure failures are
properly reported to the callbacks.

A widely used convention is that the first argument to the callback is used
to indicate that the action failed, and the second contains the value produced
by the action when it was successful. Such callback functions must always
check whether they received an exception, and make sure that any problems
they cause, including exceptions thrown by functions they call, are caught and
given to the right function.

Promises make this easier. They can be either resolved (the action finished
successfully) or rejected (it failed). Resolve handlers (as registered with then)
are only called when the action is successful, and rejections are automatically
propagated to the new promise that is returned by then. And when a handler

186

throws an exception, this automatically causes the promise produced by its
then call to be rejected. So if any element in a chain of asynchronous actions
fails, the outcome of the whole chain is marked as rejected, and no regular
handlers are called beyond the point where it failed.

Much like resolving a promise provides a value, rejecting one also provides
one, usually called the reason of the rejection. When an exception in a handler
function causes the rejection, the exception value is used as the reason. Sim-
ilarly, when a handler returns a promise that is rejected, that rejection flows
into the next promise. There’s a Promise.reject function that creates a new,
immediately rejected promise.

To explicitly handle such rejections, promises have a catch method that
registers a handler to be called when the promise is rejected, similar to how
then handlers handle normal resolution. It’s also very much like then in that
it returns a new promise, which resolves to the original promise’s value if it
resolves normally, and to the result of the catch handler otherwise. If a catch
handler throws an error, the new promise is also rejected.

As a shorthand, then also accepts a rejection handler as second argument,
so you can install both types of handlers in a single method call.

A function passed to the Promise constructor receives a second argument,
alongside the resolve function, which it can use to reject the new promise.

The chains of promise values created by calls to then and catch can be seen
as a pipeline through which asynchronous values or failures move. Since such
chains are created by registering handlers, each link has a success handler or a
rejection handler (or both) associated with it. Handlers that don’t match the
type of outcome (success or failure) are ignored. But those that do match are
called, and their outcome determines what kind of value comes next—success
when it returns a non-promise value, rejection when it throws an exception,
and the outcome of a promise when it returns one of those.

Much like an uncaught exception is handled by the environment, JavaScript
environments can detect when a promise rejection isn’t handled, and will report
this as an error.

Networks are hard

Occasionally, there isn’t enough light for the crows’ mirror systems to transmit
a signal, or something is blocking the path of the signal. It is possible for a
signal to be sent, but never received.

As it is, that will just cause the callback given to send to never be called,
which will probably cause the program to stop without even noticing there is

187

a problem. It would be nice if, after a given period of not getting a response,
a request would time out and report failure.

Often, transmission failures are random accidents, like a car’s headlight in-
terfering with the light signals, and simply retrying the request may cause it
to succeed. So while we’re at it, let’s make our request function automatically
retry the sending of the request a few times before it gives up.

And, since we’ve established that promises are a good thing, we’ll also make
our request function return a promise. In terms of what they can express, call-
backs and promises are equivalent. Callback-based functions can be wrapped
to expose a promise-based interface, and vice versa.

Even when a request and its response are successfully delivered, the response
may indicate failure—for example, if the request tries to use a request type
that hasn’t been defined or the handler throws an error. To support this, send
and defineRequestType follow the convention mentioned before, where the first
argument passed to callbacks is the failure reason, if any, and the second is the
actual result.

These can be translated to promise resolution and rejection by our wrapper.

class Timeout extends Error {}

function request(nest, target, type, content) {
return new Promise((resolve, reject) => {

let done = false;
function attempt(n) {

nest.send(target, type, content, (failed, value) => {
done = true;
if (failed) reject(failed);
else resolve(value);

});
setTimeout(() => {

if (done) return;
else if (n < 3) attempt(n + 1);
else reject(new Timeout("Timed out"));

}, 250);
}
attempt(1);

});
}

Because promises can only be resolved (or rejected) once, this will work. The
first time resolve or reject is called determines the outcome of the promise,
and any further calls, such as the timeout arriving after the request finishes, or

188

a request coming back after another request finished, are ignored.
To build an asynchronous loop, for the retries, we need to use a recursive

function—a regular loop doesn’t allow us to stop and wait for an asynchronous
action. The attempt function makes a single attempt to send a request. It also
sets a timeout that, if no response has come back after 250 milliseconds, either
starts the next attempt or, if this was the fourth attempt, rejects the promise
with an instance of Timeout as the reason.

Retrying every quarter second and giving up when no response has come in
after a second is definitely somewhat arbitrary. It is even possible, if the request
did come through but the handler is just taking a bit longer, for requests to
be delivered multiple times. We’ll write our handlers with that problem in
mind—duplicate messages should be harmless.

In general, we will not be building a world-class, robust network today. But
that’s okay—crows don’t have very high expectations yet when it comes to
computing.

To isolate ourselves from callbacks altogether, we’ll go ahead and also define
a wrapper for defineRequestType that allows the handler function to return a
promise or plain value, and wires that up to the callback for us.

function requestType(name, handler) {
defineRequestType(name, (nest, content, source,

callback) => {
try {

Promise.resolve(handler(nest, content, source))
.then(response => callback(null, response),

failure => callback(failure));
} catch (exception) {

callback(exception);
}

});
}

Promise.resolve is used to convert the value returned by handler to a
promise if it isn’t already.

Note that the call to handler had to be wrapped in a try block, to make sure
any exception it raises directly is given to the callback. This nicely illustrates
the difficulty of properly handling errors with raw callbacks—it is very easy to
forget to properly route exceptions like that, and if you don’t do it, failures
won’t get reported to the right callback. Promises make this mostly automatic,
and thus less error-prone.

189

Collections of promises

Each nest computer keeps an array of other nests within transmission distance
in its neighbors property. To check which of those are currently reachable,
you could write a function that tries to send a "ping" request (a request that
simply asks for a response) to each of them, and see which ones come back.

When working with collections of promises running at the same time, the
Promise.all function can be useful. It returns a promise that waits for all of
the promises in the array to resolve, and then resolves to an array of the values
that these promises produced (in the same order as the original array). If any
promise is rejected, the result of Promise.all is itself rejected.

requestType("ping", () => "pong");

function availableNeighbors(nest) {
let requests = nest.neighbors.map(neighbor => {

return request(nest, neighbor, "ping")
.then(() => true, () => false);

});
return Promise.all(requests).then(result => {

return nest.neighbors.filter((_, i) => result[i]);
});

}

When a neighbor isn’t available, we don’t want the entire combined promise
to fail, since then we still wouldn’t know anything. So the function that is
mapped over the set of neighbors to turn them into request promises attaches
handlers that make successful requests produce true and rejected ones produce
false.

In the handler for the combined promise, filter is used to remove those
elements from the neighbors array whose corresponding value is false. This
makes use of the fact that filter passes the array index of the current element
as a second argument to its filtering function (map, some, and similar higher-
order array methods do the same).

Network flooding

The fact that nests can only talk to their neighbors greatly inhibits the useful-
ness of this network.

For broadcasting information to the whole network, one solution is to set up
a type of request that is automatically forwarded to neighbors. These neighbors

190

then in turn forward it to their neighbors, until the whole network has received
the message.

import {everywhere} from "./crow-tech";

everywhere(nest => {
nest.state.gossip = [];

});

function sendGossip(nest, message, exceptFor = null) {
nest.state.gossip.push(message);
for (let neighbor of nest.neighbors) {

if (neighbor == exceptFor) continue;
request(nest, neighbor, "gossip", message);

}
}

requestType("gossip", (nest, message, source) => {
if (nest.state.gossip.includes(message)) return;
console.log(`${nest.name} received gossip '${

message}' from ${source}`);
sendGossip(nest, message, source);

});

To avoid sending the same message around the network forever, each nest
keeps an array of gossip strings that it has already seen. To define this array,
we use the everywhere function—which runs code on every nest—to add a
property to the nest’s state object, which is where we’ll keep nest-local state.

When a nest receives a duplicate gossip message, which is very likely to
happen with everybody blindly resending these, it ignores it. But when it
receives a new message, it excitedly tells all its neighbors except for the one
who sent it the message.

This will cause a new piece of gossip to spread through the network like an
ink stain in water. Even when some connections aren’t currently working, if
there is an alternative route to a given nest, the gossip will reach it through
there.

This style of network communication is called flooding—it floods the network
with a piece of information until all nodes have it.

191

Message routing

If a given node wants to talk to a single other node, flooding is not a very
efficient approach. Especially when the network is big, that would lead to a lot
of useless data transfers.

An alternative approach is to set up a way for messages to hop from node
to node, until they reach their destination. The difficulty with that is that it
requires knowledge about the layout of the network. To send a request in the
direction of a faraway nest, it is necessary to know which neighboring nest gets
it closer to its destination. Sending it in the wrong direction will not do much
good.

Since each nest only knows about its direct neighbors, it doesn’t have the
information it needs to compute a route. We must somehow spread the infor-
mation about these connections to all nests. Preferably in a way that allows it
to change over time, when nests are abandoned or new nests are built.

We can use flooding again, but instead of checking whether a given message
has already been received, we now check whether the new set of neighbors for
a given nest matches the current set we have for it.

requestType("connections", (nest, {name, neighbors},
source) => {

let connections = nest.state.connections;
if (JSON.stringify(connections.get(name)) ==

JSON.stringify(neighbors)) return;
connections.set(name, neighbors);
broadcastConnections(nest, name, source);

});

function broadcastConnections(nest, name, exceptFor = null) {
for (let neighbor of nest.neighbors) {

if (neighbor == exceptFor) continue;
request(nest, neighbor, "connections", {

name,
neighbors: nest.state.connections.get(name)

});
}

}

everywhere(nest => {
nest.state.connections = new Map;
nest.state.connections.set(nest.name, nest.neighbors);
broadcastConnections(nest, nest.name);

});

192

The comparison uses JSON.stringify because ==, on objects or arrays, will
only return true when the two are the exact same value, which is not what
we need here. Comparing the JSON strings is a crude but effective way to
compare their content.

The nodes immediately start broadcasting their connections, which should,
unless some nests are completely unreachable, quickly give every nest a map of
the current network graph.

A thing you can do with graphs is find routes in them, as we saw in Chapter
7. If we have a route towards a message’s destination, we know which direction
to send it in.

This findRoute function, which greatly resembles the findRoute from Chap-
ter 7, searches for a way to reach a given node in the network. But instead of
returning the whole route, it just returns the next step. That next nest will
itself, using its current information about the network, decide where it sends
the message.

function findRoute(from, to, connections) {
let work = [{at: from, via: null}];
for (let i = 0; i < work.length; i++) {

let {at, via} = work[i];
for (let next of connections.get(at) || []) {

if (next == to) return via;
if (!work.some(w => w.at == next)) {

work.push({at: next, via: via || next});
}

}
}
return null;

}

Now we can build a function that can send long-distance messages. If the
message is addressed to a direct neighbor, it is delivered as usual. If not, it is
packaged in an object and sent to a neighbor that is closer to the target, using
the "route" request type, which will cause that neighbor to repeat the same
behavior.

function routeRequest(nest, target, type, content) {
if (nest.neighbors.includes(target)) {

return request(nest, target, type, content);
} else {

let via = findRoute(nest.name, target,

193

nest.state.connections);
if (!via) throw new Error(`No route to ${target}`);
return request(nest, via, "route",

{target, type, content});
}

}

requestType("route", (nest, {target, type, content}) => {
return routeRequest(nest, target, type, content);

});

We’ve constructed several layers of functionality on top of a primitive com-
munication system in order to make it convenient to use. This is a nice (though
simplified) model of how real computer networks work.

A distinguishing property of computer networks is that they aren’t reliable—
abstractions built on top of them can help, but you can’t abstract away network
failure. So network programming is typically very much about anticipating and
dealing with failures.

Async functions

To store important information, crows are known to duplicate it across nests.
That way, when a hawk destroys a nest, the information isn’t lost.

To retrieve a given piece of information that it doesn’t have in its own storage
bulb, a nest computer might consult random other nests in the network until
it finds one that has it.

requestType("storage", (nest, name) => storage(nest, name));

function findInStorage(nest, name) {
return storage(nest, name).then(found => {

if (found != null) return found;
else return findInRemoteStorage(nest, name);

});
}

function network(nest) {
return Array.from(nest.state.connections.keys());

}

function findInRemoteStorage(nest, name) {
let sources = network(nest).filter(n => n != nest.name);
function next() {

194

if (sources.length == 0) {
return Promise.reject(new Error("Not found"));

} else {
let source = sources[Math.floor(Math.random() *

sources.length)];
sources = sources.filter(n => n != source);
return routeRequest(nest, source, "storage", name)

.then(value => value != null ? value : next(),
next);

}
}
return next();

}

Because connections is a Map, Object.keys doesn’t work on it. It has a keys
method, but that returns an iterator rather than an array. An iterator (or
iterable value) can be converted to an array with the Array.from function.

Even with promises this is some rather awkward code. Multiple asynchronous
actions are chained together in non-obvious ways. We again need a recursive
function (next) to model looping through the nests.

And the thing the code actually does is completely linear—it always waits for
the previous action to complete before starting the next one. In a synchronous
programming model, it’d be simpler to express.

The good news is that JavaScript allows you write pseudo-synchronous code.
An async function is a function that implicitly returns a promise and that can,
in its body, await other promises in a way that looks synchronous.

We can rewrite findInStorage like this:

async function findInStorage(nest, name) {
let local = await storage(nest, name);
if (local != null) return local;

let sources = network(nest).filter(n => n != nest.name);
while (sources.length > 0) {

let source = sources[Math.floor(Math.random() *
sources.length)];

sources = sources.filter(n => n != source);
try {

let found = await routeRequest(nest, source, "storage",
name);

if (found != null) return found;
} catch (_) {}

}

195

throw new Error("Not found");
}

An async function is marked by the word async before the function keyword.
Methods can also be made async by writing async before their name. When
such a function or method is called, it returns a promise. As soon as the body
returns something, that promise is resolved. If it throws an exception, the
promise is rejected.

Inside an async function, the word await can be put in front of an expression
to wait for a promise to resolve, and only then continue the execution of the
function.

Such a function no longer, like a regular JavaScript function, runs from start
to completion in one go. Instead, it can be frozen at any point that has an
await, and resumed at a later time.

For non-trivial asynchronous code, this notation is usually more convenient
than directly using promises. Even if you need to do something that doesn’t
fit the synchronous model, such as perform multiple actions at the same time,
it is easy to combine await with direct use of promises.

Generators

This ability of functions to be paused and then resumed again is not exclusive
to async functions. JavaScript also has a feature called generator functions.
These are similar, but without the promises.

When you define a function with function* (placing as asterisk after the
word function), it becomes a generator. When you call a generator, it returns
an iterator, which we already saw in Chapter 6.

function* powers(n) {
for (let current = n;; current *= n) {

yield current;
}

}

for (let power of powers(3)) {
if (power > 50) break;
console.log(power);

}
// → 3
// → 9
// → 27

196

Initially, when you call powers, the function is frozen at its start. Every time
you call next on the iterator, the function runs until it hits a yield expression,
which pauses it and causes the yielded value to become the next value produced
by the iterator. When the function returns (the one in the example never does),
the iterator is done.

Writing iterators is often much easier when you use generator functions. The
iterator for the group class (from the exercise in Chapter 6) can be written with
this generator:

Group.prototype[Symbol.iterator] = function*() {
for (let i = 0; i < this.members.length; i++) {

yield this.members[i];
}

};

There’s no longer a need to create an object to hold the iteration state—
generators automatically save their local state every time they yield.

Such yield expressions may only occur directly in the generator function
itself and not in an inner function you define inside of it. The state a generator
saves, when yielding, is only its local environment and the position where it
yielded.

An async function is a special type of generator. It produces a promise when
called, which is resolved when it returns (finishes) and rejected when it throws
an exception. Whenever it yields (awaits) a promise, the result of that promise
(value or thrown exception) is the result of the await expression.

The event loop

Asynchronous programs are executed piece by piece. Each piece may start some
actions and schedule code to be executed when the action finishes or fails. In
between these pieces, the program sits idle, waiting for the next action.

So callbacks are not directly called by the code that scheduled them. If I
call setTimeout from within a function, that function will have returned by the
time the callback function is called. And when the callback returns, control
does not go back to the function that scheduled it.

Asynchronous behavior happens on its own empty function call stack. This
is one of the reasons that, without promises, managing exceptions across asyn-
chronous code is hard. Since each callback starts with a mostly empty stack,
your catch handlers won’t be on the stack when they throw an exception.

197

try {
setTimeout(() => {

throw new Error("Woosh");
}, 20);

} catch (_) {
// This will not run
console.log("Caught!");

}

No matter how closely together events—such as timeouts or incoming requests—
happen, a JavaScript environment will only run one program at a time. You
can think of this as it running a big loop around your program, called the event
loop. When there’s nothing to be done, that loop is stopped. But as events
come in, they are added to a queue, and their code is executed one after the
other. Because no two things run at the same time, slow-running code might
delay the handling of other events.

This example sets a timeout, but then dallies until after the timeout’s in-
tended point of time, causing the timeout to be late.

let start = Date.now();
setTimeout(() => {

console.log("Timeout ran at", Date.now() - start);
}, 20);
while (Date.now() < start + 50) {}
console.log("Wasted time until", Date.now() - start);
// → Wasted time until 50
// → Timeout ran at 55

Promises always resolve or reject as a new event. Even if a promise is already
resolved, waiting for it will cause your callback to run after the current script
finishes, rather than right away.

Promise.resolve("Done").then(console.log);
console.log("Me first!");
// → Me first!
// → Done

In later chapters we’ll see various other types of events that run on the event
loop.

198

Asynchronous bugs

When your program runs synchronously, in a single go, there are no state
changes happening except those that the program itself makes. For asyn-
chronous programs this is different—they may have gaps in their execution
during which other code can run.

Let’s look at an example. One of the hobbies of our crows is to count the
number of chicks that hatch throughout the village every year. Nests store this
count in their storage bulbs. The following code tries to enumerate the counts
from all the nests for a given year.

function anyStorage(nest, source, name) {
if (source == nest.name) return storage(nest, name);
else return routeRequest(nest, source, "storage", name);

}

async function chicks(nest, year) {
let list = "";
await Promise.all(network(nest).map(async name => {

list += `${name}: ${
await anyStorage(nest, name, `chicks in ${year}`)

}\n`;
}));
return list;

}

The async name => part shows that arrow functions can also be made async
by putting the word async in front of them.

The code doesn’t immediately look suspicious... it maps the async arrow
function over the set of nests, creating an array of promises, and then uses
Promise.all to wait for all of these before returning the list they build up.

But it is seriously broken. It’ll always return only a single line of output,
listing the nest that was slowest to respond.

Can you work out why?
The problem lies in the += operator, which takes the current value of list

at the time where the statement starts executing, and then, when the await
finishes, sets the list binding to be that value plus the added string.

But between the time where the statement starts executing and the time
where it finishes there’s an asynchronous gap. The map expression runs before
anything has been added to the list, so each of the += operators starts from an
empty string and ends up, when its storage retrieval finishes, setting list to a

199

single-line list—the result of adding its line to the empty string.
This could have easily been avoided by returning the lines from the mapped

promises and calling join on the result of Promise.all, instead of building
up the list by changing a binding. As usual, computing new values is less
error-prone than changing existing values.

async function chicks(nest, year) {
let lines = network(nest).map(async name => {

return name + ": " +
await anyStorage(nest, name, `chicks in ${year}`);

});
return (await Promise.all(lines)).join("\n");

}

Mistakes like this are easy to make, especially when using await, and you
should be aware of where the gaps in your code occur. An advantage of
JavaScript’s explicit asynchronicity (whether through callbacks, promises, or
await) is that spotting these gaps is relatively easy.

Summary

Asynchronous programming makes it possible to express waiting for long-
running actions without freezing the program during these actions. JavaScript
environments typically implement this style of programming using callbacks,
functions that are called when the actions complete. An event loop schedules
such callbacks to be called when appropriate, one after the other, so that their
execution does not overlap.

Programming asynchronously is made easier by promises, objects that rep-
resent actions that might complete in the future, and async functions, which
allow you to write an asynchronous program as if it is synchronous.

Exercises

Tracking the scalpel

The village crows own an old scalpel that they occasionally use on special
missions—say, to cut through screen doors or packaging. To be able to quickly
track it down, every time the scalpel is moved to another nest, an entry is
added to the storage of both the nest that had it and the nest that took it,
under the name "scalpel", with its new location as value.

200

This means that finding the scalpel is a matter of following the breadcrumb
trail of storage entries, until you find a nest where that points at the nest itself.

Write an async function locateScalpel that does this, starting at the nest
on which it runs. You can use the anyStorage function defined earlier to access
storage in arbitrary nests. The scalpel has been going around long enough that
you may assume that every nest has a "scalpel" entry in its data storage.

Next, write the same function again without using async and await.
Do request failures properly show up as rejections of the returned promise

in both versions? How?

Building Promise.all

Given an array of promises, Promise.all returns a promise that waits for all of
the promises in the array to finish. It then succeeds, yielding an array of result
values. If a promise in the array fails, the promise returned by all fails too,
with the failure reason from the failing promise.

Implement something like this yourself as a regular function called Promise_all
.

Remember that after a promise has succeeded or failed, it can’t succeed or
fail again, and further calls to the functions that resolve it are ignored. This
can simplify the way you handle failure of your promise.

201

“The evaluator, which determines the meaning of expressions in a
programming language, is just another program.”
—Hal Abelson and Gerald Sussman, Structure and Interpretation of

Computer Programs

Chapter 12

Project: A Programming Language

Building your own programming language is surprisingly easy (as long as you
do not aim too high) and very enlightening.

The main thing I want to show in this chapter is that there is no magic
involved in building your own language. I’ve often felt that some human in-
ventions were so immensely clever and complicated that I’d never be able to
understand them. But with a little reading and experimenting, they often turn
out to be quite mundane.

We will build a programming language called Egg. It will be a tiny, simple
language—but one that is powerful enough to express any computation you
can think of. It will allow simple abstraction based on functions.

Parsing

The most immediately visible part of a programming language is its syntax, or
notation. A parser is a program that reads a piece of text and produces a data
structure that reflects the structure of the program contained in that text. If
the text does not form a valid program, the parser should point out the error.

Our language will have a simple and uniform syntax. Everything in Egg is an
expression. An expression can be the name of a binding, a number, a string, or
an application. Applications are used for function calls but also for constructs
such as if or while.

To keep the parser simple, strings in Egg do not support anything like back-
slash escapes. A string is simply a sequence of characters that are not double
quotes, wrapped in double quotes. A number is a sequence of digits. Binding
names can consist of any character that is not whitespace and that does not
have a special meaning in the syntax.

Applications are written the way they are in JavaScript, by putting paren-
theses after an expression and having any number of arguments between those
parentheses, separated by commas.

do(define(x, 10),

202

if(>(x, 5),
print("large"),
print("small")))

The uniformity of the Egg language means that things that are operators in
JavaScript (such as >) are normal bindings in this language, applied just like
other functions. And since the syntax has no concept of a block, we need a do
construct to represent doing multiple things in sequence.

The data structure that the parser will use to describe a program consists
of expression objects, each of which has a type property indicating the kind of
expression it is and other properties to describe its content.

Expressions of type "value" represent literal strings or numbers. Their value
property contains the string or number value that they represent. Expressions
of type "word" are used for identifiers (names). Such objects have a name prop-
erty that holds the identifier’s name as a string. Finally, "apply" expressions
represent applications. They have an operator property that refers to the ex-
pression that is being applied, and an args property that holds an array of
argument expressions.

The >(x, 5) part of the previous program would be represented like this:

{
type: "apply",
operator: {type: "word", name: ">"},
args: [

{type: "word", name: "x"},
{type: "value", value: 5}

]
}

Such a data structure is called a syntax tree. If you imagine the objects as
dots and the links between them as lines between those dots, it has a treelike
shape. The fact that expressions contain other expressions, which in turn
might contain more expressions, is similar to the way tree branches split and
split again.

203

do
define

x
10

if
>

x
5

print
"large"

print
"small"

Contrast this to the parser we wrote for the configuration file format in
Chapter 9, which had a simple structure: it split the input into lines and
handled those lines one at a time. There were only a few simple forms that a
line was allowed to have.

Here we must find a different approach. Expressions are not separated into
lines, and they have a recursive structure. Application expressions contain
other expressions.

Fortunately, this problem can be solved very well by writing a parser function
that is recursive in a way that reflects the recursive nature of the language.

We define a function parseExpression, which takes a string as input and
returns an object containing the data structure for the expression at the start
of the string, along with the part of the string left after parsing this expression.
When parsing subexpressions (the argument to an application, for example),
this function can be called again, yielding the argument expression as well as
the text that remains. This text may in turn contain more arguments or may
be the closing parenthesis that ends the list of arguments.

This is the first part of the parser:

function parseExpression(program) {
program = skipSpace(program);
let match, expr;
if (match = /^"([^"]*)"/.exec(program)) {

expr = {type: "value", value: match[1]};
} else if (match = /^\d+\b/.exec(program)) {

expr = {type: "value", value: Number(match[0])};
} else if (match = /^[^\s(),"]+/.exec(program)) {

expr = {type: "word", name: match[0]};
} else {

204

throw new SyntaxError("Unexpected syntax: " + program);
}

return parseApply(expr, program.slice(match[0].length));
}

function skipSpace(string) {
let first = string.search(/\S/);
if (first == -1) return "";
return string.slice(first);

}

Because Egg, like JavaScript, allows any amount of whitespace between its
elements, we have to repeatedly cut the whitespace off the start of the program
string. That is what the skipSpace function helps with.

After skipping any leading space, parseExpression uses three regular expres-
sions to spot the three atomic elements that Egg supports: strings, numbers,
and words. The parser constructs a different kind of data structure depending
on which one matches. If the input does not match one of these three forms, it
is not a valid expression, and the parser throws an error. We use SyntaxError
instead of Error as exception constructor, which is another standard error type,
because it is a little more specific—it is also the error type thrown when an
attempt is made to run an invalid JavaScript program.

We then cut off the part that was matched from the program string and pass
that, along with the object for the expression, to parseApply, which checks
whether the expression is an application. If so, it parses a parenthesized list of
arguments.

function parseApply(expr, program) {
program = skipSpace(program);
if (program[0] != "(") {

return {expr: expr, rest: program};
}

program = skipSpace(program.slice(1));
expr = {type: "apply", operator: expr, args: []};
while (program[0] != ")") {

let arg = parseExpression(program);
expr.args.push(arg.expr);
program = skipSpace(arg.rest);
if (program[0] == ",") {

program = skipSpace(program.slice(1));
} else if (program[0] != ")") {

205

throw new SyntaxError("Expected ',' or ')'");
}

}
return parseApply(expr, program.slice(1));

}

If the next character in the program is not an opening parenthesis, this is
not an application, and parseApply returns the expression it was given.

Otherwise, it skips the opening parenthesis and creates the syntax tree object
for this application expression. It then recursively calls parseExpression to
parse each argument until a closing parenthesis is found. The recursion is
indirect, through parseApply and parseExpression calling each other.

Because an application expression can itself be applied (such as in multiplier
(2)(1)), parseApply must, after it has parsed an application, call itself again
to check whether another pair of parentheses follows.

This is all we need to parse Egg. We wrap it in a convenient parse func-
tion that verifies that it has reached the end of the input string after parsing
the expression (an Egg program is a single expression), and that gives us the
program’s data structure.

function parse(program) {
let {expr, rest} = parseExpression(program);
if (skipSpace(rest).length > 0) {

throw new SyntaxError("Unexpected text after program");
}
return expr;

}

console.log(parse("+(a, 10)"));
// → {type: "apply",
// operator: {type: "word", name: "+"},
// args: [{type: "word", name: "a"},
// {type: "value", value: 10}]}

It works! It doesn’t give us very helpful information when it fails and doesn’t
store the line and column on which each expression starts, which might be
helpful when reporting errors later, but it’s good enough for our purposes.

206

The evaluator

What can we do with the syntax tree for a program? Run it, of course! And
that is what the evaluator does. You give it a syntax tree and a scope object
that associates names with values, and it will evaluate the expression that the
tree represents and return the value that this produces.

const specialForms = Object.create(null);

function evaluate(expr, scope) {
if (expr.type == "value") {

return expr.value;
} else if (expr.type == "word") {

if (expr.name in scope) {
return scope[expr.name];

} else {
throw new ReferenceError(
`Undefined binding: ${expr.name}`);

}
} else if (expr.type == "apply") {

let {operator, args} = expr;
if (operator.type == "word" &&

operator.name in specialForms) {
return specialForms[operator.name](expr.args, scope);

} else {
let op = evaluate(operator, scope);
if (typeof op == "function") {

return op(...args.map(arg => evaluate(arg, scope)));
} else {

throw new TypeError("Applying a non-function.");
}

}
}

}

The evaluator has code for each of the expression types. A literal value
expression produces its value. (For example, the expression 100 just evaluates
to the number 100.) For a binding, we must check whether it is actually defined
in the scope and, if it is, fetch the binding’s value.

Applications are more involved. If they are a special form, like if, we do not
evaluate anything and pass the argument expressions, along with the scope,
to the function that handles this form. If it is a normal call, we evaluate the
operator, verify that it is a function, and call it with the evaluated arguments.

207

We use plain JavaScript function values to represent Egg’s function values.
We will come back to this later, when the special form called fun is defined.

The recursive structure of evaluate resembles the similar structure of the
parser, and both mirror the structure of the language itself. It would also be
possible to integrate the parser with the evaluator and evaluate during parsing,
but splitting them up this way makes the program clearer.

This is really all that is needed to interpret Egg. It is that simple. But
without defining a few special forms and adding some useful values to the
environment, you can’t do much with this language yet.

Special forms

The specialForms object is used to define special syntax in Egg. It associates
words with functions that evaluate such forms. It is currently empty. Let’s add
if.

specialForms.if = (args, scope) => {
if (args.length != 3) {

throw new SyntaxError("Wrong number of args to if");
} else if (evaluate(args[0], scope) !== false) {

return evaluate(args[1], scope);
} else {

return evaluate(args[2], scope);
}

};

Egg’s if construct expects exactly three arguments. It will evaluate the first,
and if the result isn’t the value false, it will evaluate the second. Otherwise,
the third gets evaluated. This if form is more similar to JavaScript’s ternary
?: operator than to JavaScript’s if. It is an expression, not a statement, and
it produces a value, namely the result of the second or third argument.

Egg also differs from JavaScript in how it handles the condition value to if.
It will not treat things like zero or the empty string as false, only the precise
value false.

The reason we need to represent if as a special form, rather than a regular
function, is that all arguments to functions are evaluated before the function is
called, whereas if should evaluate only either its second or its third argument,
depending on the value of the first.

The while form is similar.

specialForms.while = (args, scope) => {

208

if (args.length != 2) {
throw new SyntaxError("Wrong number of args to while");

}
while (evaluate(args[0], scope) !== false) {

evaluate(args[1], scope);
}

// Since undefined does not exist in Egg, we return false,
// for lack of a meaningful result.
return false;

};

Another basic building block is do, which executes all its arguments from top
to bottom. Its value is the value produced by the last argument.

specialForms.do = (args, scope) => {
let value = false;
for (let arg of args) {

value = evaluate(arg, scope);
}
return value;

};

To be able to create bindings and give them new values, we also create a
form called define. It expects a word as its first argument and an expression
producing the value to assign to that word as its second argument. Since
define, like everything, is an expression, it must return a value. We’ll make it
return the value that was assigned (just like JavaScript’s = operator).

specialForms.define = (args, scope) => {
if (args.length != 2 || args[0].type != "word") {

throw new SyntaxError("Incorrect use of define");
}
let value = evaluate(args[1], scope);
scope[args[0].name] = value;
return value;

};

209

The environment

The scope accepted by evaluate is an object with properties whose names
correspond to binding names and whose values correspond to the values those
bindings are bound to. Let’s define an object to represent the global scope.

To be able to use the if construct we just defined, we must have access to
Boolean values. Since there are only two Boolean values, we do not need special
syntax for them. We simply bind two names to the values true and false and
use those.

const topScope = Object.create(null);

topScope.true = true;
topScope.false = false;

We can now evaluate a simple expression that negates a Boolean value.

let prog = parse(`if(true, false, true)`);
console.log(evaluate(prog, topScope));
// → false

To supply basic arithmetic and comparison operators, we will also add some
function values to the scope. In the interest of keeping the code short, we’ll
use Function to synthesize a bunch of operator functions in a loop, instead of
defining them individually.

for (let op of ["+", "-", "*", "/", "==", "<", ">"]) {
topScope[op] = Function("a, b", `return a ${op} b;`);

}

A way to output values is also very useful, so we’ll wrap console.log in a
function and call it print.

topScope.print = value => {
console.log(value);
return value;

};

That gives us enough elementary tools to write simple programs. The fol-
lowing function provides a convenient way to parse a program and run it in a
fresh scope.

210

function run(program) {
return evaluate(parse(program), Object.create(topScope));

}

We’ll use object prototype chains to represent nested scopes, so that the
program can add bindings to its local scope without changing the top-level
scope.

run(`
do(define(total, 0),

define(count, 1),
while(<(count, 11),

do(define(total, +(total, count)),
define(count, +(count, 1)))),

print(total))
`);
// → 55

This is the program we’ve seen several times before, which computes the sum
of the numbers 1 to 10, expressed in Egg. It is clearly uglier than the equivalent
JavaScript program—but not bad for a language implemented in less than 150
lines of code.

Functions

A programming language without functions is a poor programming language
indeed.

Fortunately, it isn’t hard to add a fun construct, which treats its last argu-
ment as the function’s body and uses all arguments before that as the names
of the function’s parameters.

specialForms.fun = (args, scope) => {
if (!args.length) {

throw new SyntaxError("Functions need a body");
}
let body = args[args.length - 1];
let params = args.slice(0, args.length - 1).map(expr => {

if (expr.type != "word") {
throw new SyntaxError("Parameter names must be words");

}
return expr.name;

});

211

return function() {
if (arguments.length != params.length) {

throw new TypeError("Wrong number of arguments");
}
let localScope = Object.create(scope);
for (let i = 0; i < arguments.length; i++) {

localScope[params[i]] = arguments[i];
}
return evaluate(body, localScope);

};
};

Functions in Egg get their own local scope. The function produced by the
fun form creates this local scope and adds the argument bindings to it. It then
evaluates the function body in this scope and returns the result.

run(`
do(define(plusOne, fun(a, +(a, 1))),

print(plusOne(10)))
`);
// → 11

run(`
do(define(pow, fun(base, exp,

if(==(exp, 0),
1,
*(base, pow(base, -(exp, 1)))))),

print(pow(2, 10)))
`);
// → 1024

Compilation

What we have built is an interpreter. During evaluation, it acts directly on the
representation of the program produced by the parser.

Compilation is the process of adding another step between the parsing and
the running of a program, which transforms the program into something that
can be evaluated more efficiently by doing as much work as possible in advance.
For example, in well-designed languages it is obvious, for each use of a binding,
which binding is being referred to, without actually running the program. This

212

can be used to avoid looking up the binding by name every time it is accessed,
instead directly fetching it from some predetermined memory location.

Traditionally, compilation involves converting the program to machine code,
the raw format that a computer’s processor can execute. But any process
that converts a program to a different representation can be thought of as
compilation.

It would be possible to write an alternative evaluation strategy for Egg,
one that first converts the program to a JavaScript program, uses Function
to invoke the JavaScript compiler on it, and then runs the result. When
done right, this would make Egg run very fast while still being quite simple to
implement.

If you are interested in this topic and willing to spend some time on it, I
encourage you to try to implement such a compiler as an exercise.

Cheating

When we defined if and while, you probably noticed that they were more
or less trivial wrappers around JavaScript’s own if and while. Similarly, the
values in Egg are just regular old JavaScript values.

If you compare the implementation of Egg, built on top of JavaScript, with
the amount of work and complexity required to build a programming language
directly on the raw functionality provided by a machine, the difference is huge.
Regardless, this example hopefully gave you an impression of the way program-
ming languages work.

And when it comes to getting something done, cheating is more effective than
doing everything yourself. Though the toy language in this chapter doesn’t do
anything that couldn’t be done better in JavaScript, there are situations where
writing small languages helps get real work done.

Such a language does not have to resemble a typical programming language.
If JavaScript didn’t come equipped with regular expressions, for example, you
could write your own parser and evaluator for regular expressions.

Or imagine you are building a giant robotic dinosaur and need to program
its behavior. JavaScript might not be the most effective way to do this. You
might instead opt for a language that looks like this:

behavior walk
perform when

destination ahead
actions

move left-foot

213

move right-foot

behavior attack
perform when

Godzilla in-view
actions

fire laser-eyes
launch arm-rockets

This is what is usually called a domain-specific language, a language tailored
to express a narrow domain of knowledge. Such a language can be more expres-
sive than a general-purpose language because it is designed to describe exactly
the things that need to be described in its domain, and nothing else.

Exercises

Arrays

Add support for arrays to Egg by adding the following three functions to the
top scope: array(...values) to construct an array containing the argument
values, length(array) to get an array’s length, and element(array, n) to fetch
the nth element from an array.

Closure

The way we have defined fun allows functions in Egg to reference the surround-
ing scope, allowing the function’s body to use local values that were visible at
the time the function was defined, just like JavaScript functions do.

The following program illustrates this: function f returns a function that
adds its argument to f’s argument, meaning that it needs access to the local
scope inside f to be able to use binding a.

run(`
do(define(f, fun(a, fun(b, +(a, b)))),

print(f(4)(5)))
`);
// → 9

Go back to the definition of the fun form and explain which mechanism
causes this to work.

214

Comments

It would be nice if we could write comments in Egg. For example, whenever
we find a hash sign (#), we could treat the rest of the line as a comment and
ignore it, similar to // in JavaScript.

We do not have to make any big changes to the parser to support this. We
can simply change skipSpace to skip comments as if they are whitespace so that
all the points where skipSpace is called will now also skip comments. Make
this change.

Fixing scope

Currently, the only way to assign a binding a value is define. This construct
acts as a way both to define new bindings and to give existing ones a new value.

This ambiguity causes a problem. When you try to give a nonlocal binding
a new value, you will end up defining a local one with the same name instead.
Some languages work like this by design, but I’ve always found it an awkward
way to handle scope.

Add a special form set, similar to define, which gives a binding a new value,
updating the binding in an outer scope if it doesn’t already exist in the inner
scope. If the binding is not defined at all, throw a ReferenceError (another
standard error type).

The technique of representing scopes as simple objects, which has made
things convenient so far, will get in your way a little at this point. You might
want to use the Object.getPrototypeOf function, which returns the prototype
of an object. Also remember that scopes do not derive from Object.prototype,
so if you want to call hasOwnProperty on them, you have to use this clumsy
expression:

Object.prototype.hasOwnProperty.call(scope, name);

215

“The dream behind the Web is of a common information space in
which we communicate by sharing information. Its universality is
essential: the fact that a hypertext link can point to anything, be it
personal, local or global, be it draft or highly polished.”

—Tim Berners-Lee, The World Wide Web: A very short personal
history

Chapter 13

JavaScript and the Browser

The next chapters of this book will talk about web browsers. Without web
browsers, there would be no JavaScript. Or even if there were, no one would
ever have paid any attention to it.

Web technology has, from the start, been decentralized, not just techni-
cally but also in the way it evolved. Various browser vendors have added new
functionality in ad hoc and sometimes poorly thought out ways, which then,
sometimes, ended up being adopted by others—and finally set down as a stan-
dard.

This is both a blessing and a curse. On the one hand, it is empowering to
not have a central party control a system but have it be improved by various
parties working in loose collaboration (or occasionally open hostility). On the
other hand, the haphazard way in which the Web was developed means that
the resulting system is not exactly a shining example of internal consistency.
Some parts of it are downright confusing and poorly conceived.

Networks and the Internet

Computer networks have been around since the 1950s. If you put cables be-
tween two or more computers and allow them to send data back and forth
through these cables, you can do all kinds of wonderful things.

And if connecting two machines in the same building allows us to do won-
derful things, connecting machines all over the planet should be even better.
The technology to start implementing this vision was developed in the 1980s,
and the resulting network is called the Internet. It has lived up to its promise.

A computer can use this network to shoot bits at another computer. For
any effective communication to arise out of this bit-shooting, the computers on
both ends must know what the bits are supposed to represent. The meaning
of any given sequence of bits depends entirely on the kind of thing that it is
trying to express and on the encoding mechanism used.

A network protocol describes a style of communication over a network. There

216

are protocols for sending email, for fetching email, for sharing files, or even for
controlling computers that happen to be infected by malicious software.

For example, the HTTP protocol (Hypertext Transfer Protocol) is a protocol
for retrieving named resources (chunks of information, such as web pages or
pictures). It specifies that the side making the request should start with a line
like this, naming the resource and the version of the protocol that it is trying
to use.

GET /index.html HTTP/1.1

There’s a lot more rules about the way the requester can include more infor-
mation in the request and the way the other side, which returns the resource,
packages up its content. We’ll look at HTTP in a little more detail in Chapter
18.

Most protocols are built on top of other protocols. HTTP treats the network
as a streamlike device into which you can put bits and have them arrive at the
correct destination in the correct order. As we saw in Chapter 11, ensuring
those things is already a rather difficult problem.

The Transmission Control Protocol (TCP) is a protocol that addresses this
problem. All Internet-connected devices “speak” it, and most communication
on the Internet is built on top of it.

A TCP connection works as follows: one computer must be waiting, or
listening, for other computers to start talking to it. To be able to listen for
different kinds of communication at the same time on a single machine, each
listener has a number (called a port) associated with it. Most protocols specify
which port should be used by default. For example, when we want to send
an email using the SMTP protocol, the machine through which we send it is
expected to be listening on port 25.

Another computer can then establish a connection by connecting to the tar-
get machine using the correct port number. If the target machine can be
reached and is listening on that port, the connection is successfully created.
The listening computer is called the server, and the connecting computer is
called the client.

Such a connection acts as a two-way pipe through which bits can flow—the
machines on both ends can put data into it. Once the bits are successfully
transmitted, they can be read out again by the machine on the other side.
This is a convenient model. You could say that TCP provides an abstraction
of the network.

217

The Web

The World Wide Web (not to be confused with the Internet as a whole) is a
set of protocols and formats that allow us to visit web pages in a browser. The
“Web” part in the name refers to the fact that such pages can easily link to
each other, thus connecting into a huge mesh that users can move through.

To become part of the Web, all you need to do is connect a machine to the
Internet, and have it listen on port 80 with the HTTP protocol, so that other
computers can ask it for documents.

Each document on the Web is named by a Uniform Resource Locator (URL),
which looks something like this:

http://eloquentjavascript.net/13_browser.html
| | | |
protocol server path

The first part tells us that this URL uses the HTTP protocol (as opposed to,
for example, encrypted HTTP, which would be https://). Then comes the part
that identifies which server we are requesting the document from. Last is a
path string that identifies the specific document (or resource) we are interested
in.

Machines connected to the Internet get an IP address, which is a number
that can be used to send messages to that machine, and looks something like
149.210.142.219 or 2001:4860:4860::8888. But lists of more or less random
numbers are hard to remember and awkward to type, so you can instead reg-
ister a domain name for a specific address or set of addresses. I registered
eloquentjavascript.net to point at the IP address of a machine I control and
can thus use that domain name to serve web pages.

If you type the URL we saw into your browser’s address bar, it will try to
retrieve and display the document at that URL. First, your browser has to
find out what address eloquentjavascript.net refers to. Then, using the HTTP
protocol, it will make a connection to the server at that address and ask for the
resource /13_browser.html. If all goes well, the server sends back a document,
which your browser then displays on your screen.

HTML

HTML, which stands for Hypertext Markup Language, is the document format
used for web pages. An HTML document contains text, as well as tags that

218

give structure to the text, describing things such as links, paragraphs, and
headings.

A short HTML document might look like this:

<!doctype html>
<html>

<head>
<meta charset="utf-8">
<title>My home page</title>

</head>
<body>

<h1>My home page</h1>
<p>Hello, I am Marijn and this is my home page.</p>
<p>I also wrote a book! Read it

here.</p>
</body>

</html>

This is what such a document would look like in the browser:

The tags, wrapped in angle brackets (< and >, the symbols for less than and
greater than), provide information about the structure of the document. The
other text is just plain text.

The document starts with <!doctype html>, which tells the browser to in-
terpret the page as modern HTML, as opposed to various dialects that were in
use in the past.

HTML documents have a head and a body. The head contains information
about the document, and the body contains the document itself. In this case,
the head declares that the title of this document is “My home page” and that it
uses the UTF-8 encoding, which is a way to encode Unicode text as binary data.
The document’s body contains a heading (<h1>, meaning “heading 1”—<h2> to
<h6> produce more minor headings) and two paragraphs (<p>).

Tags come in several forms. An element, such as the body, a paragraph, or a
link, is started by an opening tag like <p> and ended by a closing tag like </p>.
Some opening tags, such as the one for the link (<a>), contain extra information
in the form of name="value" pairs. These are called attributes. In this case,

219

the destination of the link is indicated with href="http://eloquentjavascript
.net", where href stands for “hypertext reference”.

Some kinds of tags do not enclose anything and thus do not need to be closed.
The metadata tag <meta charset="utf-8"> is an example of this.

To be able to include angle brackets in the text of a document, even though
they have a special meaning in HTML, yet another form of special notation
has to be introduced. A plain opening angle bracket is written as < (“less
than”), and a closing bracket is written as > (“greater than”). In HTML,
an ampersand (&) character followed by a word and a semicolon (;) is called
an entity, and will be replaced by the character it encodes.

This is analogous to the way backslashes are used in JavaScript strings. Since
this mechanism gives ampersand characters a special meaning, too, those need
to be escaped as &. Inside attribute values, which are wrapped in double
quotes, " can be used to insert an actual quote character.

HTML is parsed in a remarkably error-tolerant way. When tags that should
be there are missing, the browser reconstructs them. The way in which this is
done has been standardized, and you can rely on all modern browsers to do it
in the same way.

The following document will be treated just like the one shown previously:

<!doctype html>

<meta charset=utf-8>
<title>My home page</title>

<h1>My home page</h1>
<p>Hello, I am Marijn and this is my home page.
<p>I also wrote a book! Read it

here.

The <html>, <head>, and <body> tags are gone completely. The browser
knows the <meta> and <title> belong in the head, and that <h1> means the
body has started. Furthermore, I am no longer explicitly closing the para-
graphs since opening a new paragraph or ending the document will close them
implicitly. The quotes around the attribute values are also gone.

This book will usually omit the <html>, <head>, and <body> tags from exam-
ples to keep them short and free of clutter. But I will close tags and include
quotes around attributes.

I will also usually omit the doctype and charset declaration. This is not to
be taken as an encouragement to drop these from HTML documents. Browsers
will often do ridiculous things when you forget them. You should consider the

220

doctype and the charset metadata implicitly present in examples, even when
they are not actually shown in the text.

HTML and JavaScript

In the context of this book, the most important HTML tag is <script>. This
tag allows us to include a piece of JavaScript in a document.

<h1>Testing alert</h1>
<script>alert("hello!");</script>

Such a script will run as soon as its <script> tag is encountered while the
browser reads the HTML. This page will pop up a dialog when opened—the
alert function resembles prompt, in that it pops up a little window, but only
shows a message without asking for input.

Including large programs directly in HTML documents is often impractical.
The <script> tag can be given an src attribute in order to fetch a script file
(a text file containing a JavaScript program) from a URL.

<h1>Testing alert</h1>
<script src="code/hello.js"></script>

The code/hello.js file included here contains the same program—alert("
hello!"). When an HTML page references other URLs as part of itself, for
example an image file or a script—web browsers will retrieve them immediately
and include them in the page.

A script tag must always be closed with </script>, even if it refers to a
script file and doesn’t contain any code. If you forget this, the rest of the page
will be interpreted as part of the script.

You can load ES modules (see Chapter 10) in the browser by giving your
script tag a type="module" attribute. Such modules can depend on other mod-
ules by using URLs relative to themselves as module names in import declara-
tions.

Some attributes can also contain a JavaScript program. The <button> tag
shown next (which shows up as a button) has an onclick attribute. The
attribute’s value will be run whenever the button is clicked.

<button onclick="alert('Boom!');">DO NOT PRESS</button>

221

Note that I had to use single quotes for the string in the onclick attribute
because double quotes are already used to quote the whole attribute. I could
also have used ".

In the sandbox

Running programs downloaded from the Internet is potentially dangerous. You
do not know much about the people behind most sites you visit, and they do
not necessarily mean well. Running programs by people who do not mean well
is how you get your computer infected by viruses, your data stolen, and your
accounts hacked.

Yet the attraction of the Web is that you can browse it without necessarily
trusting all the pages you visit. This is why browsers severely limit the things
a JavaScript program may do: it can’t look at the files on your computer or
modify anything not related to the web page it was embedded in.

Isolating a programming environment in this way is called sandboxing, the
idea being that the program is harmlessly playing in a sandbox. But you should
imagine this particular kind of sandbox as having a cage of thick steel bars over
it, so that the programs playing in it can’t actually get out.

The hard part of sandboxing is allowing the programs enough room to be
useful yet at the same time restricting them from doing anything dangerous.
Lots of useful functionality, such as communicating with other servers or read-
ing the content of the copy-paste clipboard, can also be used to do problematic,
privacy-invading things.

Every now and then, someone comes up with a new way to circumvent the
limitations of a browser and do something harmful, ranging from leaking minor
private information to taking over the whole machine that the browser runs on.
The browser developers respond by fixing the hole, and all is well again—until
the next problem is discovered, and hopefully publicized, rather than secretly
exploited by some government agency or mafia.

Compatibility and the browser wars

In the early stages of the Web, a browser called Mosaic dominated the market.
After a few years, the balance had shifted to Netscape, which was then, in
turn, largely supplanted by Microsoft’s Internet Explorer. At any point where
a single browser was dominant, that browser’s vendor would feel entitled to
unilaterally invent new features for the Web. Since most users used the same

222

browser, websites would simply start using those features—never mind the
other browsers.

This was the dark age of compatibility, often called the browser wars. Web
developers were left with not one unified Web but two or three incompatible
platforms. To make things worse, the browsers in use around 2003 were all full
of bugs, and of course the bugs were different for each browser. Life was hard
for people writing web pages.

Mozilla Firefox, a not-for-profit offshoot of Netscape, challenged Internet
Explorer’s position in the late 2000s. Because Microsoft was not particularly
interested in staying competitive at the time, Firefox took a lot of market share
away from it. Around the same time, Google introduced its Chrome browser,
and Apple’s Safari browser gained popularity, leading to a situation where there
were four major players, rather than one.

The new players had a more serious attitude toward standards and better
engineering practices, giving us less incompatibility and fewer bugs. Microsoft,
seeing its market share crumble, came around and adopted these attitudes in
its Edge browser, which replaces Internet Explorer. If you are starting to learn
web development today, consider yourself lucky. The latest versions of the
major browsers behave quite uniformly and have relatively few bugs.

223

“Too bad! Same old story! Once you’ve finished building your house
you notice you’ve accidentally learned something that you really
should have known—before you started.”

—Friedrich Nietzsche, Beyond Good and Evil

Chapter 14

The Document Object Model

When you open a web page in your browser, the browser retrieves the page’s
HTML text and parses it, much like the way our parser from Chapter 12 parsed
programs. The browser builds up a model of the document’s structure and uses
this model to draw the page on the screen.

This representation of the document is one of the toys that a JavaScript
program has available in its sandbox. It is a data structure that you can read
or modify. It acts as a live data structure: when it’s modified, the page on the
screen is updated to reflect the changes.

Document structure

You can imagine an HTML document as a nested set of boxes. Tags such as
<body> and </body> enclose other tags, which in turn contain other tags or
text. Here’s the example document from the previous chapter:

<!doctype html>
<html>

<head>
<title>My home page</title>

</head>
<body>

<h1>My home page</h1>
<p>Hello, I am Marijn and this is my home page.</p>
<p>I also wrote a book! Read it

here.</p>
</body>

</html>

This page has the following structure:

224

here

a

.I also wrote a book! Read it

p

Hello, I am Marijn and this is...

p

My home page

h1

body

My home page

title

head

html

The data structure the browser uses to represent the document follows this
shape. For each box, there is an object, which we can interact with to find
out things such as what HTML tag it represents and which boxes and text it
contains. This representation is called the Document Object Model, or DOM
for short.

The global binding document gives us access to these objects. Its documentElement
property refers to the object representing the <html> tag. Since every HTML
document has a head and a body, it also has head and body properties, pointing
at those elements.

Trees

Think back to the syntax trees from Chapter 12 for a moment. Their structures
are strikingly similar to the structure of a browser’s document. Each node may
refer to other nodes, children, which in turn may have their own children. This
shape is typical of nested structures where elements can contain sub-elements
that are similar to themselves.

We call a data structure a tree when it has a branching structure, has no
cycles (a node may not contain itself, directly or indirectly), and has a single,
well-defined root. In the case of the DOM, document.documentElement serves
as the root.

Trees come up a lot in computer science. In addition to representing recur-
sive structures such as HTML documents or programs, they are often used to
maintain sorted sets of data because elements can usually be found or inserted

225

more efficiently in a tree than in a flat array.
A typical tree has different kinds of nodes. The syntax tree for the Egg

language had identifiers, values, and application nodes. Application nodes may
have children, whereas identifiers and values are leaves, nodes without children.

The same goes for the DOM. Nodes for elements, which represent HTML
tags, determine the structure of the document. These can have child nodes.
An example of such a node is document.body. Some of these children can be
leaf nodes, such as pieces of text or comment nodes.

Each DOM node object has a nodeType property, which contains a code
(number) that identifies the type of node. Elements have code 1, which is
also defined as the constant property document.ELEMENT_NODE. Text nodes,
representing a section of text in the document, get code 3 (document.TEXT_NODE
). Comments have code 8 (document.COMMENT_NODE).

Another way to visualize our document tree is as follows:

html head title My home page

body h1 My home page

p Hello! I am...

p I also wrote...

herea

.

The leaves are text nodes, and the arrows indicate parent-child relationships
between nodes.

The standard

Using cryptic numeric codes to represent node types is not a very JavaScript-
like thing to do. Later in this chapter, we’ll see that other parts of the DOM
interface also feel cumbersome and alien. The reason for this is that the DOM
wasn’t designed for just JavaScript. Rather, it tries to be a language-neutral
interface that can be used in other systems as well—not just for HTML but
also for XML, which is a generic data format with an HTML-like syntax.

This is unfortunate. Standards are often useful. But in this case, the advan-
tage (cross-language consistency) isn’t all that compelling. Having an interface
that is properly integrated with the language you are using will save you more
time than having a familiar interface across languages.

226

As an example of this poor integration, consider the childNodes property
that element nodes in the DOM have. This property holds an array-like object,
with a length property and properties labeled by numbers to access the child
nodes. But it is an instance of the NodeList type, not a real array, so it does
not have methods such as slice and map.

Then there are issues that are simply poor design. For example, there is no
way to create a new node and immediately add children or attributes to it.
Instead, you have to first create it, then add the children and attributes one
by one, using side effects. Code that interacts heavily with the DOM tends to
get long, repetitive, and ugly.

But these flaws aren’t fatal. Since JavaScript allows us to create our own
abstractions, it is possible to design improved ways to express the operations
you are performing. Many libraries intended for browser programming come
with such tools.

Moving through the tree

DOM nodes contain a wealth of links to other nearby nodes. The following
diagram illustrates these:

I also wrote a book! ...

p

Hello, I am Marijn...

p

My home page

h1

body

0

1

2

childNodes firstChild

lastChild

previousSibling

nextSibling

parentNode

Although the diagram shows only one link of each type, every node has a
parentNode property that points to the node it is part of. Likewise, every
element node (node type 1) has a childNodes property that points to an array-
like object holding its children.

In theory, you could move anywhere in the tree using just these parent and
child links. But JavaScript also gives you access to a number of additional
convenience links. The firstChild and lastChild properties point to the first
and last child elements or have the value null for nodes without children.
Similarly, previousSibling and nextSibling point to adjacent nodes, which

227

are nodes with the same parent that appear immediately before or after the
node itself. For a first child, previousSibling will be null, and for a last child,
nextSibling will be null.

There’s also the children property, which is like childNodes, but which only
contains element (type 1) children, not other types of child nodes. This can be
useful when you aren’t interested in text nodes.

When dealing with a nested data structure like this one, recursive functions
are often useful. The following function scans a document for text nodes con-
taining a given string and returns true when it has found one:

function talksAbout(node, string) {
if (node.nodeType == document.ELEMENT_NODE) {

for (let i = 0; i < node.childNodes.length; i++) {
if (talksAbout(node.childNodes[i], string)) {

return true;
}

}
return false;

} else if (node.nodeType == document.TEXT_NODE) {
return node.nodeValue.indexOf(string) > -1;

}
}

console.log(talksAbout(document.body, "book"));
// → true

Because childNodes is not a real array, we can not loop over it with for/of
and have to run over the index range using a regular for loop.

The nodeValue property of a text node holds the string of text that it repre-
sents.

Finding elements

Navigating these links among parents, children, and siblings is often useful.
But if we want to find a specific node in the document, reaching it by starting
at document.body and following a fixed path of properties is a bad idea. Do-
ing so bakes assumptions into our program about the precise structure of the
document—a structure you might want to change later. Another complicating
factor is that text nodes are created even for the whitespace between nodes.
The example document’s body tag does not have just three children (<h1> and
two <p> elements) but actually has seven: those three, plus the spaces before,

228

after, and between them.
So if we want to get the href attribute of the link in that document, we

don’t want to say something like “Get the second child of the sixth child of
the document body”. It’d be better if we could say “Get the first link in the
document”. And we can.

let link = document.body.getElementsByTagName("a")[0];
console.log(link.href);

All element nodes have a getElementsByTagName method, which collects all
elements with the given tag name that are descendants (direct or indirect chil-
dren) of that node and returns them as an array-like object.

To find a specific single node, you can give it an id attribute and use document
.getElementById instead.

<p>My ostrich Gertrude:</p>
<p></p>

<script>
let ostrich = document.getElementById("gertrude");
console.log(ostrich.src);

</script>

A third, similar method is getElementsByClassName, which, like getElementsByTagName
, searches through the contents of an element node and retrieves all elements
that have the given string in their class attribute.

Changing the document

Almost everything about the DOM data structure can be changed. The shape
of the document tree can be modified by changing parent-child relationships.
Nodes have a remove method to remove them from their current parent node.
To add a child node to an element node, we can use appendChild, which puts
it at the end of the list of children, or insertBefore, which inserts the node
given as the first argument before the node given as the second argument.

<p>One</p>
<p>Two</p>
<p>Three</p>

<script>

229

let paragraphs = document.body.getElementsByTagName("p");
document.body.insertBefore(paragraphs[2], paragraphs[0]);

</script>

A node can exist in the document in only one place. Thus, inserting para-
graph Three in front of paragraph One will first remove it from the end of the
document and then insert it at the front, resulting in Three/One/Two. All
operations that insert a node somewhere will, as a side effect, cause it to be
removed from its current position (if it has one).

The replaceChild method is used to replace a child node with another one.
It takes as arguments two nodes: a new node and the node to be replaced. The
replaced node must be a child of the element the method is called on. Note
that both replaceChild and insertBefore expect the new node as their first
argument.

Creating nodes

Say we want to write a script that replaces all images (tags) in the doc-
ument with the text held in their alt attributes, which specifies an alternative
textual representation of the image.

This involves not only removing the images but adding a new text node
to replace them. Text nodes are created with the document.createTextNode
method.

<p>The in the
.</p>

<p><button onclick="replaceImages()">Replace</button></p>

<script>
function replaceImages() {

let images = document.body.getElementsByTagName("img");
for (let i = images.length - 1; i >= 0; i--) {

let image = images[i];
if (image.alt) {

let text = document.createTextNode(image.alt);
image.parentNode.replaceChild(text, image);

}
}

}
</script>

230

Given a string, createTextNode gives us a text node, which we can insert
into the document to make it show up on the screen.

The loop that goes over the images starts at the end of the list. This is nec-
essary because the node list returned by a method like getElementsByTagName
(or a property like childNodes) is live. That is, it is updated as the document
changes. If we started from the front, removing the first image would cause the
list to lose its first element so that the second time the loop repeats, where i
is 1, it would stop because the length of the collection is now also 1.

If you want a solid collection of nodes, as opposed to a live one, you can
convert the collection to a real array by calling Array.from.

let arrayish = {0: "one", 1: "two", length: 2};
let array = Array.from(arrayish);
console.log(array.map(s => s.toUpperCase()));
// → ["ONE", "TWO"]

To create element nodes, you can use the document.createElement method.
This method takes a tag name and returns a new empty node of the given type.

The following example defines a utility elt, which creates an element node
and treats the rest of its arguments as children to that node. This function is
then used to add an attribution to a quote.

<blockquote id="quote">
No book can ever be finished. While working on it we learn
just enough to find it immature the moment we turn away
from it.

</blockquote>

<script>
function elt(type, ...children) {

let node = document.createElement(type);
for (let child of children) {

if (typeof child != "string") node.appendChild(child);
else node.appendChild(document.createTextNode(child));

}
return node;

}

document.getElementById("quote").appendChild(
elt("footer", —"",

elt("strong", "Karl Popper"),
", preface to the second editon of ",

231

elt("em", "The Open Society and Its Enemies"),
", 1950"));

</script>

This is what the resulting document looks like:

Attributes

Some element attributes, such as href for links, can be accessed through a
property of the same name on the element’s DOM object. This is the case for
most commonly used standard attributes.

But HTML allows you to set any attribute you want on nodes. This can be
useful because it allows you to store extra information in a document. If you
make up your own attribute names, though, such attributes will not be present
as a property on the element’s node. Instead, you have to use the getAttribute
and setAttribute methods to work with them.

<p data-classified="secret">The launch code is 00000000.</p>
<p data-classified="unclassified">I have two feet.</p>

<script>
let paras = document.body.getElementsByTagName("p");
for (let para of Array.from(paras)) {

if (para.getAttribute("data-classified") == "secret") {
para.remove();

}
}

</script>

It is recommended to prefix the names of such made-up attributes with data-
to ensure they do not conflict with any other attributes.

There is a commonly used attribute, class, which is a keyword in the
JavaScript language. For historical reasons—some old JavaScript implementa-
tions could not handle property names that matched keywords—the property
used to access this attribute is called className. You can also access it under
its real name, "class", by using the getAttribute and setAttribute methods.

232

Layout

You may have noticed that different types of elements are laid out differently.
Some, such as paragraphs (<p>) or headings (<h1>), take up the whole width
of the document and are rendered on separate lines. These are called block
elements. Others, such as links (<a>) or the element, are rendered
on the same line with their surrounding text. Such elements are called inline
elements.

For any given document, browsers are able to compute a layout, which gives
each element a size and position based on its type and content. This layout is
then used to actually draw the document.

The size and position of an element can be accessed from JavaScript. The
offsetWidth and offsetHeight properties give you the space the element takes
up in pixels. A pixel is the basic unit of measurement in the browser. It
traditionally corresponds to the smallest dot that the screen can draw, but on
modern displays, which can draw very small dots, that may no longer be the
case, and a browser pixel may span multiple display dots.

Similarly, clientWidth and clientHeight give you the size of the space inside
the element, ignoring border width.

<p style="border: 3px solid red">
I'm boxed in

</p>

<script>
let para = document.body.getElementsByTagName("p")[0];
console.log("clientHeight:", para.clientHeight);
console.log("offsetHeight:", para.offsetHeight);

</script>

Giving a paragraph a border causes a rectangle to be drawn around it.

The most effective way to find the precise position of an element on the
screen is the getBoundingClientRect method. It returns an object with top,
bottom, left, and right properties, indicating the pixel positions of the sides
of the element relative to the top left of the screen. If you want them relative
to the whole document, you must add the current scroll position, which you
can find in the pageXOffset and pageYOffset bindings.

Laying out a document can be quite a lot of work. In the interest of speed,

233

browser engines do not immediately re-layout a document every time you
change it, but wait as long as they can. When a JavaScript program that
changed the document finishes running, the browser will have to compute a
new layout in order to draw the changed document to the screen. When a pro-
gram asks for the position or size of something by reading properties such as
offsetHeight or calling getBoundingClientRect, providing correct information
also requires computing a layout.

A program that repeatedly alternates between reading DOM layout infor-
mation and changing the DOM forces a lot of layout computations to happen
and will consequently run very slowly. The following code is an example of
this. It contains two different programs that build up a line of X characters
2,000 pixels wide and measures the time each one takes.

<p></p>
<p></p>

<script>
function time(name, action) {

let start = Date.now(); // Current time in milliseconds
action();
console.log(name, "took", Date.now() - start, "ms");

}

time("naive", () => {
let target = document.getElementById("one");
while (target.offsetWidth < 2000) {

target.appendChild(document.createTextNode("X"));
}

});
// → naive took 32 ms

time("clever", function() {
let target = document.getElementById("two");
target.appendChild(document.createTextNode("XXXXX"));
let total = Math.ceil(2000 / (target.offsetWidth / 5));
target.firstChild.nodeValue = "X".repeat(total);

});
// → clever took 1 ms

</script>

234

Styling

We have seen that different HTML elements are drawn differently. Some are
displayed as blocks, others inline. Some add styling— makes its con-
tent bold and <a> makes it blue and underlines it.

The way an tag shows an image or an <a> tag causes a link to be
followed when it is clicked is strongly tied to the element type. But the default
styling associated with an element, such as the text color or underline, can be
changed by us. Here is an example that uses the style property:

<p>Normal link</p>
<p>Green link</p>

The second link will be green instead of the default link color.

A style attribute may contain one or more declarations, which are a property
(such as color) followed by a colon and a value (such as green). When there
is more than one declaration, they must be separated by semicolons, as in
"color: red; border: none".

There are a lot of aspects of the document that can be influenced by styling.
For example, the display property controls whether an element is displayed as
a block or an inline element.

This text is displayed inline,
<strong style="display: block">as a block, and
<strong style="display: none">not at all.

The block tag will end up on its own line since block elements are not
displayed inline with the text around them. The last tag is not displayed at
all—display: none prevents an element from showing up on the screen. This
is a way to hide elements. It is often preferable to removing them from the
document entirely because it makes it easy to reveal them again later.

JavaScript code can directly manipulate the style of an element through the

235

element’s style property. This property holds an object that has properties for
all possible style properties. The values of these properties are strings, which
we can write to in order to change a particular aspect of the element’s style.

<p id="para" style="color: purple">
Nice text

</p>

<script>
let para = document.getElementById("para");
console.log(para.style.color);
para.style.color = "magenta";

</script>

Some style property names contain dashes, such as font-family. Because
such property names are awkward to work with in JavaScript (you’d have to
say style["font-family"]), the property names in the style object for such
properties have their dashes removed and the letters after them capitalized
(style.fontFamily).

Cascading styles

The styling system for HTML is called CSS for Cascading Style Sheets. A style
sheet is a set of rules for how to style elements in a document. It can be given
inside a <style> tag.

<style>
strong {

font-style: italic;
color: gray;

}
</style>
<p>Now strong text is italic and gray.</p>

The cascading in the name refers to the fact that multiple such rules are
combined to produce the final style for an element. In the example, the default
styling for tags, which gives them font-weight: bold, is overlaid by
the rule in the <style> tag, which adds font-style and color.

When multiple rules define a value for the same property, the most recently
read rule gets a higher precedence and wins. So if the rule in the <style> tag
included font-weight: normal, contradicting the default font-weight rule, the

236

text would be normal, not bold. Styles in a style attribute applied directly to
the node have the highest precedence and always win.

It is possible to target things other than tag names in CSS rules. A rule for
.abc applies to all elements with "abc" in their class attribute. A rule for #xyz
applies to the element with an id attribute of "xyz" (which should be unique
within the document).

.subtle {
color: gray;
font-size: 80%;

}
#header {

background: blue;
color: white;

}
/* p elements with id main and with classes a and b */
p#main.a.b {

margin-bottom: 20px;
}

The precedence rule favoring the most recently defined rule applies only
when the rules have the same specificity. A rule’s specificity is a measure of
how precisely it describes matching elements, determined by the number and
kind (tag, class, or ID) of element aspects it requires. For example, a rule that
targets p.a is more specific than rules that target p or just .a, and would thus
take precedence over them.

The notation p > a …{} applies the given styles to all <a> tags that are direct
children of <p> tags. Similarly, p a …{} applies to all <a> tags inside <p> tags,
whether they are direct or indirect children.

Query selectors

We won’t be using style sheets all that much in this book. Understanding them
is helpful when programming in the browser, but they are complicated enough
to warrant a separate book.

The main reason I introduced selector syntax—the notation used in style
sheets to determine which elements a set of styles apply to—is that we can use
this same mini-language as an effective way to find DOM elements.

The querySelectorAll method, which is defined both on the document object
and on element nodes, takes a selector string and returns an array-like object
containing all the elements that it matches.

237

<p>And if you go chasing
rabbits</p>

<p>And you know you're going to fall</p>
<p>Tell 'em a hookah smoking

caterpillar</p>
<p>Has given you the call</p>

<script>
function count(selector) {

return document.querySelectorAll(selector).length;
}
console.log(count("p")); // All <p> elements
// → 4
console.log(count(".animal")); // Class animal
// → 2
console.log(count("p .animal")); // Animal inside of <p>
// → 2
console.log(count("p > .animal")); // Direct child of <p>
// → 1

</script>

Unlike methods such as getElementsByTagName, the object returned by querySelectorAll
is not live. It won’t change when you change the document. It is still not a
real array, though, so you still need to call Array.from if you want to treat it
like one.

The querySelector method (without the All part) works in a similar way.
This one is useful if you want a specific, single element. It will return only the
first matching element or null when no element matches.

Positioning and animating

The position style property influences layout in a powerful way. By default
it has a value of static, meaning the element sits in its normal place in the
document. When it is set to relative, the element still takes up space in the
document, but now the top and left style properties can be used to move it
relative to that normal place. When position is set to absolute, the element is
removed from the normal document flow—that is, it no longer takes up space
and may overlap with other elements. Also, its top and left properties can
be used to absolutely position it relative to the top-left corner of the near-
est enclosing element whose position property isn’t static, or relative to the
document if no such enclosing element exists.

238

We can use this to create an animation. The following document displays a
picture of a cat that moves around in an ellipse:

<p style="text-align: center">

</p>
<script>

let cat = document.querySelector("img");
let angle = Math.PI / 2;
function animate(time, lastTime) {

if (lastTime != null) {
angle += (time - lastTime) * 0.001;

}
cat.style.top = (Math.sin(angle) * 20) + "px";
cat.style.left = (Math.cos(angle) * 200) + "px";
requestAnimationFrame(newTime => animate(newTime, time));

}
requestAnimationFrame(animate);

</script>

The gray arrow shows the path along which the image moves.

Our picture is centered on the page and given a position of relative. We’ll
repeatedly update that picture’s top and left styles in order to move it.

The script uses requestAnimationFrame to schedule the animate function to
run whenever the browser is ready to repaint the screen. The animate function
itself again calls requestAnimationFrame to schedule the next update. When
the browser window (or tab) is active, this will cause updates to happen at a
rate of about 60 per second, which tends to produce a good-looking animation.

If we just updated the DOM in a loop, the page would freeze and nothing
would show up on the screen. Browsers do not update their display while a
JavaScript program is running, nor do they allow any interaction with the page.
This is why we need requestAnimationFrame—it lets the browser know that we
are done for now, and it can go ahead and do the things that browsers do, such
as updating the screen and responding to user actions.

The animation function is passed the current time as an argument. To ensure
the motion of the cat per millisecond is stable, it bases the speed at which the

239

angle changes on the difference between the current time and the last time
the function ran. If it just moved the angle by a fixed amount per step, the
motion would stutter if, for example, another heavy task running on the same
computer were to prevent the function from running for a fraction of a second.

Moving in circles is done using the trigonometry functions Math.cos and
Math.sin. For those of you who aren’t familiar with these, I’ll briefly introduce
them since we will occasionally use them in this book.

Math.cos and Math.sin are useful for finding points that lie on a circle around
point (0,0) with a radius of one. Both functions interpret their argument as
the position on this circle, with zero denoting the point on the far right of the
circle, going clockwise until 2π (about 6.28) has taken us around the whole
circle. Math.cos tells you the x-coordinate of the point that corresponds to the
given position, while Math.sin yields the y-coordinate. Positions (or angles)
greater than 2π or less than 0 are valid—the rotation repeats so that a+2π
refers to the same angle as a.

This unit for measuring angles is called radians—a full circle is 2π radians,
similar to how it is 360 degrees when measuring in degrees. The constant π is
available as Math.PI in JavaScript.

cos(¼π)

sin(¼π)

cos(-⅔π)

sin(-⅔π)

The cat animation code keeps a counter, angle, for the current angle of the
animation and increments it every time the animate function is called. It can
then use this angle to compute the current position of the image element. The
top style is computed with Math.sin and multiplied by 20, which is the vertical
radius of our ellipse. The left style is based on Math.cos and multiplied by
200 so that the ellipse is much wider than it is high.

Note that styles usually need units. In this case, we have to append "px"
to the number to tell the browser we are counting in pixels (as opposed to
centimeters, “ems”, or other units). This is easy to forget. Using numbers
without units will result in your style being ignored—unless the number is 0,
which always means the same thing, regardless of its unit.

240

Summary

JavaScript programs may inspect and interfere with the document that the
browser is displaying through a data structure called the DOM. This data
structure represents the browser’s model of the document, and a JavaScript
program can modify it to change the visible document.

The DOM is organized like a tree, in which elements are arranged hierar-
chically according to the structure of the document. The objects representing
elements have properties such as parentNode and childNodes, which can be
used to navigate through this tree.

The way a document is displayed can be influenced by styling, both by at-
taching styles to nodes directly and by defining rules that match certain nodes.
There are many different style properties, such as color or display. JavaScript
code can manipulate an element’s style directly through its style property.

Exercises

Build a table

An HTML table is built with the following tag structure:

<table>
<tr>

<th>name</th>
<th>height</th>
<th>place</th>

</tr>
<tr>

<td>Kilimanjaro</td>
<td>5895</td>
<td>Tanzania</td>

</tr>
</table>

For each row, the <table> tag contains a <tr> tag. Inside of these <tr> tags,
we can put cell elements: either heading cells (<th>) or regular cells (<td>).

Given a data set of mountains, an array of objects with name, height, and
place properties, generate the DOM structure for a table that enumerates the
objects. It should have one column per key and one row per object, plus a
header row with <th> elements at the top, listing the column names.

Write this so that the columns are automatically derived from the objects,

241

by taking the property names of the first object in the data.
Add the resulting table to the element with an id attribute of "mountains",

so that it becomes visible in the document.
Once you have this working, right-align cells that contain number values by

setting their style.textAlign property to "right".

Elements by tag name

The document.getElementsByTagName method returns all child elements with a
given tag name. Implement your own version of this as a function that takes a
node and a string (the tag name) as arguments and returns an array containing
all descendant element nodes with the given tag name.

To find the tag name of an element, use its nodeName property. But note
that this will return the tag name in all uppercase. Use the toLowerCase or
toUpperCase string methods to compensate for this.

The cat's hat

Extend the cat animation defined earlier so that both the cat and his hat
() orbit at opposite sides of the ellipse.

Or make the hat circle around the cat. Or alter the animation in some other
interesting way.

To make positioning multiple objects easier, it is probably a good idea to
switch to absolute positioning. This means that top and left are counted
relative to the top left of the document. To avoid using negative coordinates,
which would cause the image to move outside of the visible page, you can add
a fixed number of pixels to the position values.

242

“You have power over your mind—not outside events. Realize this,
and you will find strength.”

—Marcus Aurelius, Meditations

Chapter 15

Handling Events

Some programs work with direct user input, such as mouse and keyboard ac-
tions. That kind of input isn’t available as neatly organized data structure—it
comes in piece by piece, in real time, and the program is expected to respond
to it as it happens.

Event handlers

Imagine an interface where the only way to find out whether a key on the
keyboard is being pressed is to read the current state of that key. To be able
to react to keypresses, you would have to constantly read the key’s state so
that you’d catch it before it’s released again. It would be dangerous to perform
other time-intensive computations since you might miss a keypress.

Some primitive machines do handle input like that. A step up from this
would be for the hardware or operating system to notice the keypress and put
it in a queue. A program can then periodically check the queue for new events
and react to what it finds there.

Of course, it has to remember to look at the queue, and to do it often, because
any time between the key being pressed and the program noticing the event
will cause the software to feel unresponsive. This approach is called polling.
Most programmers prefer to avoid it.

A better mechanism is for the system to actively notify our code when an
event occurs. Browsers do this by allowing us to register functions as handlers
for specific events.

<p>Click this document to activate the handler.</p>
<script>

window.addEventListener("click", () => {
console.log("You knocked?");

});
</script>

243

The window binding refers to a built-in object provided by the browser.
It represents the browser window that contains the document. Calling its
addEventListener method registers the second argument to be called when-
ever the event described by its first argument occurs.

Events and DOMnodes

Each browser event handler is registered in a context. We called addEventListener
on the window object before to register a handler for the whole window. Such
a method can also be found on DOM elements and some other types of objects.
Event listeners are only called when the event happens in the context of the
object they are registered on.

<button>Click me</button>
<p>No handler here.</p>
<script>

let button = document.querySelector("button");
button.addEventListener("click", () => {

console.log("Button clicked.");
});

</script>

That example attaches a handler to the button node. Clicks on the button
cause that handler to run, but clicks on the rest of the document do not.

Giving a node an onclick attribute has a similar effect. This works for most
types of events—you can attach a handler through the attribute whose name
is event name with on in front of it.

But a node can have only one onclick attribute, so you can register only
one handler per node that way. The addEventListener method allows you to
add any number of handlers, so that it is safe to add handlers even if there is
already another handler on the element.

The removeEventListenermethod, called with arguments similar to addEventListener
, removes a handler.

<button>Act-once button</button>
<script>

let button = document.querySelector("button");
function once() {

console.log("Done.");
button.removeEventListener("click", once);

}
button.addEventListener("click", once);

244

</script>

The function given to removeEventListener has to be the exact same function
value that was given to addEventListener. So to unregister a handler, you’ll
want to give the function a name (once, in the example) to be able to pass the
same function value to both methods.

Event objects

Though we have ignored it so far, event handler functions are passed an ar-
gument: the event object. This object holds additional information about the
event. For example, if we want to know which mouse button was pressed, we
can look at the event object’s button property.

<button>Click me any way you want</button>
<script>

let button = document.querySelector("button");
button.addEventListener("mousedown", event => {

if (event.button == 0) {
console.log("Left button");

} else if (event.button == 1) {
console.log("Middle button");

} else if (event.button == 2) {
console.log("Right button");

}
});

</script>

The information stored in an event object differs per type of event. We’ll
discuss different types later in the chapter. The object’s type property always
holds a string identifying the event (such as "click" or "mousedown").

Propagation

For most event types, handlers registered on nodes with children will also re-
ceive events that happen in the children. If a button inside a paragraph is
clicked, event handlers on the paragraph will also see the click event.

But if both the paragraph and the button have a handler, the more specific
handler—the one on the button—gets to go first. The event is said to propagate
outward, from the node where it happened to that node’s parent node and on

245

to the root of the document. Finally, after all handlers registered on a specific
node have had their turn, handlers registered on the whole window get a chance
to respond to the event.

At any point, an event handler can call the stopPropagation method on the
event object to prevent handlers further up from receiving the event. This can
be useful when, for example, you have a button inside another clickable element
and you don’t want clicks on the button to activate the outer element’s click
behavior.

The following example registers "mousedown" handlers on both a button and
the paragraph around it. When clicked with the right mouse button, the han-
dler for the button calls stopPropagation, which will prevent the handler on
the paragraph from running. When the button is clicked with another mouse
button, both handlers will run.

<p>A paragraph with a <button>button</button>.</p>
<script>

let para = document.querySelector("p");
let button = document.querySelector("button");
para.addEventListener("mousedown", () => {

console.log("Handler for paragraph.");
});
button.addEventListener("mousedown", event => {

console.log("Handler for button.");
if (event.button == 2) event.stopPropagation();

});
</script>

Most event objects have a target property that refers to the node where they
originated. You can use this property to ensure that you’re not accidentally
handling something that propagated up from a node you do not want to handle.

It is also possible to use the target property to cast a wide net for a specific
type of event. For example, if you have a node containing a long list of buttons,
it may be more convenient to register a single click handler on the outer node
and have it use the target property to figure out whether a button was clicked,
rather than register individual handlers on all of the buttons.

<button>A</button>
<button>B</button>
<button>C</button>
<script>

document.body.addEventListener("click", event => {
if (event.target.nodeName == "BUTTON") {

246

console.log("Clicked", event.target.textContent);
}

});
</script>

Default actions

Many events have a default action associated with them. If you click a link,
you will be taken to the link’s target. If you press the down arrow, the browser
will scroll the page down. If you right-click, you’ll get a context menu. And so
on.

For most types of events, the JavaScript event handlers are called before the
default behavior takes place. If the handler doesn’t want this normal behavior
to happen, typically because it has already taken care of handling the event, it
can call the preventDefault method on the event object.

This can be used to implement your own keyboard shortcuts or context
menu. It can also be used to obnoxiously interfere with the behavior that users
expect. For example, here is a link that cannot be followed:

MDN
<script>

let link = document.querySelector("a");
link.addEventListener("click", event => {

console.log("Nope.");
event.preventDefault();

});
</script>

Try not to do such things unless you have a really good reason to. It’ll be
unpleasant for people who use your page when expected behavior is broken.

Depending on the browser, some events can’t be intercepted at all. On
Chrome, for example, the keyboard shortcut to close the current tab (Ctrl-W
or Command-W) cannot be handled by JavaScript.

Key events

When a key on the keyboard is pressed down, your browser fires a "keydown"
event. When it is released again, you get a "keyup" event.

247

<p>This page turns violet when you hold the V key.</p>
<script>

window.addEventListener("keydown", event => {
if (event.key == "v") {

document.body.style.background = "violet";
}

});
window.addEventListener("keyup", event => {

if (event.key == "v") {
document.body.style.background = "";

}
});

</script>

Despite its name, "keydown" fires not only when the key is physically pushed
down. When a key is pressed and held, the event fires again every time the key
repeats. Sometimes you have to be careful about this. For example if you add
a button to the DOM when a key is pressed down, and remove it again when
the key is released, you might accidentally add hundreds of buttons when the
key is held down longer.

The example looked at the key property of the event object to see which key
the event is about. This property holds a string that, for most keys, corresponds
to the thing that pressing that key would type. For special keys like Enter, it
holds a string that names the key ("Enter", in this case). If you hold shift while
pressing a key, that might also influence the name of the key—"v" becomes "
V", "1" may become "!", if that is what pressing Shift-1 produces on your
keyboard.

Modifier keys such as Shift, Ctrl, Alt, and Meta (Command on Mac) generate
key events just like normal keys. But when looking for key combinations, you
can also find out whether these keys are held down by looking at the shiftKey,
ctrlKey, altKey, and metaKey properties of keyboard and mouse events.

<p>Press Ctrl-Space to continue.</p>
<script>

window.addEventListener("keydown", event => {
if (event.key == " " && event.ctrlKey) {

console.log("Continuing!");
}

});
</script>

The DOM node where a key event originates depends on the element that

248

has focus when the key is pressed. Most nodes cannot have focus unless you
give them a tabindex attribute, but things like links, buttons, and form fields
can. We’ll come back to form fields in Chapter 18. When nothing in particular
has focus, document.body acts as the target node of key events.

When the user is typing text, using key events to figure out what is being
typed is problematic. Some platforms, most notably the virtual keyboard on
Android phones, don’t fire key events. But even when you have an old-fashioned
keyboard, some types of text input don’t match key presses in a straightforward
way, such as IME (“Input Method Editor”) software used by people whose
scripts don’t fit on a keyboard, where multiple key strokes are combined to
create characters.

To notice when something was typed, elements that you can type into, such
as the <input> and <textarea> tags, fire "input" events whenever the user
changed their content. To get the actual content that was typed, it is best to
directly read it from the focused field. Chapter 18 will show how.

Pointer events

There are currently two widely used ways to point at things on a screen: mice
(including devices that act like mice, such as touchpads and trackballs) and
touchscreens. These produce different kinds of events.

Mouse clicks

Pressing a mouse button causes a number of events to fire. The "mousedown"
and "mouseup" events are similar to "keydown" and "keyup" and fire when the
button is pressed and released. These happen on the DOM nodes that are
immediately below the mouse pointer when the event occurs.

After the "mouseup" event, a "click" event fires on the most specific node
that contained both the press and the release of the button. For example, if I
press down the mouse button on one paragraph and then move the pointer to
another paragraph and release the button, the "click" event will happen on
the element that contains both those paragraphs.

If two clicks happen close together, a "dblclick" (double-click) event also
fires, after the second click event.

To get precise information about the place where a mouse event happened,
you can look at its clientX and clientY properties, which contain the event’s
coordinates (in pixels) relative to the top-left corner of the window, or pageX
and pageY, which are relative to the top-left corner of the whole document
(which may be different, when the window has been scrolled).

249

The following implements a primitive drawing program. Every time you click
the document, it adds a dot under your mouse pointer. See Chapter 19 for a
less primitive drawing program.

<style>
body {

height: 200px;
background: beige;

}
.dot {

height: 8px; width: 8px;
border-radius: 4px; /* rounds corners */
background: blue;
position: absolute;

}
</style>
<script>

window.addEventListener("click", event => {
let dot = document.createElement("div");
dot.className = "dot";
dot.style.left = (event.pageX - 4) + "px";
dot.style.top = (event.pageY - 4) + "px";
document.body.appendChild(dot);

});
</script>

Mouse motion

Every time the mouse pointer moves, a "mousemove" event is fired. This event
can be used to track the position of the mouse. A common situation in which
this is useful is when implementing some form of mouse-dragging functionality.

As an example, the following program displays a bar and sets up event han-
dlers so that dragging to the left or right on this bar makes it narrower or
wider:

<p>Drag the bar to change its width:</p>
<div style="background: orange; width: 60px; height: 20px">
</div>
<script>

let lastX; // Tracks the last observed mouse X position
let bar = document.querySelector("div");
bar.addEventListener("mousedown", event => {

if (event.button == 0) {

250

lastX = event.clientX;
window.addEventListener("mousemove", moved);
event.preventDefault(); // Prevent selection

}
});

function moved(event) {
if (event.buttons == 0) {

window.removeEventListener("mousemove", moved);
} else {

let dist = event.clientX - lastX;
let newWidth = Math.max(10, bar.offsetWidth + dist);
bar.style.width = newWidth + "px";
lastX = event.clientX;

}
}

</script>

The resulting page looks like this:

Note that the "mousemove" handler is registered on the whole window. Even
if the mouse goes outside of the bar during resizing, as long as the button is
held we still want to update its size.

We must stop resizing the bar when the mouse button is released. For that,
we can use the buttons property (note the plural), which tells us about the
buttons that are currently held down. When this is zero, no buttons are down.
When buttons are held, its value is the sum of the codes for those buttons—the
left button has code 1, the right button 2, and the middle one 4. That way,
you can check if a given button is pressed by taking the remainder of the value
of buttons and its code.

Note that the order of these codes is different from the one used by button,
where the middle button came before the right one. As mentioned, consistency
isn’t really a strong point of the browser’s programming interface.

Touch events

The style of graphical browser that we use was designed with mouse interfaces
in mind, at a time where touchscreens were very rare. To make the Web “work”

251

on early touchscreen phones, browsers for those devices pretended, to a certain
extent, that touch events were mouse events. If you tap your screen, you’ll get
"mousedown", "mouseup", and "click" events.

But this illusion isn’t very robust. A touchscreen works differently from a
mouse: it doesn’t have multiple buttons, you can’t track the finger when it
isn’t on the screen (to simulate "mousemove"), and it allows multiple fingers to
be on the screen at the same time.

Mouse events only cover touch interaction in straightforward cases—if you
add a "click" handler to a button, touch users will still be able to use it.
But something like the resizeable bar in the last example does not work on a
touchscreen.

There are specific event types fired by touch interaction. When a finger
starts touching the screen, you get a "touchstart" event. When it is moved
while touching, "touchmove" events fire. And finally, when it stops touching
the screen, you’ll see a "touchend" event.

Because many touchscreens can detect multiple fingers at the same time,
these events don’t have a single set of coordinates associated with them. Rather,
their event objects have a touches property, which holds an array-like object of
points, each of which has its own clientX, clientY, pageX, and pageY properties.

You could do something like this to show red circles around every touching
finger.

<style>
dot { position: absolute; display: block;

border: 2px solid red; border-radius: 50px;
height: 100px; width: 100px; }

</style>
<p>Touch this page</p>
<script>

function update(event) {
for (let dot; dot = document.querySelector("dot");) {

dot.remove();
}
for (let i = 0; i < event.touches.length; i++) {

let {pageX, pageY} = event.touches[i];
let dot = document.createElement("dot");
dot.style.left = (pageX - 50) + "px";
dot.style.top = (pageY - 50) + "px";
document.body.appendChild(dot);

}
}
window.addEventListener("touchstart", update);
window.addEventListener("touchmove", update);

252

window.addEventListener("touchend", update);
</script>

You’ll often want to call preventDefault in touch event handlers, to override
the browser’s default behavior (which may include scrolling the page on swip-
ing) and to prevent the mouse events from being fired, for which you may also
have a handler.

Scroll events

Whenever an element is scrolled, a "scroll" event is fired on it. This has var-
ious uses, such as knowing what the user is currently looking at (for disabling
off-screen animations or sending spy reports to your evil headquarters) or show-
ing some indication of progress (by highlighting part of a table of contents or
showing a page number).

The following example draws a progress bar above the document and updates
it to fill up as you scroll down:

<style>
#progress {

border-bottom: 2px solid blue;
width: 0;
position: fixed;
top: 0; left: 0;

}
</style>
<div id="progress"></div>
<script>

// Create some content
document.body.appendChild(document.createTextNode(
"supercalifragilisticexpialidocious ".repeat(1000)));

let bar = document.querySelector("#progress");
window.addEventListener("scroll", () => {

let max = document.body.scrollHeight - innerHeight;
bar.style.width = `${(pageYOffset / max) * 100}%`;

});
</script>

Giving an element a position of fixed acts much like an absolute position
but also prevents it from scrolling along with the rest of the document. The

253

effect is to make our progress bar stay at the top. Its width is changed to
indicate the current progress. We use %, rather than px, as a unit when setting
the width so that the element is sized relative to the page width.

The global innerHeight binding gives us the height of the window, which
we have to subtract from the total scrollable height—you can’t keep scrolling
when you hit the bottom of the document. There’s also an innerWidth, for the
window width. By dividing pageYOffset, the current scroll position, by the
maximum scroll position and multiplying by 100, we get the percentage for the
progress bar.

Calling preventDefault on a scroll event does not prevent the scrolling from
happening. In fact, the event handler is called only after the scrolling takes
place.

Focus events

When an element gains focus, the browser fires a "focus" event on it. When
it loses focus, the element gets a "blur" event.

Unlike the events discussed earlier, these two events do not propagate. A
handler on a parent element is not notified when a child element gains or loses
focus.

The following example displays help text for the text field that currently has
focus:

<p>Name: <input type="text" data-help="Your full name"></p>
<p>Age: <input type="text" data-help="Your age in years"></p>
<p id="help"></p>

<script>
let help = document.querySelector("#help");
let fields = document.querySelectorAll("input");
for (let field of Array.from(fields)) {

field.addEventListener("focus", event => {
let text = event.target.getAttribute("data-help");
help.textContent = text;

});
field.addEventListener("blur", event => {

help.textContent = "";
});

}
</script>

254

In this screenshot, the help text for the age field is shown.

The window object will receive "focus" and "blur" events when the user
moves from or to the browser tab or window in which the document is shown.

Load event

When a page finishes loading, the "load" event fires on the window and the
document body objects. This is often used to schedule initialization actions that
require the whole document to have been built. Remember that the content of
<script> tags is run immediately when the tag is encountered. This may be
too soon, for example when the script needs to do something with parts of the
document that appear after the <script> tag.

Elements such as images and script tags that load an external file also have
a "load" event that indicates the files they reference were loaded. Like the
focus-related events, loading events do not propagate.

When a page is closed or navigated away from (for example by following a
link), a "beforeunload" event fires. The main use of this event is to prevent
the user from accidentally losing work by closing a document. Preventing the
page from unloading is not, as you might expect, done with the preventDefault
method. Instead, it is done by returning a non-null value from the handler.
When you do that, the browser will show the user a dialog asking if are sure
they want to leave the page. This mechanism ensures that a user is always able
to leave, even on malicious pages that would prefer to keep them there forever
and force them to look at dodgy weight loss ads.

Events and the event loop

In the context of the event loop, as discussed in Chapter 11, browser event
handlers behave like other asynchronous notifications. They are scheduled
when the event occurs, but must wait for other scripts that are running to
finish before they get a chance to run.

The fact that events can only be processed when nothing else is running
means that, if the event loop is tied up with other work, any interaction with
the page (which happens through events) will be delayed until there’s time to

255

process it. So if you schedule too much work, either with long-running event
handlers or with lots of short-running ones, the page will become slow and
cumbersome to use.

For cases where you really do want to do some time-consuming thing in the
background without freezing the page, browsers provide something called web
workers. A worker is a JavaScript process that runs alongside the main script,
on its own timeline.

Imagine that squaring a number is a heavy, long-running computation that
we want to perform in a separate thread. We could write a file called code/
squareworker.js that responds to messages by computing a square and sending
a message back:

addEventListener("message", event => {
postMessage(event.data * event.data);

});

To avoid the problems of having multiple threads touching the same data,
workers do not share their global scope or any other data with the main script’s
environment. Instead, you have to communicate with them by sending mes-
sages back and forth.

This code spawns a worker running that script, sends it a few messages, and
outputs the responses.

let squareWorker = new Worker("code/squareworker.js");
squareWorker.addEventListener("message", event => {

console.log("The worker responded:", event.data);
});
squareWorker.postMessage(10);
squareWorker.postMessage(24);

The postMessage function sends a message, which will cause a "message"
event to fire in the receiver. The script that created the worker sends and
receives messages through the Worker object, whereas the worker talks to the
script that created it by sending and listening directly on its global scope. Only
values that can be represented as JSON can be sent as messages—the other
side will receive a copy of them, rather than the value itself.

256

Timers

We saw the setTimeout function in Chapter 11. It schedules another function
to be called later, after a given amount of milliseconds.

Sometimes you need to cancel a function you have scheduled. This is done
by storing the value returned by setTimeout and calling clearTimeout on it.

let bombTimer = setTimeout(() => {
console.log("BOOM!");

}, 500);

if (Math.random() < 0.5) { // 50% chance
console.log("Defused.");
clearTimeout(bombTimer);

}

The cancelAnimationFrame function works in the same way as clearTimeout
—calling it on a value returned by requestAnimationFrame will cancel that
frame (assuming it hasn’t already been called).

A similar set of functions, setInterval and clearInterval are used to set
timers that should repeat every X milliseconds.

let ticks = 0;
let clock = setInterval(() => {

console.log("tick", ticks++);
if (ticks == 10) {

clearInterval(clock);
console.log("stop.");

}
}, 200);

Debouncing

Some types of events have the potential to fire rapidly, many times in a row (the
"mousemove" and "scroll" events, for example). When handling such events,
you must be careful not to do anything too time-consuming or your handler
will take up so much time that interaction with the document starts to feel
slow.

If you do need to do something nontrivial in such a handler, you can use
setTimeout to make sure you are not doing it too often. This is usually called

257

debouncing the event. There are several slightly different approaches to this.
In the first example, we want to react when the user has typed something, but

we don’t want to do it immediately for every input event. When they are typing
quickly, we just want to wait until a pause occurs. Instead of immediately
performing an action in the event handler, we set a timeout. We also clear the
previous timeout (if any) so that when events occur close together (closer than
our timeout delay), the timeout from the previous event will be canceled.

<textarea>Type something here...</textarea>
<script>

let textarea = document.querySelector("textarea");
let timeout;
textarea.addEventListener("input", () => {

clearTimeout(timeout);
timeout = setTimeout(() => console.log("Typed!"), 500);

});
</script>

Giving an undefined value to clearTimeout or calling it on a timeout that
has already fired has no effect. Thus, we don’t have to be careful about when
to call it, and we simply do so for every event.

We can use a slightly different pattern if we want to space responses so that
they’re separated by at least a certain length of time but want to fire them
during a series of events, not just afterward. For example, we might want
to respond to "mousemove" events by showing the current coordinates of the
mouse, but only every 250 milliseconds.

<script>
let scheduled = null;
window.addEventListener("mousemove", event => {

if (!scheduled) {
setTimeout(() => {

document.body.textContent =
`Mouse at ${scheduled.pageX}, ${scheduled.pageY}`;

scheduled = null;
}, 250);

}
scheduled = event;

});
</script>

258

Summary

Event handlers make it possible to detect and react to events happening in our
web page. The addEventListener method is used to register such a handler.

Each event has a type ("keydown", "focus", and so on) that identifies it.
Most events are called on a specific DOM element and then propagate to that
element’s ancestors, allowing handlers associated with those elements to handle
them.

When an event handler is called, it is passed an event object with additional
information about the event. This object also has methods that allow us to
stop further propagation (stopPropagation) and prevent the browser’s default
handling of the event (preventDefault).

Pressing a key fires "keydown" and "keyup" events. Pressing a mouse button
fires "mousedown", "mouseup", and "click" events. Moving the mouse fires
"mousemove" events. Touchscreen interaction will result in "touchstart", "
touchmove", and "touchend" events.

Scrolling can be detected with the "scroll" event, and focus changes can
be detected with the "focus" and "blur" events. When the document finishes
loading, a "load" event fires on the window.

Exercises

Balloon

Write a page that displays a balloon (using the balloon emoji, 🎈). When you
press the up arrow, it should inflate (grow) ten percent, and when you press
the down arrow, it should deflate (shrink) 10%.

You can control the size of text (emoji are text) by setting the font-size
CSS property (style.fontSize) on its parent element. Remember to include a
unit in the value, for example pixels (10px).

The key names of the arrow keys are "ArrowUp" and "ArrowDown". Make sure
the keys only change the balloon, without scrolling the page.

When that works, add a feature where, if you blow up the balloon past a
certain size, it explodes. In this case, exploding means that it is replaced with
an 💥 emoji, and the event handler is removed (so that you can’t inflate or
deflate the explosion).

259

Mouse trail

In JavaScript’s early days, which was the high time of gaudy home pages with
lots of animated images, people came up with some truly inspiring ways to use
the language.

One of these was the mouse trail—a series of elements that would follow the
mouse pointer as you moved it across the page.

In this exercise, I want you to implement a mouse trail. Use absolutely
positioned <div> elements with a fixed size and background color (refer to the
code in the “Mouse Clicks” section for an example). Create a bunch of such
elements and, when the mouse moves, display them in the wake of the mouse
pointer.

There are various possible approaches here. You can make your solution as
simple or as complex as you want. A simple solution to start with is to keep
a fixed number of trail elements and cycle through them, moving the next one
to the mouse’s current position every time a "mousemove" event occurs.

Tabs

Tabbed panels are widely used in user interfaces. They allow you to select
an interface panel by choosing from a number of tabs “sticking out” above an
element.

In this exercise you must implement a simple tabbed interface. Write a func-
tion, asTabs, that takes a DOM node and creates a tabbed interface showing
the child elements of that node. It should insert a list of <button> elements at
the top of the node, one for each child element, containing text retrieved from
the data-tabname attribute of the child. All but one of the original children
should be hidden (given a display style of none). The currently visible node
can be selected by clicking the buttons.

When that works, extend it to style the button for the currently selected tab
differently, so that it is obvious which tab is selected.

260

“All reality is a game.”
—Iain Banks, The Player of Games

Chapter 16

Project: A Platform Game

Much of my initial fascination with computers, like that of many nerdy kids,
had to do with computer games. I was drawn into the tiny simulated worlds
that I could manipulate and in which stories (sort of) unfolded—more, I sup-
pose, because of the way I projected my imagination into them than because
of the possibilities they actually offered.

I don’t wish a career in game programming on anyone. Much like the music
industry, the discrepancy between the amount of eager young people wanting
to work in it and the actual demand for such people creates a rather unhealthy
environment. But writing games for fun is amusing.

This chapter will walk through the implementation of a small platform game.
Platform games (or “jump and run” games) are games that expect the player
to move a figure through a world, which is usually two-dimensional and viewed
from the side, jumping over and onto things.

The game

Our game will be roughly based on Dark Blue (www.lessmilk.com/games/10) by
Thomas Palef. I chose that game because it is both entertaining and minimalist,
and because it can be built without too much code. It looks like this:

The dark box represents the player, whose task is to collect the yellow boxes

261

http://www.lessmilk.com/games/10

(coins) while avoiding the red stuff (lava). A level is completed when all coins
have been collected.

The player can walk around with the left and right arrow keys, and jump
with the up arrow. Jumping is a specialty of this game character. It can reach
several times its own height and is able to change direction in midair. This
may not be entirely realistic, but it helps give the player the feeling of being in
direct control of the onscreen avatar.

The game consists of a fixed background, laid out like a grid, with the moving
elements overlaid on that background. Each field on the grid is either empty,
solid, or lava. The moving elements are the player, coins, and certain pieces
of lava. The positions of these elements are not constrained to the grid—their
coordinates may be fractional, allowing smooth motion.

The technology

We will use the browser DOM to display the game, and we’ll read user input
by handling key events.

The screen- and keyboard-related code is only a small part of the work we
need to do to build this game. Since everything looks like colored boxes, draw-
ing is uncomplicated: we create DOM elements and use styling to give them a
background color, size, and position.

We can represent the background as a table since it is an unchanging grid of
squares. The free-moving elements can be overlaid using absolutely positioned
elements.

In games and other programs that should animate graphics and respond
to user input without noticeable delay, efficiency is important. Although the
DOM was not originally designed for high-performance graphics, it is actually
better at this than you would expect. You saw some animations in Chapter
14. On a modern machine, a simple game like this performs well, even if we
don’t worry about optimization very much.

In the next chapter, we will explore another browser technology, the <canvas>
tag, which provides a more traditional way to draw graphics, working in terms
of shapes and pixels rather than DOM elements.

Levels

We’ll want a human-readable, human-editable way to specify levels. Since it
is okay for everything to start out on a grid, we could use big strings in which

262

each character represents an element—either a part of the background grid or
a moving element.

The plan for a small level might look like this:

var simpleLevelPlan = `
......................
..#................#..
..#..............=.#..
..#.........o.o....#..
..#.@......#####...#..
..#####............#..
......#++++++++++++#..
......##############..
......................`;

Periods are empty space, hash ("#") characters are walls, and plus signs are
lava. The player’s starting position is the at sign (@). Every O characters is a
coin, and the equals sign (=) at the top is a block of lava that moves back and
forth horizontally.

We’ll support two additional kinds of moving lava: the pipe character (|)
creates vertically moving blobs, and v indicates dripping lava—vertically mov-
ing lava that doesn’t bounce back and forth but only moves down, jumping
back to its start position when it hits the floor.

A whole game consists of multiple levels that the player must complete. A
level is completed when all coins have been collected. If the player touches
lava, the current level is restored to its starting position, and the player may
try again.

Reading a level

The following class stores a level object. Its argument should be the string that
defines the level.

class Level {
constructor(plan) {

let rows = plan.trim().split("\n").map(l => [...l]);
this.height = rows.length;
this.width = rows[0].length;
this.startActors = [];

this.rows = rows.map((row, y) => {
return row.map((ch, x) => {

263

let type = levelChars[ch];
if (typeof type == "string") return type;
this.startActors.push(

type.create(new Vec(x, y), ch));
return "empty";

});
});

}
}

The trim method is used to remove whitespace at the start and end of the
plan string. This allows our example plan to start with a newline, so that all
the lines are directly below each other. The remaining string is split on newline
characters, and each line is spread into an array, producing arrays of characters.

So rows holds an array of arrays of characters, the rows of the plan. We can
derive the level’s width and height from these. But we must still separate the
moving elements from the background grid. We’ll call moving elements actors.
They’ll be stored in an array of objects. The background will be an array of
arrays of strings, holding field types like "empty", "wall", or "lava".

To create these arrays we map over the rows, and then over their content.
Remember that map passes the array index as a second argument to the mapping
function, which tells us the the x- and y-coordinates of a given character.
Positions in the game will be stored as pairs of coordinates, with the top left
being 0,0, and each background square being 1 unit high and wide.

To interpret the characters in the plan, the Level constructor uses the
levelChars object, which maps background elements to strings and actor char-
acters to classes. When type is an actor class, its static create method is used
to create an object, which is added to startActors, and the mapping function
returns "empty" for this background square.

The position of the actor is stored as a Vec object, which is a two-dimensional
vector, an object with x and y properties, as seen in the exercises of Chapter 6.

As the game runs, actors will end up in different places or even disappear
entirely (as coins do when collected). We’ll use a State class to track the state
of a running game.

class State {
constructor(level, actors, status) {

this.level = level;
this.actors = actors;
this.status = status;

}

264

static start(level) {
return new State(level, level.startActors, "playing");

}

get player() {
return this.actors.find(a => a.type == "player");

}
}

The status property will switch to "lost" or "won" when the game has
ended.

This is again a persistent data structure—updating the game state creates a
new state, and leaves the old one intact.

Actors

Actor objects represent the current position and state of a given moving element
in our game. All actor objects conform to the same interface. Their pos
property holds the coordinates of the element’s top-left corner, and their size
property holds its size.

Then they have an update method, which is used to compute their new state
and position after a given time step. It simulates the thing the actor does—
moving in response to the arrow keys for the player, bouncing back and forth
for the lava—and returns a new, updated actor object.

A type property contains a string that identifies the type of the actor—"
player", "coin", or "lava". This is useful when drawing the game—the look
of the rectangle drawn for an actor is based on its type.

Actor classes have a static create method that is used by the Level con-
structor to create an actor from a character in the level plan. It is given the
coordinates of the character and the character itself, which is needed because
the Lava class handles several different characters.

This is the Vec class that we’ll use for our two-dimensional values, such as
the position and size of actors.

class Vec {
constructor(x, y) {

this.x = x; this.y = y;
}
plus(other) {

return new Vec(this.x + other.x, this.y + other.y);

265

}
times(factor) {

return new Vec(this.x * factor, this.y * factor);
}

}

The times method scales a vector by a given number. It will be useful
when we need to multiply a speed vector by a time interval to get the distance
traveled during that time.

The different types of actors get their own classes, since their behavior is
very different. Let’s define these classes. We’ll get to their update methods
later on.

The player class has a property speed that stores its current speed, to simu-
late momentum and gravity.

class Player {
constructor(pos, speed) {

this.pos = pos;
this.speed = speed;

}

get type() { return "player"; }

static create(pos) {
return new Player(pos.plus(new Vec(0, -0.5)),

new Vec(0, 0));
}

}

Player.prototype.size = new Vec(0.8, 1.5);

Because a player is one-and-a-half squares high, its initial position is set to
be half a square above the position where the @ character appeared. This way,
its bottom aligns with the bottom of the square it appeared in.

The size property is the same for all instances of Player, so we store it on
the prototype, rather than on the instances themselves. We could have used
a getter like type, but that would create and return a new Vec object every
time the property is read, which would be wasteful. (Strings, being immutable,
don’t have to be recreated every time they are evaluated.)

When constructing a Lava actor, we need to initialize the object differently
depending on the character it is based on. Dynamic lava moves along at its

266

current speed until it hits an obstacle. At that point, if it has a reset property,
it will jump back to its start position (dripping). If it does not, it will invert
its speed and continue in the other direction (bouncing).

The create method looks at the character that the Level constructor passes,
and creates the appropriate lava actor.

class Lava {
constructor(pos, speed, reset) {

this.pos = pos;
this.speed = speed;
this.reset = reset;

}

get type() { return "lava"; }

static create(pos, ch) {
if (ch == "=") {

return new Lava(pos, new Vec(2, 0));
} else if (ch == "|") {

return new Lava(pos, new Vec(0, 2));
} else if (ch == "v") {

return new Lava(pos, new Vec(0, 3), pos);
}

}
}

Lava.prototype.size = new Vec(1, 1);

Coin actors are relatively simple. They mostly just sit in their place. But
to liven up the game a little, they are given a “wobble”, a slight vertical back
and forth motion. To track this, a coin object stores a base position as well
as a wobble property that tracks the phase of the bouncing motion. Together,
these determine the coin’s actual position (stored in the pos property).

class Coin {
constructor(pos, basePos, wobble) {

this.pos = pos;
this.basePos = basePos;
this.wobble = wobble;

}

get type() { return "coin"; }

static create(pos) {

267

let basePos = pos.plus(new Vec(0.2, 0.1));
return new Coin(basePos, basePos,

Math.random() * Math.PI * 2);
}

}

Coin.prototype.size = new Vec(0.6, 0.6);

In Chapter 14, we saw that Math.sin gives us the y-coordinate of a point
on a circle. That coordinate goes back and forth in a smooth wave form as
we move along the circle, which makes the sine function useful for modeling a
wavy motion.

To avoid a situation where all coins move up and down synchronously, the
starting phase of each coin is randomized. The phase of Math.sin’s wave, the
width of a wave it produces, is 2π. We multiply the value returned by Math
.random by that number to give the coin a random starting position on the
wave.

We can now define the levelChars object that maps plan characters to either
background grid types or actor classes.

const levelChars = {
".": "empty", "#": "wall", "+": "lava",
"@": Player, "o": Coin,
"=": Lava, "|": Lava, "v": Lava

};

That gives us all the parts needed to create a Level instance.

let simpleLevel = new Level(simpleLevelPlan);
console.log(`${simpleLevel.width} by ${simpleLevel.height}`);
// → 22 by 9

The task ahead is to display such levels on the screen and to model time and
motion inside them.

Encapsulation as a burden

Most of the code in this chapter does not worry about encapsulation very much,
for two reasons. First, encapsulation takes extra effort. It makes programs
bigger and requires additional concepts and interfaces to be introduced. Since

268

there is only so much code you can throw at a reader before their eyes glaze
over, I’ve made an effort to keep the program small.

Second, the various elements in this game are so closely tied together that
if the behavior of one of them changed, it is unlikely that any of the others
would be able to stay the same. Interfaces between the elements would end
up encoding a lot of assumptions about the way the game works. This makes
them a lot less effective—whenever you change one part of the system, you still
have to worry about the way it impacts the other parts because their interfaces
wouldn’t cover the new situation.

Some cutting points in a system lend themselves well to separation through
rigorous interfaces, but others don’t. Trying to encapsulate something that
isn’t a suitable boundary is a sure way to waste a lot of energy. When you
are making this mistake, you’ll usually notice that your interfaces are getting
awkwardly large and detailed and that they need to be changed often, as the
program evolves.

There is one thing that we will encapsulate, and that is the drawing subsys-
tem. The reason for this is that we’ll display the same game in a different way
in the next chapter. By putting the drawing behind an interface, we can load
the same game program there and plug in a new display module.

Drawing

The encapsulation of the drawing code is done by defining a display object,
which displays a given level and state. The display type we define in this
chapter is called DOMDisplay because it uses DOM elements to show the level.

We’ll be using a style sheet to set the actual colors and other fixed properties
of the elements that make up the game. It would also be possible to directly
assign to the elements’ style property when we create them, but that would
produce more verbose programs.

The following helper function provides a succinct way to create an element
and give it some attributes and child nodes:

function elt(name, attrs, ...children) {
let dom = document.createElement(name);
for (let attr of Object.keys(attrs)) {

dom.setAttribute(attr, attrs[attr]);
}
for (let child of children) {

dom.appendChild(child);
}
return dom;

269

}

A display is created by giving it a parent element to which it should append
itself and a level object.

class DOMDisplay {
constructor(parent, level) {

this.dom = elt("div", {class: "game"}, drawGrid(level));
this.actorLayer = null;
parent.appendChild(this.dom);

}

clear() { this.dom.remove(); }
}

The level’s background grid, which never changes, is drawn once. Actors are
redrawn every time the display is updated with a given state. The actorLayer
property will be used to track the element that holds the actors so that they
can be easily removed and replaced.

Our coordinates and sizes are tracked in grid units, where a size or distance
of 1 means 1 grid block. When setting pixel sizes, we will have to scale these
coordinates up—everything in the game would be ridiculously small at a single
pixel per square. The scale constant gives the number of pixels that a single
unit takes up on the screen.

const scale = 20;

function drawGrid(level) {
return elt("table", {

class: "background",
style: `width: ${level.width * scale}px`

}, ...level.rows.map(row =>
elt("tr", {style: `height: ${scale}px`},

...row.map(type => elt("td", {class: type})))
));

}

As mentioned before, the background is drawn as a <table> element. This
nicely corresponds to the structure of the rows property of the level—each row
of the grid is turned into a table row (<tr> element). The strings in the grid are
used as class names for the table cell (<td>) elements. The spread (triple dot)

270

operator is used to pass arrays of child nodes to elt as separate arguments.
The following CSS makes the table look like the background we want:

.background { background: rgb(52, 166, 251);
table-layout: fixed;
border-spacing: 0; }

.background td { padding: 0; }

.lava { background: rgb(255, 100, 100); }

.wall { background: white; }

Some of these (table-layout, border-spacing, and padding) are used to
suppress unwanted default behavior. We don’t want the layout of the table to
depend upon the contents of its cells, and we don’t want space between the
table cells or padding inside them.

The background rule sets the background color. CSS allows colors to be
specified both as words (white) but also with a format such as rgb(R, G, B)
, where the red, green, and blue components of the color are separated into
three numbers from 0 to 255. So, in rgb(52, 166, 251), the red component
is 52, green is 166, and blue is 251. Since the blue component is the largest,
the resulting color will be bluish. You can see that in the .lava rule, the first
number (red) is the largest.

We draw each actor by creating a DOM element for it and setting that
element’s position and size based on the actor’s properties. The values have to
be multiplied by scale to go from game units to pixels.

function drawActors(actors) {
return elt("div", {}, ...actors.map(actor => {

let rect = elt("div", {class: `actor ${actor.type}`});
rect.style.width = `${actor.size.x * scale}px`;
rect.style.height = `${actor.size.y * scale}px`;
rect.style.left = `${actor.pos.x * scale}px`;
rect.style.top = `${actor.pos.y * scale}px`;
return rect;

}));
}

To give an element more than one class, we separate the class names by
spaces. In the CSS code shown next, the actor class gives the actors their
absolute position. Their type name is used as an extra class to give them a
color. We don’t have to define the lava class again because we reuse the class
for the lava grid squares which we defined earlier.

271

.actor { position: absolute; }

.coin { background: rgb(241, 229, 89); }

.player { background: rgb(64, 64, 64); }

The setState method is used to make the display show a given state. It first
removes the old actor graphics, if any, and then redraws the actors in their new
positions. It may be tempting to try to reuse the DOM elements for actors, but
to make that work, we would need a lot of additional bookkeeping to associate
actors with DOM elements and to make sure we remove elements when their
actors vanish. Since there will typically be only a handful of actors in the game,
redrawing all of them is not expensive.

DOMDisplay.prototype.setState = function(state) {
if (this.actorLayer) this.actorLayer.remove();
this.actorLayer = drawActors(state.actors);
this.dom.appendChild(this.actorLayer);
this.dom.className = `game ${state.status}`;
this.scrollPlayerIntoView(state);

};

By adding the level’s current status as a class name to the wrapper, we can
style the player actor slightly differently when the game is won or lost by adding
a CSS rule that takes effect only when the player has an ancestor element with
a given class.

.lost .player {
background: rgb(160, 64, 64);

}
.won .player {

box-shadow: -4px -7px 8px white, 4px -7px 8px white;
}

After touching lava, the player’s color turns dark red, suggesting scorching.
When the last coin has been collected, we add two blurred white shadows—one
to the top left and one to the top right—to create a white halo effect.

We can’t assume that the level always fits in the viewport—the element
into which we draw the game. That is why the scrollPlayerIntoView call
is needed—it ensures that if the level is protruding outside the viewport, we
scroll that viewport to make sure the player is near its center. The following
CSS gives the game’s wrapping DOM element a maximum size and ensures
that anything that sticks out of the element’s box is not visible. We also give

272

the outer element a relative position so that the actors inside it are positioned
relative to the level’s top-left corner.

.game {
overflow: hidden;
max-width: 600px;
max-height: 450px;
position: relative;

}

In the scrollPlayerIntoView method, we find the player’s position and up-
date the wrapping element’s scroll position. We change the scroll position by
manipulating that element’s scrollLeft and scrollTop properties when the
player is too close to the edge.

DOMDisplay.prototype.scrollPlayerIntoView = function(state) {
let width = this.dom.clientWidth;
let height = this.dom.clientHeight;
let margin = width / 3;

// The viewport
let left = this.dom.scrollLeft, right = left + width;
let top = this.dom.scrollTop, bottom = top + height;

let player = state.player;
let center = player.pos.plus(player.size.times(0.5))

.times(scale);

if (center.x < left + margin) {
this.dom.scrollLeft = center.x - margin;

} else if (center.x > right - margin) {
this.dom.scrollLeft = center.x + margin - width;

}
if (center.y < top + margin) {

this.dom.scrollTop = center.y - margin;
} else if (center.y > bottom - margin) {

this.dom.scrollTop = center.y + margin - height;
}

};

The way the player’s center is found shows how the methods on our Vec type
allow computations with objects to be written in a relatively readable way. To
find the actor’s center, we add its position (its top-left corner) and half its size.

273

That is the center in level coordinates, but we need it in pixel coordinates, so
we then multiply the resulting vector by our display scale.

Next, a series of checks verify that the player position isn’t outside of the
allowed range. Note that sometimes this will set nonsense scroll coordinates,
below zero or beyond the element’s scrollable area. This is okay—the DOM
will constrain them to acceptable values. Setting scrollLeft to -10 will cause
it to become 0.

It would have been slightly simpler to always try to scroll the player to the
center of the viewport. But this creates a rather jarring effect. As you are
jumping, the view will constantly shift up and down. It is more pleasant to
have a “neutral” area in the middle of the screen where you can move around
without causing any scrolling.

We are now able to display our tiny level.

<link rel="stylesheet" href="css/game.css">

<script>
let simpleLevel = new Level(simpleLevelPlan);
let display = new DOMDisplay(document.body, simpleLevel);
display.setState(State.start(simpleLevel));

</script>

The <link> tag, when used with rel="stylesheet", is a way to load a CSS
file into a page. The file game.css contains the styles necessary for our game.

Motion and collision

Now we’re at the point where we can start adding motion—the most interesting
aspect of the game. The basic approach, taken by most games like this, is to
split time into small steps and, for each step, move the actors by a distance
corresponding to their speed multiplied by the size of the time step. We’ll
measure time in seconds, so speeds are expressed in units per second.

Moving things is easy. The difficult part is dealing with the interactions
between the elements. When the player hits a wall or floor, they should not

274

simply move through it. The game must notice when a given motion causes
an object to hit another object and respond accordingly. For walls, the motion
must be stopped. When hitting a coin, it must be collected. When touching
lava, the game should be lost.

Solving this for the general case is a big task. You can find libraries, usually
called physics engines, that simulate interaction between physical objects in
two or three dimensions. We’ll take a more modest approach in this chapter,
handling only collisions between rectangular objects and handling them in a
rather simplistic way.

Before moving the player or a block of lava, we test whether the motion would
take it inside of a wall. If it does, we simply cancel the motion altogether. The
response to such a collision depends on the type of actor—the player will stop,
whereas a lava block will bounce back.

This approach requires our time steps to be rather small since it will cause
motion to stop before the objects actually touch. If the time steps (and thus
the motion steps) are too big, the player would end up hovering a noticeable
distance above the ground. Another approach, arguably better but more com-
plicated, would be to find the exact collision spot and move there. We will take
the simple approach and hide its problems by ensuring the animation proceeds
in small steps.

This method tells us whether a rectangle (specified by a position and a size)
touches a grid element of the given type.

Level.prototype.touches = function(pos, size, type) {
var xStart = Math.floor(pos.x);
var xEnd = Math.ceil(pos.x + size.x);
var yStart = Math.floor(pos.y);
var yEnd = Math.ceil(pos.y + size.y);

for (var y = yStart; y < yEnd; y++) {
for (var x = xStart; x < xEnd; x++) {

let isOutside = x < 0 || x >= this.width ||
y < 0 || y >= this.height;

let here = isOutside ? "wall" : this.rows[y][x];
if (here == type) return true;

}
}
return false;

};

The method computes the set of grid squares that the body overlaps with

275

by using Math.floor and Math.ceil on its coordinates. Remember that grid
squares are 1 by 1 units in size. By rounding the sides of a box up and down,
we get the range of background squares that the box touches.

We loop over the block of grid squares found by rounding the coordinates
and return true when a matching square is found. Squares outside of the level
are always treated as "wall" to ensure that the player can’t leave the world
and that we won’t accidentally try to read outside of the bounds of our rows
array.

The state update method uses touches to figure out if the player is touching
lava.

State.prototype.update = function(time, keys) {
let actors = this.actors

.map(actor => actor.update(time, this, keys));
let newState = new State(this.level, actors, this.status);

if (newState.status != "playing") return newState;

let player = newState.player;
if (this.level.touches(player.pos, player.size, "lava")) {

return new State(this.level, actors, "lost");
}

for (let actor of actors) {
if (actor != player && overlap(actor, player)) {

newState = actor.collide(newState);
}

}
return newState;

};

It is passed a time step and a data structure that tells it which keys are
being held down. The first thing it does is call the update method on all actors,
producing an array of updated actors. The actors also get the time step, the
keys, and the state, so that they can base their update on those. Only the
player will actually read keys, since that’s the only actor that’s controlled by

276

the keyboard.
If the game is already over, no further processing has to be done (the game

can’t be won after being lost, or vice-versa). Otherwise, the method tests
whether the player is touching background lava. If so, the game is lost and
we’re done. Finally, if the game really is still going on, it sees if any other
actors overlap the player.

Overlap between actors is detected with the overlap function. It takes two
actor objects and returns true when they touch—which is the case when they
overlap both along the x axis and along the y axis.

function overlap(actor1, actor2) {
return actor1.pos.x + actor1.size.x > actor2.pos.x &&

actor1.pos.x < actor2.pos.x + actor2.size.x &&
actor1.pos.y + actor1.size.y > actor2.pos.y &&
actor1.pos.y < actor2.pos.y + actor2.size.y;

}

If any actor does overlap, its collide method gets a chance to update the
state. Touching a lava actor sets the game status to "lost", coins vanish when
you touch them, and set the status to "won" when this was the last coin.

Lava.prototype.collide = function(state) {
return new State(state.level, state.actors, "lost");

};

Coin.prototype.collide = function(state) {
let filtered = state.actors.filter(a => a != this);
let status = state.status;
if (!filtered.some(a => a.type == "coin")) status = "won";
return new State(state.level, filtered, status);

};

Actor updates

Actor objects’ update methods take as arguments the time step, the state ob-
ject, and a keys object. The one for the Lava actor type ignores the keys
object.

Lava.prototype.update = function(time, state) {
let newPos = this.pos.plus(this.speed.times(time));
if (!state.level.touches(newPos, this.size, "wall")) {

277

return new Lava(newPos, this.speed, this.reset);
} else if (this.reset) {

return new Lava(this.reset, this.speed, this.reset);
} else {

return new Lava(this.pos, this.speed.times(-1));
}

};

It computes a new position by adding the product of the time step and the
current speed to its old position. If no obstacle blocks that new position, it
moves there. If there is an obstacle, the behavior depends on the type of the
lava block—dripping lava has a reset position, to which it jumps back when
it hits something. Bouncing lava inverts its speed by multiplying it by -1, so
that it starts moving in the opposite direction.

Coins use their act method to wobble. They ignore collisions with the grid
since they are simply wobbling around inside of their own square.

const wobbleSpeed = 8, wobbleDist = 0.07;

Coin.prototype.update = function(time) {
let wobble = this.wobble + time * wobbleSpeed;
let wobblePos = Math.sin(wobble) * wobbleDist;
return new Coin(this.basePos.plus(new Vec(0, wobblePos)),

this.basePos, wobble);
};

The wobble property is incremented to track time and then used as an ar-
gument to Math.sin to find the new position on the wave. The coin’s current
position is then computed from its base position and an offset based on this
wave.

That leaves the player itself. Player motion is handled separately per axis
because hitting the floor should not prevent horizontal motion, and hitting a
wall should not stop falling or jumping motion.

const playerXSpeed = 7;
const gravity = 30;
const jumpSpeed = 17;

Player.prototype.update = function(time, state, keys) {
let xSpeed = 0;
if (keys.ArrowLeft) xSpeed -= playerXSpeed;
if (keys.ArrowRight) xSpeed += playerXSpeed;

278

let pos = this.pos;
let movedX = pos.plus(new Vec(xSpeed * time, 0));
if (!state.level.touches(movedX, this.size, "wall")) {

pos = movedX;
}

let ySpeed = this.speed.y + time * gravity;
let movedY = pos.plus(new Vec(0, ySpeed * time));
if (!state.level.touches(movedY, this.size, "wall")) {

pos = movedY;
} else if (keys.ArrowUp && ySpeed > 0) {

ySpeed = -jumpSpeed;
} else {

ySpeed = 0;
}
return new Player(pos, new Vec(xSpeed, ySpeed));

};

The horizontal motion is computed based on the state of the left and right
arrow keys. When there’s no wall blocking the new position created by this
motion, it is used. Otherwise, the old position is kept.

Vertical motion works in a similar way but has to simulate jumping and
gravity. The player’s vertical speed (ySpeed) is first accelerated to account for
gravity.

We check for walls again. If we don’t hit any, the new position is used. If
there is a wall, there are two possible outcomes. When the up arrow is pressed
and we are moving down (meaning the thing we hit is below us), the speed is
set to a relatively large, negative value. This causes the player to jump. If that
is not the case, the player simply bumped into something, and the speed is set
to zero.

The gravity strength, jumping speed, and pretty much all other constants
in this game have been set by trial and error. I tested values until I found a
combination I liked.

Tracking keys

For a game like this, we do not want keys to take effect once per keypress.
Rather, we want their effect (moving the player figure) to stay active as long
as they are held.

We need to set up a key handler that stores the current state of the left,
right, and up arrow keys. We will also want to call preventDefault for those

279

keys so that they don’t end up scrolling the page.
The following function, when given an array of key names, will return an

object that tracks the current position of those keys. It registers event handlers
for "keydown" and "keyup" events and, when the key code in the event is present
in the set of codes that it is tracking, updates the object.

function trackKeys(keys) {
let down = Object.create(null);
function track(event) {

if (keys.includes(event.key)) {
down[event.key] = event.type == "keydown";
event.preventDefault();

}
}
window.addEventListener("keydown", track);
window.addEventListener("keyup", track);
return down;

}

const arrowKeys =
trackKeys(["ArrowLeft", "ArrowRight", "ArrowUp"]);

The same handler function is used for both event types. It looks at the event
object’s type property to determine whether the key state should be updated
to true ("keydown") or false ("keyup").

Running the game

The requestAnimationFrame function, which we saw in Chapter 14, provides
a good way to animate a game. But its interface is quite primitive—using it
requires us to track the time at which our function was called the last time
around and call requestAnimationFrame again after every frame.

Let’s define a helper function that wraps those boring parts in a convenient
interface and allows us to simply call runAnimation, giving it a function that
expects a time difference as an argument and draws a single frame. When the
frame function returns the value false, the animation stops.

function runAnimation(frameFunc) {
let lastTime = null;
function frame(time) {

if (lastTime != null) {
let timeStep = Math.min(time - lastTime, 100) / 1000;

280

if (frameFunc(timeStep) === false) return;
}
lastTime = time;
requestAnimationFrame(frame);

}
requestAnimationFrame(frame);

}

I have set a maximum frame step of 100 milliseconds (one-tenth of a second).
When the browser tab or window with our page is hidden, requestAnimationFrame
calls will be suspended until the tab or window is shown again. In this case,
the difference between lastTime and time will be the entire time in which the
page was hidden. Advancing the game by that much in a single step will look
silly and might cause weird side effects, such as the player falling through the
floor.

The function also converts the time steps to seconds, which are an easier
quantity to think about than milliseconds.

The runLevel function takes a Level object and a display constructor, and
returns a promise. It displays the level (in document.body) and lets the user
play through it. When the level is finished (lost or won), runLevel waits one
more second (to let the user see what happens) and then clears the display,
stops the animation, and resolves the promise to the game’s end status.

function runLevel(level, Display) {
let display = new Display(document.body, level);
let state = State.start(level);
let ending = 1;
return new Promise(resolve => {

runAnimation(time => {
state = state.update(time, arrowKeys);
display.setState(state);
if (state.status == "playing") {

return true;
} else if (ending > 0) {

ending -= time;
return true;

} else {
display.clear();
resolve(state.status);
return false;

}
});

});

281

}

A game is a sequence of levels. Whenever the player dies, the current level
is restarted. When a level is completed, we move on to the next level. This
can be expressed by the following function, which takes an array of level plans
(strings) and a display constructor:

async function runGame(plans, Display) {
for (let level = 0; level < plans.length;) {

let status = await runLevel(new Level(plans[level]),
Display);

if (status == "won") level++;
}
console.log("You've won!");

}

Because we made runLevel return a promise, runGame can be written using
an async function, as seen in Chapter 11. It returns another promise, which
resolves when the player finished the game.

There is a set of level plans available in the GAME_LEVELS binding in this
chapter’s sandbox (eloquentjavascript.net/code#16). This page feeds them to
runGame, starting an actual game:

<link rel="stylesheet" href="css/game.css">

<body>
<script>

runGame(GAME_LEVELS, DOMDisplay);
</script>

</body>

Exercises

Game over

It’s traditional for platform games to have the player start with a limited num-
ber of lives and subtract one life each time they die. When the player is out of
lives, the game restarts from the beginning.

Adjust runGame to implement lives. Have the player start with three. Output
the current amount of lives (using console.log) every time a level starts.

282

https://eloquentjavascript.net/code#16
https://eloquentjavascript.net/code#16
https://eloquentjavascript.net/code#16

Pausing the game

Make it possible to pause (suspend) and unpause the game by pressing the Esc
key.

This can be done by changing the runLevel function to use another keyboard
event handler and interrupting or resuming the animation whenever the Esc
key is hit.

The runAnimation interface may not look like it is suitable for this at first
glance, but it is, if you rearrange the way runLevel calls it.

When you have that working, there is something else you could try. The way
we have been registering keyboard event handlers is somewhat problematic.
The arrows object is currently a global binding, and its event handlers are
kept around even when no game is running. You could say they leak out of
our system. Extend trackKeys to provide a way to unregister its handlers,
and then change runLevel to register its handlers when it starts and unregister
them again when it is finished.

A monster

It is traditional for platform games to have enemies that you can jump on top
of to defeat. This exercise asks you to add such an actor type to the game.

We’ll call it a monster. Monsters move only horizontally. You can make them
move in the direction of the player, or bounce back and forth like horizontal
lava, or have any movement pattern you want. The class doesn’t have to handle
falling, but it should make sure the monster doesn’t walk through walls.

When a monster touches the player, the effect depends on whether the player
is jumping on top of them or not. You can approximate this by checking
whether the player’s bottom is near the monster’s top. If this is the case, the
monster disappears. If not, the game is lost.

283

“Drawing is deception.”
—M.C. Escher, cited by Bruno Ernst in The Magic Mirror of M.C.

Escher

Chapter 17

Drawing on Canvas

Browsers give us several ways to display graphics. The simplest way is to use
styles to position and color regular DOM elements. This can get you quite far,
as the game in the previous chapter shows. By adding partially transparent
background images to the nodes, we can make them look exactly the way we
want. It is even possible to rotate or skew nodes with the transform style.

But we’d be using the DOM for something that it wasn’t originally designed
for. Some tasks, such as drawing a line between arbitrary points, are extremely
awkward to do with regular HTML elements.

There are two alternatives. The first is DOM-based but utilizes Scalable
Vector Graphics (SVG), rather than HTML. Think of SVG as a document-
markup dialect that focuses on shapes rather than text. You can embed an
SVG document directly in an HTML document or include it with an tag.

The second alternative is called a canvas. A canvas is a single DOM element
that encapsulates a picture. It provides a programming interface for drawing
shapes onto the space taken up by the node. The main difference between a
canvas and an SVG picture is that in SVG the original description of the shapes
is preserved so that they can be moved or resized at any time. A canvas, on
the other hand, converts the shapes to pixels (colored dots on a raster) as soon
as they are drawn and does not remember what these pixels represent. The
only way to move a shape on a canvas is to clear the canvas (or the part of the
canvas around the shape) and redraw it with the shape in a new position.

SVG

This book will not go into SVG in detail, but I will briefly explain how it
works. At the end of the chapter, I’ll come back to the trade-offs that you
must consider when deciding which drawing mechanism is appropriate for a
given application.

This is an HTML document with a simple SVG picture in it:

<p>Normal HTML here.</p>

284

<svg xmlns="http://www.w3.org/2000/svg">
<circle r="50" cx="50" cy="50" fill="red"/>
<rect x="120" y="5" width="90" height="90"

stroke="blue" fill="none"/>
</svg>

The xmlns attribute changes an element (and its children) to a different XML
namespace. This namespace, identified by a URL, specifies the dialect that we
are currently speaking. The <circle> and <rect> tags, which do not exist in
HTML, do have a meaning in SVG—they draw shapes using the style and
position specified by their attributes.

The document is displayed like this:

These tags create DOM elements, just like HTML tags, that scripts can
interact with. For example, this changes the <circle> element to be colored
cyan instead:

let circle = document.querySelector("circle");
circle.setAttribute("fill", "cyan");

The canvas element

Canvas graphics can be drawn onto a <canvas> element. You can give such an
element width and height attributes to determine its size in pixels.

A new canvas is empty, meaning it is entirely transparent and thus shows up
as empty space in the document.

The <canvas> tag is intended to allow different styles of drawing. To get
access to an actual drawing interface, we first need to create a context, an object
whose methods provide the drawing interface. There are currently two widely
supported drawing styles: "2d" for two-dimensional graphics and "webgl" for
three-dimensional graphics through the OpenGL interface.

This book won’t discuss WebGL—we’ll stick to two dimensions. But if you
are interested in three-dimensional graphics, I do encourage you to look into

285

WebGL. It provides a very direct interface to graphics hardware and allows you
to render even complicated scenes efficiently, using JavaScript.

You create a context with the getContext method on the <canvas> DOM
element.

<p>Before canvas.</p>
<canvas width="120" height="60"></canvas>
<p>After canvas.</p>
<script>

let canvas = document.querySelector("canvas");
let context = canvas.getContext("2d");
context.fillStyle = "red";
context.fillRect(10, 10, 100, 50);

</script>

After creating the context object, the example draws a red rectangle 100
pixels wide and 50 pixels high, with its top-left corner at coordinates (10,10).

Just like in HTML (and SVG), the coordinate system that the canvas uses
puts (0,0) at the top-left corner, and the positive y-axis goes down from there.
So (10,10) is 10 pixels below and to the right of the top-left corner.

Lines and surfaces

In the canvas interface, a shape can be filled, meaning its area is given a certain
color or pattern, or it can be stroked, which means a line is drawn along its
edge. The same terminology is used by SVG.

The fillRect method fills a rectangle. It takes first the x- and y-coordinates
of the rectangle’s top-left corner, then its width, and then its height. A similar
method, strokeRect, draws the outline of a rectangle.

Neither method takes any further parameters. The color of the fill, thickness
of the stroke, and so on are not determined by an argument to the method (as
you might reasonably expect) but rather by properties of the context object.

The fillStyle property controls the way shapes are filled. It can be set to
a string that specifies a color, using the color notation used by CSS.

286

The strokeStyle property works similarly but determines the color used for
a stroked line. The width of that line is determined by the lineWidth property,
which may contain any positive number.

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
cx.strokeStyle = "blue";
cx.strokeRect(5, 5, 50, 50);
cx.lineWidth = 5;
cx.strokeRect(135, 5, 50, 50);

</script>

This code draws two blue squares, using a thicker line for the second one.

When no width or height attribute is specified, as in the example, a canvas
element gets a default width of 300 pixels and height of 150 pixels.

Paths

A path is a sequence of lines. The 2D canvas interface takes a peculiar approach
to describing such a path. It is done entirely through side effects. Paths are
not values that can be stored and passed around. Instead, if you want to do
something with a path, you make a sequence of method calls to describe its
shape.

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
cx.beginPath();
for (let y = 10; y < 100; y += 10) {

cx.moveTo(10, y);
cx.lineTo(90, y);

}
cx.stroke();

</script>

This example creates a path with a number of horizontal line segments and

287

then strokes it using the stroke method. Each segment created with lineTo
starts at the path’s current position. That position is usually the end of the
last segment, unless moveTo was called. In that case, the next segment would
start at the position passed to moveTo.

The path described by the previous program looks like this:

When filling a path (using the fill method), each shape is filled separately.
A path can contain multiple shapes—each moveTo motion starts a new one.
But the path needs to be closed (meaning its start and end are in the same
position) before it can be filled. If the path is not already closed, a line is added
from its end to its start, and the shape enclosed by the completed path is filled.

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
cx.beginPath();
cx.moveTo(50, 10);
cx.lineTo(10, 70);
cx.lineTo(90, 70);
cx.fill();

</script>

This example draws a filled triangle. Note that only two of the triangle’s
sides are explicitly drawn. The third, from the bottom-right corner back to the
top, is implied and wouldn’t be there when you stroke the path.

You could also use the closePath method to explicitly close a path by adding
an actual line segment back to the path’s start. This segment is drawn when
stroking the path.

288

Curves

A path may also contain curved lines. These are unfortunately a bit more
involved to draw.

The quadraticCurveTo method draws a curve to a given point. To determine
the curvature of the line, the method is given a control point as well as a
destination point. Imagine this control point as attracting the line, giving it
its curve. The line won’t go through the control point, but its direction at the
start and end points will be such that a straight in that direction would point
towards the control point. The following example illustrates this:

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
cx.beginPath();
cx.moveTo(10, 90);
// control=(60,10) goal=(90,90)
cx.quadraticCurveTo(60, 10, 90, 90);
cx.lineTo(60, 10);
cx.closePath();
cx.stroke();

</script>

It produces a path that looks like this:

We draw a quadratic curve from the left to the right, with (60,10) as control
point, and then draw two line segments going through that control point and
back to the start of the line. The result somewhat resembles a Star Trek
insignia. You can see the effect of the control point: the lines leaving the lower
corners start off in the direction of the control point and then curve toward
their target.

The bezierCurveTo method draws a similar kind of curve. Instead of a single
control point, this one has two—one for each of the line’s endpoints. Here is a
similar sketch to illustrate the behavior of such a curve:

<canvas></canvas>
<script>

289

let cx = document.querySelector("canvas").getContext("2d");
cx.beginPath();
cx.moveTo(10, 90);
// control1=(10,10) control2=(90,10) goal=(50,90)
cx.bezierCurveTo(10, 10, 90, 10, 50, 90);
cx.lineTo(90, 10);
cx.lineTo(10, 10);
cx.closePath();
cx.stroke();

</script>

The two control points specify the direction at both ends of the curve. The
further they are away from their corresponding point, the more the curve will
“bulge” in that direction.

Such curves can be hard to work with—it’s not always clear how to find the
control points that provide the shape you are looking for. Sometimes you can
compute them, and sometimes you’ll just have to find a suitable value by trial
and error.

The arc method is a way to draw a line that curves along the edge of a circle.
It takes a pair of coordinates for the arc’s center, a radius, and then a start
and end angle.

Those last two parameters make it possible to draw only part of the circle.
The angles are measured in radians, not degrees. This means a full circle has
an angle of 2π, or 2 * Math.PI, which is about 6.28. The angle starts counting
at the point to the right of the circle’s center and goes clockwise from there.
You can use a start of 0 and an end bigger than 2π (say, 7) to draw a full circle.

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
cx.beginPath();
// center=(50,50) radius=40 angle=0 to 7
cx.arc(50, 50, 40, 0, 7);
// center=(150,50) radius=40 angle=0 to π½
cx.arc(150, 50, 40, 0, 0.5 * Math.PI);
cx.stroke();

290

</script>

The resulting picture contains a line from the right of the full circle (first call
to arc) to the right of the quarter-circle (second call). Like other path-drawing
methods, a line drawn with arc is connected to the previous path segment.
You can call moveTo or start a new path to avoid this.

Drawing a pie chart

Imagine you’ve just taken a job at EconomiCorp, Inc., and your first assignment
is to draw a pie chart of their customer satisfaction survey results.

The results binding contains an array of objects that represent the survey
responses.

const results = [
{name: "Satisfied", count: 1043, color: "lightblue"},
{name: "Neutral", count: 563, color: "lightgreen"},
{name: "Unsatisfied", count: 510, color: "pink"},
{name: "No comment", count: 175, color: "silver"}

];

To draw a pie chart, we draw a number of pie slices, each made up of an arc
and a pair of lines to the center of that arc. We can compute the angle taken
up by each arc by dividing a full circle (2π) by the total number of responses
and then multiplying that number (the angle per response) by the number of
people who picked a given choice.

<canvas width="200" height="200"></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
let total = results

.reduce((sum, {count}) => sum + count, 0);
// Start at the top
let currentAngle = -0.5 * Math.PI;
for (let result of results) {

291

let sliceAngle = (result.count / total) * 2 * Math.PI;
cx.beginPath();
// center=100,100, radius=100
// from current angle, clockwise by slice's angle
cx.arc(100, 100, 100,

currentAngle, currentAngle + sliceAngle);
currentAngle += sliceAngle;
cx.lineTo(100, 100);
cx.fillStyle = result.color;
cx.fill();

}
</script>

This draws the following chart:

But a chart that doesn’t tell us what the slices mean isn’t very helpful. We
need a way to draw text to the canvas.

Text

A 2D canvas drawing context provides the methods fillText and strokeText.
The latter can be useful for outlining letters, but usually fillText is what you
need. It will fill the outline of the given text with the current fillStyle.

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
cx.font = "28px Georgia";
cx.fillStyle = "fuchsia";
cx.fillText("I can draw text, too!", 10, 50);

</script>

292

You can specify the size, style, and font of the text with the font property.
This example just gives a font size and family name. It is also possible to add
italic or bold to the start of the string to select a style.

The last two arguments to fillText and strokeText provide the position at
which the font is drawn. By default, they indicate the position of the start
of the text’s alphabetic baseline, which is the line that letters “stand” on, not
counting hanging parts in letters like j or p. You can change the horizontal
position by setting the textAlign property to "end" or "center" and the vertical
position by setting textBaseline to "top", "middle", or "bottom".

We’ll come back to our pie chart, and the problem of labeling the slices, in
the exercises at the end of the chapter.

Images

In computer graphics, a distinction is often made between vector graphics and
bitmap graphics. The first is what we have been doing so far in this chapter—
specifying a picture by giving a logical description of shapes. Bitmap graphics,
on the other hand, don’t specify actual shapes but rather work with pixel data
(rasters of colored dots).

The drawImage method allows us to draw pixel data onto a canvas. This
pixel data can originate from an element or from another canvas. The
following example creates a detached element and loads an image file
into it. But it cannot immediately start drawing from this picture because the
browser may not have loaded it yet. To deal with this, we register a "load"
event handler and do the drawing after the image has loaded.

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
let img = document.createElement("img");
img.src = "img/hat.png";
img.addEventListener("load", () => {

for (let x = 10; x < 200; x += 30) {
cx.drawImage(img, x, 10);

}
});

</script>

By default, drawImage will draw the image at its original size. You can also
give it two additional arguments to set a different width and height.

293

When drawImage is given nine arguments, it can be used to draw only a frag-
ment of an image. The second through fifth arguments indicate the rectangle
(x, y, width, and height) in the source image that should be copied, and the
sixth to ninth arguments give the rectangle (on the canvas) into which it should
be copied.

This can be used to pack multiple sprites (image elements) into a single
image file and then draw only the part you need. For example, we have this
picture containing a game character in multiple poses:

By alternating which pose we draw, we can show an animation that looks
like a walking character.

To animate a picture on a canvas, the clearRect method is useful. It resem-
bles fillRect, but instead of coloring the rectangle, it makes it transparent,
removing the previously drawn pixels.

We know that each sprite, each subpicture, is 24 pixels wide and 30 pixels
high. The following code loads the image and then sets up an interval (repeated
timer) to draw the next frame:

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
let img = document.createElement("img");
img.src = "img/player.png";
let spriteW = 24, spriteH = 30;
img.addEventListener("load", () => {

let cycle = 0;
setInterval(() => {

cx.clearRect(0, 0, spriteW, spriteH);
cx.drawImage(img,

// source rectangle
cycle * spriteW, 0, spriteW, spriteH,
// destination rectangle
0, 0, spriteW, spriteH);

cycle = (cycle + 1) % 8;
}, 120);

});
</script>

The cycle binding tracks our position in the animation. Each frame, it is
incremented and then clipped back to the 0 to 7 range by using the remainder

294

operator. This binding is then used to compute the x-coordinate that the sprite
for the current pose has in the picture.

Transformation

But what if we want our character to walk to the left instead of to the right?
We could draw another set of sprites, of course. But we can also instruct the
canvas to draw the picture the other way round.

Calling the scale method will cause anything drawn after it to be scaled.
This method takes two parameters, one to set a horizontal scale and one to set
a vertical scale.

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
cx.scale(3, .5);
cx.beginPath();
cx.arc(50, 50, 40, 0, 7);
cx.lineWidth = 3;
cx.stroke();

</script>

Due to the call to scale, the circle is drawn three times as wide and half as
high.

Scaling will cause everything about the drawn image, including the line
width, to be stretched out or squeezed together as specified. Scaling by a
negative amount will flip the picture around. The flipping happens around
point (0,0), which means it will also flip the direction of the coordinate system.
When a horizontal scaling of -1 is applied, a shape drawn at x position 100 will
end up at what used to be position -100.

So to turn a picture around, we can’t simply add cx.scale(-1, 1) before
the call to drawImage since that would move our picture outside of the canvas,
where it won’t be visible. You could adjust the coordinates given to drawImage
to compensate for this by drawing the image at x position -50 instead of 0.
Another solution, which doesn’t require the code that does the drawing to know
about the scale change, is to adjust the axis around which the scaling happens.

There are several other methods besides scale that influence the coordinate

295

system for a canvas. You can rotate subsequently drawn shapes with the rotate
method and move them with the translate method. The interesting—and
confusing—thing is that these transformations stack, meaning that each one
happens relative to the previous transformations.

So if we translate by 10 horizontal pixels twice, everything will be drawn
20 pixels to the right. If we first move the center of the coordinate system to
(50,50) and then rotate by 20 degrees (about 0.1π radians), that rotation will
happen around point (50,50).

translate(50, 50)

rotate(0.1*Math.PI)

rotate(0.1*Math.PI)

translate(50, 50)

But if we first rotate by 20 degrees and then translate by (50,50), the transla-
tion will happen in the rotated coordinate system and thus produce a different
orientation. The order in which transformations are applied matters.

To flip a picture around the vertical line at a given x position, we can do the
following:

function flipHorizontally(context, around) {
context.translate(around, 0);
context.scale(-1, 1);
context.translate(-around, 0);

}

We move the y-axis to where we want our mirror to be, apply the mirroring,
and finally move the y-axis back to its proper place in the mirrored universe.
The following picture explains why this works:

mirror

1 23 4

This shows the coordinate systems before and after mirroring across the
central line. The triangles are numbered to illustrate each step. If we draw a

296

triangle at a positive x position, it would, by default, be in the place where
triangle 1 is. A call to flipHorizontally first does a translation to the right,
which gets us to triangle 2. It then scales, flipping the triangle over to position
3. This is not where it should be, if it were mirrored in the given line. The
second translate call fixes this—it “cancels” the initial translation and makes
triangle 4 appear exactly where it should.

We can now draw a mirrored character at position (100,0) by flipping the
world around the character’s vertical center.

<canvas></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
let img = document.createElement("img");
img.src = "img/player.png";
let spriteW = 24, spriteH = 30;
img.addEventListener("load", () => {

flipHorizontally(cx, 100 + spriteW / 2);
cx.drawImage(img, 0, 0, spriteW, spriteH,

100, 0, spriteW, spriteH);
});

</script>

Storing and clearing transformations

Transformations stick around. Everything else we draw after drawing that
mirrored character would also be mirrored. That might be inconvenient.

It is possible to save the current transformation, do some drawing and trans-
forming, and then restore the old transformation. This is usually the proper
thing to do for a function that needs to temporarily transform the coordi-
nate system. First, we save whatever transformation the code that called the
function was using. Then, the function does its thing (on top of the existing
transformation), possibly adding more transformations. And finally, we revert
to the transformation that we started with.

The save and restore methods on the 2D canvas context do this transfor-
mation management. They conceptually keep a stack of transformation states.
When you call save, the current state is pushed onto the stack, and when you
call restore, the state on top of the stack is taken off and used as the context’s
current transformation. You can also call resetTransform to fully reset the
transformation.

The branch function in the following example illustrates what you can do with

297

a function that changes the transformation and then calls another function (in
this case itself), which continues drawing with the given transformation.

This function draws a treelike shape by drawing a line, moving the center
of the coordinate system to the end of the line, and calling itself twice—first
rotated to the left and then rotated to the right. Every call reduces the length
of the branch drawn, and the recursion stops when the length drops below 8.

<canvas width="600" height="300"></canvas>
<script>

let cx = document.querySelector("canvas").getContext("2d");
function branch(length, angle, scale) {

cx.fillRect(0, 0, 1, length);
if (length < 8) return;
cx.save();
cx.translate(0, length);
cx.rotate(-angle);
branch(length * scale, angle, scale);
cx.rotate(2 * angle);
branch(length * scale, angle, scale);
cx.restore();

}
cx.translate(300, 0);
branch(60, 0.5, 0.8);

</script>

The result is a simple fractal.

If the calls to save and restore were not there, the second recursive call to
branch would end up with the position and rotation created by the first call.
It wouldn’t be connected to the current branch but rather to the innermost,
rightmost branch drawn by the first call. The resulting shape might also be
interesting, but it is definitely not a tree.

298

Back to the game

We now know enough about canvas drawing to start working on a canvas-based
display system for the game from the previous chapter. The new display will
no longer be showing just colored boxes. Instead, we’ll use drawImage to draw
pictures that represent the game’s elements.

We define another display object type called CanvasDisplay, supporting the
same interface as DOMDisplay from Chapter 16, namely the methods setState
and clear.

This object keeps a little more information than DOMDisplay. Rather than
using the scroll position of its DOM element, it tracks its own viewport, which
tells us what part of the level we are currently looking at. And finally, it keeps
a flipPlayer property so that even when the player is standing still, it keeps
facing the direction it last moved in.

class CanvasDisplay {
constructor(parent, level) {

this.canvas = document.createElement("canvas");
this.canvas.width = Math.min(600, level.width * scale);
this.canvas.height = Math.min(450, level.height * scale);
parent.appendChild(this.canvas);
this.cx = this.canvas.getContext("2d");

this.flipPlayer = false;

this.viewport = {
left: 0,
top: 0,
width: this.canvas.width / scale,
height: this.canvas.height / scale

};
}

clear() {
this.canvas.remove();

}
}

The setState method first computes a new viewport, and then draws the
game scene at the appropriate position.

CanvasDisplay.prototype.setState = function(state) {
this.updateViewport(state);

299

this.clearDisplay(state.status);
this.drawBackground(state.level);
this.drawActors(state.actors);

};

Contrary to DOMDisplay, this display style does have to redraw the back-
ground on every update. Because shapes on a canvas are just pixels, after we
draw them, there is no good way to move them (or remove them). The only
way to update the canvas display is to clear it and redraw the scene. We may
also have scrolled, which requires the background to be in a different position.

The updateViewportmethod is similar to DOMDisplay’s scrollPlayerIntoView
method. It checks whether the player is too close to the edge of the screen
and moves the viewport when this is the case.

CanvasDisplay.prototype.updateViewport = function(state) {
let view = this.viewport, margin = view.width / 3;
let player = state.player;
let center = player.pos.plus(player.size.times(0.5));

if (center.x < view.left + margin) {
view.left = Math.max(center.x - margin, 0);

} else if (center.x > view.left + view.width - margin) {
view.left = Math.min(center.x + margin - view.width,

state.level.width - view.width);
}
if (center.y < view.top + margin) {

view.top = Math.max(center.y - margin, 0);
} else if (center.y > view.top + view.height - margin) {

view.top = Math.min(center.y + margin - view.height,
state.level.height - view.height);

}
};

The calls to Math.max and Math.min ensure that the viewport does not end
up showing space outside of the level. Math.max(x, 0) makes sure the resulting
number is not less than zero. Math.min, similarly, guarantees that a value stays
below a given bound.

When clearing the display, we’ll use a slightly different color depending on
whether the game is won (brighter) or lost (darker).

CanvasDisplay.prototype.clearDisplay = function(status) {
if (status == "won") {

300

this.cx.fillStyle = "rgb(68, 191, 255)";
} else if (status == "lost") {

this.cx.fillStyle = "rgb(44, 136, 214)";
} else {

this.cx.fillStyle = "rgb(52, 166, 251)";
}
this.cx.fillRect(0, 0,

this.canvas.width, this.canvas.height);
};

To draw the background, we run through the tiles that are visible in the
current viewport, using the same trick used in the touches method from the
previous chapter.

let otherSprites = document.createElement("img");
otherSprites.src = "img/sprites.png";

CanvasDisplay.prototype.drawBackground = function(level) {
let {left, top, width, height} = this.viewport;
let xStart = Math.floor(left);
let xEnd = Math.ceil(left + width);
let yStart = Math.floor(top);
let yEnd = Math.ceil(top + height);

for (let y = yStart; y < yEnd; y++) {
for (let x = xStart; x < xEnd; x++) {

let tile = level.rows[y][x];
if (tile == "empty") continue;
let screenX = (x - left) * scale;
let screenY = (y - top) * scale;
let tileX = tile == "lava" ? scale : 0;
this.cx.drawImage(otherSprites,

tileX, 0, scale, scale,
screenX, screenY, scale, scale);

}
}

};

Tiles that are not empty are drawn with drawImage. The otherSprites image
contains the pictures used for elements other than the player. It contains, from
left to right, the wall tile, the lava tile, and the sprite for a coin.

301

Background tiles are 20 by 20 pixels, since we will use the same scale that
we used in DOMDisplay. Thus, the offset for lava tiles is 20 (the value of the
scale binding), and the offset for walls is 0.

We don’t bother waiting for the sprite image to load. Calling drawImage with
an image that hasn’t been loaded yet will simply do nothing. Thus, we might
fail to draw the game properly for the first few frames, while the image is still
loading, but that is not a serious problem. Since we keep updating the screen,
the correct scene will appear as soon as the loading finishes.

The walking character shown earlier will be used to represent the player. The
code that draws it needs to pick the right sprite and direction based on the
player’s current motion. The first eight sprites contain a walking animation.
When the player is moving along a floor, we cycle through them based on the
current time. We want to switch frames every 60 milliseconds, so the time is
divided by 60 first. When the player is standing still, we draw the ninth sprite.
During jumps, which are recognized by the fact that the vertical speed is not
zero, we use the tenth, rightmost sprite.

Because the sprites are slightly wider than the player object—24 instead of
16 pixels, to allow some space for feet and arms—the method has to adjust the
x-coordinate and width by a given amount (playerXOverlap).

let playerSprites = document.createElement("img");
playerSprites.src = "img/player.png";
const playerXOverlap = 4;

CanvasDisplay.prototype.drawPlayer = function(player, x, y,
width, height){

width += playerXOverlap * 2;
x -= playerXOverlap;
if (player.speed.x != 0) {

this.flipPlayer = player.speed.x < 0;
}

let tile = 8;
if (player.speed.y != 0) {

tile = 9;
} else if (player.speed.x != 0) {

tile = Math.floor(Date.now() / 60) % 8;
}

this.cx.save();
if (this.flipPlayer) {

flipHorizontally(this.cx, x + width / 2);
}

302

let tileX = tile * width;
this.cx.drawImage(playerSprites, tileX, 0, width, height,

x, y, width, height);
this.cx.restore();

};

The drawPlayer method is called by drawActors, which is responsible for
drawing all the actors in the game.

CanvasDisplay.prototype.drawActors = function(actors) {
for (let actor of actors) {

let width = actor.size.x * scale;
let height = actor.size.y * scale;
let x = (actor.pos.x - this.viewport.left) * scale;
let y = (actor.pos.y - this.viewport.top) * scale;
if (actor.type == "player") {

this.drawPlayer(actor, x, y, width, height);
} else {

let tileX = (actor.type == "coin" ? 2 : 1) * scale;
this.cx.drawImage(otherSprites,

tileX, 0, width, height,
x, y, width, height);

}
}

};

When drawing something that is not the player, we look at its type to find
the offset of the correct sprite. The lava tile is found at offset 20, and the coin
sprite is found at 40 (two times scale).

We have to subtract the viewport’s position when computing the actor’s
position since (0,0) on our canvas corresponds to the top left of the viewport,
not the top left of the level. We could also have used translate for this. Either
way works.

That concludes the new display system. The resulting game looks something
like this:

303

Choosing a graphics interface

So when you need to generate graphics in the browser, you can choose between
plain HTML, SVG, and canvas. There is no single best approach that works in
all situations. Each option has strengths and weaknesses.

Plain HTML has the advantage of being simple. It also integrates well with
text. Both SVG and canvas allow you to draw text, but they won’t help you
position that text or wrap it when it takes up more than one line. In an
HTML-based picture, it is much easier to include blocks of text.

SVG can be used to produce crisp graphics that look good at any zoom level.
Contrary to HTML, it is actually designed for drawing, and thus more suitable
for that purpose.

Both SVG and HTML build up a data structure (the DOM) that represents
your picture. This makes it possible to modify elements after they are drawn.
If you need to repeatedly change a small part of a big picture in response to
what the user is doing or as part of an animation, doing it in a canvas can be
needlessly expensive. The DOM also allows us to register mouse event handlers
on every element in the picture (even on shapes drawn with SVG). You can’t
do that with canvas.

But canvas’s pixel-oriented approach can be an advantage when drawing
a huge amount of tiny elements. The fact that it does not build up a data
structure but only repeatedly draws onto the same pixel surface gives canvas a
lower cost per shape.

There are also effects, such as rendering a scene one pixel at a time (for
example using a ray tracer) or postprocessing an image with JavaScript (blur-
ring or distorting it), that can only be realistically handled by a pixel-based
approach.

In some cases, you may want to combine several of these techniques. For

304

example, you might draw a graph with SVG or canvas but show textual infor-
mation by positioning an HTML element on top of the picture.

For nondemanding applications, it really doesn’t matter much which inter-
face you choose. The display we built for our game in this chapter could have
been implemented using any of these three graphics technologies since it does
not need to draw text, handle mouse interaction, or work with an extraordi-
narily large amount of elements.

Summary

In this chapter we discussed techniques for drawing graphics in the browser,
focusing on the <canvas> element.

A canvas node represents an area in a document that our program may draw
on. This drawing is done through a drawing context object, created with the
getContext method.

The 2D drawing interface allows us to fill and stroke various shapes. The con-
text’s fillStyle property determines how shapes are filled. The strokeStyle
and lineWidth properties control the way lines are drawn.

Rectangles and pieces of text can be drawn with a single method call. The
fillRect and strokeRect methods draw rectangles, and the fillText and
strokeText methods draw text. To create custom shapes, we must first build
up a path.

Calling beginPath starts a new path. A number of other methods add lines
and curves to the current path. For example, lineTo can add a straight line.
When a path is finished, it can be filled with the fill method or stroked with
the stroke method.

Moving pixels from an image or another canvas onto our canvas is done with
the drawImage method. By default, this method draws the whole source image,
but by giving it more parameters, you can copy a specific area of the image.
We used this for our game by copying individual poses of the game character
out of an image that contained many such poses.

Transformations allow you to draw a shape in multiple orientations. A 2D
drawing context has a current transformation that can be changed with the
translate, scale, and rotate methods. These will affect all subsequent draw-
ing operations. A transformation state can be saved with the save method and
restored with the restore method.

When showing an animation on a canvas, the clearRect method can be used
to clear part of the canvas before redrawing it.

305

Exercises

Shapes

Write a program that draws the following shapes on a canvas:

1. A trapezoid (a rectangle that is wider on one side)

2. A red diamond (a rectangle rotated 45 degrees or ¼π radians)

3. A zigzagging line

4. A spiral made up of 100 straight line segments

5. A yellow star

When drawing the last two, you may want to refer to the explanation of
Math.cos and Math.sin in Chapter 14, which describes how to get coordinates
on a circle using these functions.

I recommend creating a function for each shape. Pass the position, and
optionally other properties, such as the size or the number of points, as param-
eters. The alternative, which is to hard-code numbers all over your code, tends
to make the code needlessly hard to read and modify.

The pie chart

Earlier in the chapter, we saw an example program that drew a pie chart.
Modify this program so that the name of each category is shown next to the
slice that represents it. Try to find a pleasing-looking way to automatically
position this text, which would work for other data sets as well. You may
assume that categories are big enough to leave ample room for their labels.

You might again need Math.sin and Math.cos, as described in Chapter 14.

A bouncing ball

Use the requestAnimationFrame technique that we saw in Chapter 14 and Chap-
ter 16 to draw a box with a bouncing ball in it. The ball moves at a constant
speed and bounces off the box’s sides when it hits them.

306

Precomputed mirroring

One unfortunate thing about transformations is that they slow down drawing of
bitmaps. The position and size of each pixel has to be transformed, and though
it is possible that browsers will get more clever about this in the future, this
currently causes a measurable increase in the time it takes to draw a bitmap.

In a game like ours, where we are drawing only a single transformed sprite,
this is a nonissue. But imagine that we need to draw hundreds of characters
or thousands of rotating particles from an explosion.

Think of a way to allow us to draw an inverted character without loading
additional image files and without having to make transformed drawImage calls
every frame.

307

“Communication must be stateless in nature [...] such that each
request from client to server must contain all of the information
necessary to understand the request, and cannot take advantage of
any stored context on the server.”

—Roy Fielding, Architectural Styles and the Design of
Network-based Software Architectures

Chapter 18

HTTP and Forms

The Hypertext Transfer Protocol, already mentioned in Chapter 13, is the mech-
anism through which data is requested and provided on the World Wide Web.
This chapter describes the protocol in more detail and explains the way browser
JavaScript has access to it.

The protocol

If you type eloquentjavascript.net/18_http.html into your browser’s address
bar, the browser first looks up the address of the server associated with elo-
quentjavascript.net and tries to open a TCP connection to it on port 80, the
default port for HTTP traffic. If the server exists and accepts the connection,
the browser might send something like this:

GET /18_http.html HTTP/1.1
Host: eloquentjavascript.net
User-Agent: Your browser's name

Then the server responds, through that same connection.

HTTP/1.1 200 OK
Content-Length: 65585
Content-Type: text/html
Last-Modified: Mon, 08 Jan 2018 10:29:45 GMT

<!doctype html>
... the rest of the document

The browser takes the part of the response after the blank line, its body
(not to be confused with the HTML <body> tag), and displays it as an HTML
document.

The information sent by the client is called the request. It starts with this

308

line:

GET /18_http.html HTTP/1.1

The first word is the method of the request. GET means that we want to get
the specified resource. Other common methods are DELETE to delete a resource,
PUT to replace it, and POST to send information to it. Note that the server is not
obliged to carry out every request it gets. If you walk up to a random website
and tell it to DELETE its main page, it’ll probably refuse.

The part after the method name is the path of the resource the request
applies to. In the simplest case, a resource is simply a file on the server, but
the protocol doesn’t require it to be. A resource may be anything that can be
transferred as if it is a file. Many servers generate the responses they produce
on the fly. For example, if you open github.com/marijnh, the server looks in
its database for a user named “marijnh”, and if it finds one, it will generate a
profile page for that user.

After the resource path, the first line of the request mentions HTTP/1.1 to
indicate the version of the HTTP protocol it is using.

In practice, many sites use HTTP version 2, which supports the same con-
cepts as version 1.1, but is a lot more complicated so that it can be faster.
Browsers will automatically switch to the appropriate protocol version when
talking to a given server, and the outcome of a request is the same regardless
which version is used. Because version 1.1 is more straightforward and easier
to play around with, we’ll focus on that.

The server’s response will start with a version as well, followed by the status
of the response, first as a three-digit status code and then as a human-readable
string.

HTTP/1.1 200 OK

Status codes starting with a 2 indicate that the request succeeded. Codes
starting with 4 mean there was something wrong with the request. 404 is
probably the most famous HTTP status code—it means that the resource could
not be found. Codes that start with 5 mean an error happened on the server
and the request is not to blame.

The first line of a request or response may be followed by any number of
headers. These are lines in the form name: value that specify extra informa-
tion about the request or response. These headers were part of the example
response:

309

https://github.com/marijnh

Content-Length: 65585
Content-Type: text/html
Last-Modified: Thu, 04 Jan 2018 14:05:30 GMT

This tells us the size and type of the response document. In this case, it is
an HTML document of 65,585 bytes. It also tells us when that document was
last modified.

For most headers, the client and server are free to decide whether to include
them in a request or response or not. But a few are required. For example,
the Host header, which specifies the hostname, should be included in a request
because a server might be serving multiple hostnames on a single IP address,
and without that header, the server won’t know which hostname the client is
trying to talk to.

After the headers, both requests and responses may include a blank line
followed by a body, which contains the data being sent. GET and DELETE requests
don’t send along any data, but PUT and POST requests do. Similarly, some
response types, such as error responses, do not require a body.

Browsers and HTTP

As we saw in the example, a browser will make a request when we enter a URL
in its address bar. When the resulting HTML page references other files, such
as images and JavaScript files, those are also retrieved.

A moderately complicated website can easily include anywhere from 10 to
200 resources. To be able to fetch those quickly, browsers will make several GET
requests simultaneously, rather than waiting for the responses one at a time.

HTML pages may include forms, which allow the user to fill out information
and send it to the server. This is an example of a form:

<form method="GET" action="example/message.html">
<p>Name: <input type="text" name="name"></p>
<p>Message:
<textarea name="message"></textarea></p>
<p><button type="submit">Send</button></p>

</form>

This code describes a form with two fields: a small one asking for a name
and a larger one to write a message in. When you click the Send button, the
form is submitted, meaning that the content of its field is packed into an HTTP
request and the browser navigates to the result of that request.

310

When the <form> element’s method attribute is GET (or is omitted), the in-
formation in the form is added to the end of the action URL as a query string.
The browser might make a request to this URL:

GET /example/message.html?name=Jean&message=Yes%3F HTTP/1.1

The question mark indicates the end of the path part of the URL and the
start of the query. After that follow pairs of names and values, corresponding to
the name attribute on the form field elements and the content of those elements,
respectively. An ampersand character (&) is used to separate the pairs.

The actual message encoded in the URL is “Yes?”, but the question mark is
replaced by a strange code. Some characters in query strings must be escaped.
The question mark, represented as %3F, is one of those. There seems to be
an unwritten rule that every format needs its own way of escaping characters.
This one, called URL encoding, uses a percent sign followed by two hexadecimal
(base 16) digits that encode the character code. In this case, 3F, which is 63
in decimal notation, is the code of a question mark character. JavaScript
provides the encodeURIComponent and decodeURIComponent functions to encode
and decode this format.

console.log(encodeURIComponent("Yes?"));
// → Yes%3F
console.log(decodeURIComponent("Yes%3F"));
// → Yes?

If we change the method attribute of the HTML form in the example we saw
earlier to POST, the HTTP request made to submit the form will use the POST
method and put the query string in body of the request, rather than adding it
to the URL.

POST /example/message.html HTTP/1.1
Content-length: 24
Content-type: application/x-www-form-urlencoded

name=Jean&message=Yes%3F

GET requests should be used for requests that do not have side effects, but
simply ask for information. Requests that change something on the server,
for example creating a new account or posting a message, should be expressed
with other methods, such as POST. Client-side software such as a browser knows

311

that it shouldn’t blindly make POST requests but will often implicitly make GET
requests—for example to prefetch a resource it believes the user will soon need.

We’ll come back to forms and how to interact with them from JavaScript
later in the chapter.

Fetch

The interface through which browser JavaScript can make HTTP requests is
called fetch. Since it is relatively new, it conveniently uses promises (which is
rare for browser interfaces).

fetch("example/data.txt").then(response => {
console.log(response.status);
// → 200
console.log(response.headers.get("Content-Type"));
// → text/plain

});

Calling fetch returns a promise that resolves to a Response object holding
information about the server’s response, such as its status code and its headers.
The headers are wrapped in a Map-like object that treats its keys (the header
names) as case-insensitive, because header names are not supposed to be case
sensitive. This means that headers.get("Content-Type") and headers.get("
content-TYPE") will return the same value.

Note that the promise returned by fetch resolves successfully even if the
server responded with an error code. It might also be rejected, if there is a
network error or the server that the request is addressed to can’t be found.

The first argument to fetch is the URL that should be requested. When
that URL doesn’t start with a protocol name (such as http:) it is treated as
relative, which means that it is interpreted relative to the current document.
When it starts with a slash (/), it replaces the current path, which is the part
after the server name. When it does not, the part of the current path up to
and including its last slash character is put in front of the relative URL.

To get at the actual content of a response, you can use its text method.
Because the initial promise is resolved as soon as the response’s headers have
been received, and reading the response body might take a while longer, this
again returns a promise.

fetch("example/data.txt")
.then(resp => resp.text())
.then(text => console.log(text));

312

// → This is the content of data.txt

There is a similar method, called json, which returns a promise that resolves
to the value you get when parsing the body as JSON, or rejects if it’s not valid
JSON.

By default, fetch uses the GET method to make its request, and does not
include a request body. You can configure it differently by passing an object
with extra options as a second argument. For example, this request tries to
delete example/data.txt.

fetch("example/data.txt", {method: "DELETE"}).then(resp => {
console.log(resp.status);
// → 405

});

The 405 status code means “method not allowed”, an HTTP server’s way of
saying “I can’t do that”.

To add a request body, you can include a body option. To set headers, there’s
the headers option. For example, this request includes a Range header, which
instructs the server to only return a part of a response.

fetch("example/data.txt", {headers: {Range: "bytes=8-19"}})
.then(resp => resp.text())
.then(console.log);

// → the content

The browser will automatically add some request headers, such as “Host” and
those needed for the server to figure out the size of the body. But adding your
own headers is often useful to include things like authentication information or
to tell the server which file format you’d like to receive.

HTTP sandboxing

Making HTTP requests in web page scripts once again raises concerns about
security. The person who controls the script might not have the same interests
as the person on whose computer it is running. More specifically, if I visit the-
mafia.org, I do not want its scripts to be able to make a request to mybank.com,
using identifying information from my browser, with instructions to transfer all
my money to some random account.

313

For this reason, browsers protect us by disallowing scripts to make HTTP
requests to other domains (names such as themafia.org and mybank.com).

This can be an annoying problem when building systems that wants to ac-
cess several domains for legitimate reasons. Fortunately, servers can include a
header like this in their response to explicitly indicate to the browser that it is
okay for the request to come from another domain:

Access-Control-Allow-Origin: *

Appreciating HTTP

When building a system that requires communication between a JavaScript
program running in the browser (client-side) and a program on a server (server-
side), there are several different ways to model this communication.

A commonly used model is that of remote procedure calls. In this model,
communication follows the patterns of normal function calls, except that the
function is actually running on another machine. Calling it involves making a
request to the server that includes the function’s name and arguments. The
response to that request contains the returned value.

When thinking in terms of remote procedure calls, HTTP is just a vehicle for
communication, and you will most likely write an abstraction layer that hides
it entirely.

Another approach is to build your communication around the concept of
resources and HTTP methods. Instead of a remote procedure called addUser,
you use a PUT request to /users/larry. Instead of encoding that user’s prop-
erties in function arguments, you define a JSON document format (or use an
existing format) that represents a user. The body of the PUT request to create
a new resource is then such a document. A resource is fetched by making a GET
request to the resource’s URL (for example, /user/larry), which again returns
the document representing the resource.

This second approach makes it easier to use some of the features that HTTP
provides, such as support for caching resources (keeping a copy on the client for
fast access). The concepts used in HTTP, which are well designed, can provide
a helpful set of principles to design your server interface around.

314

Security and HTTPS

Data traveling over the Internet tends to follow a long, dangerous road. To
get to its destination, it must hop through anything from coffee-shop Wi-Fi to
networks controlled by various companies and states. At any point along its
route it may be inspected or even modified.

If it is important that something remain secret, such as the password to
your email account, or that it arrive at its destination unmodified, such as the
account number you transfer money to via your bank’s website, plain HTTP
is not good enough.

The secure HTTP protocol, whose URLs start with https://, wraps HTTP
traffic in a way that makes it harder to read and tamper with. Before exchang-
ing data, the client verifies that the server is who it claims to be, by asking it
to prove that it has a cryptographic certificate issued by a certificate author-
ity that the browser recognizes. Next, all data going over the connection is
encrypted in a way that should prevent eavesdropping and tampering.

Thus, when it works right, HTTPS prevents both the someone impersonating
the website you were trying to talk to and the someone snooping on your
communication. It is not perfect, and there have been various incidents where
HTTPS failed because of forged or stolen certificates and broken software, but
it is a lot safer than plain HTTP.

Form fields

Forms were originally designed for the pre-JavaScript Web, to allow web sites
to send user-submitted information in an HTTP request. This design assumes
that interaction with the server always happens by navigating to a new page.

But their elements are part of the DOM like the rest of the page, and the
DOM elements that represent form fields support a number of properties and
events that are not present on other elements. These make it possible to inspect
and control such input fields with JavaScript programs and do things such as
adding new functionality to a form or using forms and fields as building blocks
in a JavaScript application.

A web form consists of any number of input fields grouped in a <form>
tag. HTML allows several different styles of fields, ranging from simple on/off
checkboxes to drop-down menus and fields for text input. This book won’t try
to comprehensively discuss all field types, but we’ll start with a rough overview.

A lot of field types use the <input> tag. This tag’s type attribute is used to
select the field’s style. These are some commonly used <input> types:

315

text A single-line text field
password Same as text but hides the text that is typed
checkbox An on/off switch
radio (Part of) a multiple-choice field
file Allows the user to choose a file from their computer
Form fields do not necessarily have to appear in a <form> tag. You can put

them anywhere in a page. Such form-less fields cannot be submitted (only a
form as a whole can), but when responding to input with JavaScript, we often
don’t want to submit our fields normally anyway.

<p><input type="text" value="abc"> (text)</p>
<p><input type="password" value="abc"> (password)</p>
<p><input type="checkbox" checked> (checkbox)</p>
<p><input type="radio" value="A" name="choice">

<input type="radio" value="B" name="choice" checked>
<input type="radio" value="C" name="choice"> (radio)</p>

<p><input type="file"> (file)</p>

The fields created with this HTML code look like this:

The JavaScript interface for such elements differs with the type of the ele-
ment.

Multiline text fields have their own tag, <textarea>, mostly because using
an attribute to specify a multiline starting value would be awkward. The <
textarea> tag requires a matching </textarea> closing tag and uses the text
between those two, instead of the value attribute, as starting text.

<textarea>
one
two
three
</textarea>

Finally, the <select> tag is used to create a field that allows the user to
select from a number of predefined options.

316

<select>
<option>Pancakes</option>
<option>Pudding</option>
<option>Ice cream</option>

</select>

Such a field looks like this:

Whenever the value of a form field changes, it will fire a "change" event.

Focus

Unlike most elements in HTML documents, form fields can get keyboard focus.
When clicked or activated in some other way they become the currently active
element and the recipient of keyboard input.

Thus you can only type into a text field when it is focused. Other fields
respond differently to keyboard events. For example, a <select> menu tries to
move to the option that contains the text the user typed and responds to the
arrow keys by moving its selection up and down.

We can control focus from JavaScript with the focus and blur methods. The
first moves focus to the DOM element it is called on, and the second removes
focus. The value in document.activeElement corresponds to the currently fo-
cused element.

<input type="text">
<script>

document.querySelector("input").focus();
console.log(document.activeElement.tagName);
// → INPUT
document.querySelector("input").blur();
console.log(document.activeElement.tagName);
// → BODY

</script>

For some pages, the user is expected to want to interact with a form field
immediately. JavaScript can be used to focus this field when the document is
loaded, but HTML also provides the autofocus attribute, which produces the
same effect while letting the browser know what we are trying to achieve. This

317

gives the browser the option to disable the behavior when it is not appropriate,
such as when the user has focused something else.

Browsers traditionally also allow the user to move the focus through the doc-
ument by pressing the Tab key. We can influence the order in which elements
receive focus with the tabindex attribute. The following example document
will let focus jump from the text input to the OK button, rather than going
through the help link first:

<input type="text" tabindex=1> (help)
<button onclick="console.log('ok')" tabindex=2>OK</button>

By default, most types of HTML elements cannot be focused. But you
can add a tabindex attribute to any element, which will make it focusable.
A tabindex of -1 makes tabbing skip over an element, even if it is normally
focusable.

Disabled fields

All form fields can be disabled through their disabled attribute. It is an at-
tribute that can be specified without value—the fact that it is present at all
disables the element.

<button>I'm all right</button>
<button disabled>I'm out</button>

Disabled fields cannot be focused or changed, and browsers make them look
gray and faded.

When a program is in the process of handling an action caused by some
button or other control, which might require communication with the server
and thus take a while, it can be a good idea to disable the control until the
action finishes. That way, when the user gets impatient and clicks it again,
they don’t accidentally repeat their action.

The form as a whole

When a field is contained in a <form> element, its DOM element will have a
form property linking back to the form’s DOM element. The <form> element,

318

in turn, has a property called elements that contains an array-like collection
of the fields inside it.

The name attribute of a form field determines the way its value will be identi-
fied when the form is submitted. It can also be used as a property name when
accessing the form’s elements property, which acts both as an array-like object
(accessible by number) and a map (accessible by name).

<form action="example/submit.html">
Name: <input type="text" name="name">

Password: <input type="password" name="password">

<button type="submit">Log in</button>

</form>
<script>

let form = document.querySelector("form");
console.log(form.elements[1].type);
// → password
console.log(form.elements.password.type);
// → password
console.log(form.elements.name.form == form);
// → true

</script>

A button with a type attribute of submit will, when pressed, cause the form
to be submitted. Pressing Enter when a form field is focused has the same
effect.

Submitting a form normally means that the browser navigates to the page
indicated by the form’s action attribute, using either a GET or a POST request.
But before that happens, a "submit" event is fired. This event can be handled
by JavaScript, and the handler can prevent the default behavior by calling
preventDefault on the event object.

<form action="example/submit.html">
Value: <input type="text" name="value">
<button type="submit">Save</button>

</form>
<script>

let form = document.querySelector("form");
form.addEventListener("submit", event => {

console.log("Saving value", form.elements.value.value);
event.preventDefault();

});
</script>

319

Intercepting "submit" events in JavaScript has various uses. We can write
code to verify that the values the user entered make sense and immediately
show an error message instead of submitting the form. Or we can disable the
regular way of submitting the form entirely, as in the example, and have our
program handle the input, possibly using fetch to send it to a server without
reloading the page.

Text fields

Fields created by <input> tags with a type of text or password, as well as <
textarea> tags, share a common interface. Their DOM elements have a value
property that holds their current content as a string value. Setting this property
to another string changes the field’s content.

The selectionStart and selectionEnd properties of text fields give us infor-
mation about the cursor and selection in the text. When nothing is selected,
these two properties hold the same number, indicating the position of the cur-
sor. For example, 0 indicates the start of the text, and 10 indicates the cursor
is after the 10th character. When part of the field is selected, the two properties
will differ, giving us the start and end of the selected text. Like value, these
properties may also be written to.

Imagine you are writing an article about Khasekhemwy but have some trou-
ble spelling his name. The following code wires up a <textarea> tag with an
event handler that, when you press F2, inserts the string “Khasekhemwy” for
you.

<textarea></textarea>
<script>

let textarea = document.querySelector("textarea");
textarea.addEventListener("keydown", event => {

// The key code for F2 happens to be 113
if (event.keyCode == 113) {

replaceSelection(textarea, "Khasekhemwy");
event.preventDefault();

}
});
function replaceSelection(field, word) {

let from = field.selectionStart, to = field.selectionEnd;
field.value = field.value.slice(0, from) + word +

field.value.slice(to);
// Put the cursor after the word
field.selectionStart = from + word.length;
field.selectionEnd = from + word.length;

320

}
</script>

The replaceSelection function replaces the currently selected part of a text
field’s content with the given word and then moves the cursor after that word
so that the user can continue typing.

The "change" event for a text field does not fire every time something is
typed. Rather, it fires when the field loses focus after its content was changed.
To respond immediately to changes in a text field, you should register a han-
dler for the "input" event instead, which fires for every time the user types a
character, deletes text, or otherwise manipulates the field’s content.

The following example shows a text field and a counter showing the current
length of the text in the field:

<input type="text"> length: 0
<script>

let text = document.querySelector("input");
let output = document.querySelector("#length");
text.addEventListener("input", () => {

output.textContent = text.value.length;
});

</script>

Checkboxes and radio buttons

A checkbox field is a binary toggle. Its value can be extracted or changed
through its checked property, which holds a Boolean value.

<label>
<input type="checkbox" id="purple"> Make this page purple

</label>
<script>

let checkbox = document.querySelector("#purple");
checkbox.addEventListener("change", () => {

document.body.style.background =
checkbox.checked ? "mediumpurple" : "";

});
</script>

The <label> tag associates a piece of document with an input field. Clicking

321

anywhere on the label will activate the field, which focuses it and toggles its
value when it is a checkbox or radio button.

A radio button is similar to a checkbox, but it’s implicitly linked to other
radio buttons with the same name attribute so that only one of them can be
active at any time.

Color:
<label>

<input type="radio" name="color" value="orange"> Orange
</label>
<label>

<input type="radio" name="color" value="lightgreen"> Green
</label>
<label>

<input type="radio" name="color" value="lightblue"> Blue
</label>
<script>

let buttons = document.querySelectorAll("[name=color]");
for (let button of Array.from(buttons)) {

button.addEventListener("change", () => {
document.body.style.background = button.value;

});
}

</script>

The square brackets in the CSS query given to querySelectorAll are used
to match attributes. It selects elements whose name attribute is "color".

Select fields

Select fields are conceptually similar to radio buttons—they also allow the user
to choose from a set of options. But where a radio button puts the layout of
the options under our control, the appearance of a <select> tag is determined
by the browser.

Select fields also have a variant that is more akin to a list of checkboxes,
rather than radio boxes. When given the multiple attribute, a <select> tag
will allow the user to select any number of options, rather than just a single
option. This will, in most browsers, show up differently than a normal select
field, which is typically drawn as a drop-down control that shows the options
only when you open it.

Each <option> tag has a value. This value can be defined with a value
attribute. When that is not given, the text inside the option will count as its

322

value. The value property of a <select> element reflects the currently selected
option. For a multiple field, though, this property doesn’t mean much since it
will give the value of only one of the currently selected options.

The <option> tags for a <select> field can be accessed as an array-like ob-
ject through the field’s options property. Each option has a property called
selected, which indicates whether that option is currently selected. The prop-
erty can also be written to select or deselect an option.

This example extracts the selected values from a multiple select field and
uses them to compose a binary number from individual bits. Hold Ctrl (or
Command on a Mac) to select multiple options.

<select multiple>
<option value="1">0001</option>
<option value="2">0010</option>
<option value="4">0100</option>
<option value="8">1000</option>

</select> = 0
<script>

let select = document.querySelector("select");
let output = document.querySelector("#output");
select.addEventListener("change", () => {

let number = 0;
for (let option of Array.from(select.options)) {

if (option.selected) {
number += Number(option.value);

}
}
output.textContent = number;

});
</script>

File fields

File fields were originally designed as a way to upload files from the browser’s
machine through a form. In modern browsers, they also provide a way to read
such files from JavaScript programs. The field acts as a manner of gatekeeper.
The script cannot simply start reading private files from the user’s computer,
but if the user selects a file in such a field, the browser interprets that action
to mean that the script may read the file.

A file field usually looks like a button labeled with something like “choose
file” or “browse”, with information about the chosen file next to it.

323

<input type="file">
<script>

let input = document.querySelector("input");
input.addEventListener("change", () => {

if (input.files.length > 0) {
let file = input.files[0];
console.log("You chose", file.name);
if (file.type) console.log("It has type", file.type);

}
});

</script>

The files property of a file field element is an array-like object (again,
not a real array) containing the files chosen in the field. It is initially empty.
The reason there isn’t simply a file property is that file fields also support a
multiple attribute, which makes it possible to select multiple files at the same
time.

Objects in the files object have properties such as name (the filename), size
(the file’s size in bytes, which are chunks of 8 bits), and type (the media type
of the file, such as text/plain or image/jpeg).

What it does not have is a property that contains the content of the file.
Getting at that is a little more involved. Since reading a file from disk can take
time, the interface must be asynchronous to avoid freezing the document.

<input type="file" multiple>
<script>

let input = document.querySelector("input");
input.addEventListener("change", () => {

for (let file of Array.from(input.files)) {
let reader = new FileReader();
reader.addEventListener("load", () => {

console.log("File", file.name, "starts with",
reader.result.slice(0, 20));

});
reader.readAsText(file);

}
});

</script>

Reading a file is done by creating a FileReader object, registering a "load"
event handler for it, and calling its readAsText method, giving it the file we
want to read. Once loading finishes, the reader’s result property contains the

324

file’s content.
FileReaders also fire an "error" event when reading the file fails for any

reason. The error object itself will end up in the reader’s error property. This
interface was designed before promises became part of the language. You could
wrap it in a promise like this:

function readFileText(file) {
return new Promise((resolve, reject) => {

let reader = new FileReader();
reader.addEventListener(
"load", () => resolve(reader.result));

reader.addEventListener(
"error", () => reject(reader.error));

reader.readAsText(file);
});

}

Storing data client-side

Simple HTML pages with a bit of JavaScript can be a great format for “mini
applications”—small helper programs that automate basic tasks. By connect-
ing a few form fields with event handlers, you can do anything from converting
between centimeters and inches to computing passwords from a master pass-
word and a website name.

When such an application needs to remember something between sessions,
you cannot use JavaScript bindings—those are thrown away every time the
page is closed. You could set up a server, connect it to the Internet, and have
your application store something there. We will see how to do that in Chapter
20. But that’s a lot of extra work and complexity. Sometimes it is enough to
just keep the data in the browser.

The localStorage object can be used to store data in a way that survives
page reloads. This object allows you to file string values under names.

localStorage.setItem("username", "marijn");
console.log(localStorage.getItem("username"));
// → marijn
localStorage.removeItem("username");

A value in localStorage sticks around until it is overwritten, it is removed
with removeItem, or the user clears their local data.

325

Sites from different domains get different storage compartments. That means
data stored in localStorage by a given website can, in principle, only be read
(and overwritten) by scripts on that same site.

Browsers do enforce a limit on the size of the data a site can store in
localStorage. That restriction, along with the fact that filling up people’s
hard drives with junk is not really profitable, prevents the feature from eating
up too much space.

The following code implements a crude note-taking application. It keeps a
set of named notes, and allows the user to edit notes and create new ones.

Notes: <select></select> <button>Add</button>

<textarea style="width: 100%"></textarea>

<script>
let list = document.querySelector("select");
let note = document.querySelector("textarea");

let state;
function setState(newState) {

list.textContent = "";
for (let name of Object.keys(newState.notes)) {

let option = document.createElement("option");
option.textContent = name;
if (newState.selected == name) option.selected = true;
list.appendChild(option);

}
note.value = newState.notes[newState.selected];

localStorage.setItem("Notes", JSON.stringify(newState));
state = newState;

}
setState(JSON.parse(localStorage.getItem("Notes")) || {

notes: {"shopping list": "Carrots\nRaisins"},
selected: "shopping list"

});

list.addEventListener("change", () => {
setState({notes: state.notes, selected: list.value});

});
note.addEventListener("change", () => {

setState({
notes: Object.assign({}, state.notes,

{[state.selected]: note.value}),
selected: state.selected

});

326

});
document.querySelector("button")

.addEventListener("click", () => {
let name = prompt("Note name");
if (name) setState({

notes: Object.assign({}, state.notes, {[name]: ""}),
selected: name

});
});

</script>

The script gets its starting state from the "Notes" value stored in localStorage
or, if that is missing, it creates an example state that only has a shopping list in
it. Reading a field that does not exist from localStorage will yield null. Pass-
ing null to JSON.parse will make it parse the string "null" and return null.
Thus, the || operator can be used to provide a default value in a situation like
this.

The setState method makes sure the DOM is showing a given state, and
stores the new state to localStorage. Event handlers call this function to move
to a new state.

The use of Object.assign in the example is intended to create a new object
that is a clone of the old state.notes, but with one property added or over-
written. Object.assign takes its first argument, and adds all properties from
any further arguments to it. Thus, giving it an empty object will cause it to
fill a fresh object. The square brackets notation in the third argument is used
to create a property whose names is based on some dynamic value.

There is another object, similar to localStorage, called sessionStorage. The
difference between the two is that the content of sessionStorage is forgotten at
the end of each session, which for most browsers means whenever the browser
is closed.

Summary

In this chapter, we discussed how the HTTP protocol works. A client sends
a request, which contains a method (usually GET) and a path that identifies a
resource. The server then decides what to do with the request and responds
with a status code and a response body. Both requests and responses may
contain headers that provide additional information.

The interface through which browser JavaScript can make HTTP requests is
called fetch. Making a request looks like this:

327

fetch("/18_http.html").then(r => r.text()).then(text => {
console.log(`The page starts with ${text.slice(0, 15)}`);

});

Browsers make GET requests to fetch the resources needed to display a web
page. A page may also contain forms, which allow information entered by the
user to be sent as a request for a new page when the form is submitted.

HTML can express various types of form fields, such as text fields, check-
boxes, multiple-choice fields, and file pickers.

Such fields can be inspected and manipulated with JavaScript. They fire
the "change" event when changed, the "input" event when text is typed, and
receive keyboard events when they have keyboard focus. Properties like value
(for text and select fields) or checked (for checkboxes and radio buttons) are
used to read or set the field’s content.

When a form is submitted, a "submit" event is fired on it. A JavaScript
handler can call preventDefault on that event to prevent the submission from
happening. Form field elements may also occur outside of a form tag.

When the user has selected a file from their local file system in a file picker
field, the FileReader interface can be used to access the content of this file from
a JavaScript program.

The localStorage and sessionStorage objects can be used to save informa-
tion in a way that survives page reloads. The first saves the data forever (or
until the user decides to clear it), and the second saves it until the browser is
closed.

Exercises

Content negotiation

One of the things that HTTP can do is called content negotiation. The Accept
request header is used to tell the server what type of document the client would
like to get. Many servers ignore this header, but when a server knows of various
ways to encode a resource, it can look at this header and send the one that the
client prefers.

The URL eloquentjavascript.net/author is configured to respond with either
plaintext, HTML, or JSON, depending on what the client asks for. These
formats are identified by the standardized media types text/plain, text/html,
and application/json.

Send requests to fetch all three formats of this resource. Use the headers

328

https://eloquentjavascript.net/author

property in the options object passed to fetch to set the header named Accept
to the desired media type.

Finally, try asking for the media type application/rainbows+unicorns and
see which status code that produces.

A JavaScript workbench

Build an interface that allows people to type and run pieces of JavaScript code.
Put a button next to a <textarea> field, which, when pressed, uses the

Function constructor we saw in Chapter 10 to wrap the text in a function and
call it. Convert the return value of the function, or any error it raises, to a
string and display it below the text field.

Conway's Game of Life

Conway’s Game of Life is a simple simulation that creates artificial “life” on
a grid, each cell of which is either live or not. Each generation (turn), the
following rules are applied:

• Any live cell with fewer than two or more than three live neighbors dies.

• Any live cell with two or three live neighbors lives on to the next gener-
ation.

• Any dead cell with exactly three live neighbors becomes a live cell.

A neighbor is defined as any adjacent cell, including diagonally adjacent ones.
Note that these rules are applied to the whole grid at once, not one square at

a time. That means the counting of neighbors is based on the situation at the
start of the generation, and changes happening to neighbor cells during this
generation should not influence the new state of a given cell.

Implement this game using whichever data structure you find appropriate.
Use Math.random to populate the grid with a random pattern initially. Display
it as a grid of checkbox fields, with a button next to it to advance to the next
generation. When the user checks or unchecks the checkboxes, their changes
should be included when computing the next generation.

329

“I look at the many colors before me. I look at my blank canvas.
Then, I try to apply colors like words that shape poems, like notes
that shape music.”

—Joan Miro

Chapter 19

Project: A Pixel Art Editor

The material from the previous chapters gives you all the elements you need
to build a basic web application. In this chapter, we will do just that.

Our application will be a pixel drawing program, where you can modify a
picture pixel by pixel by manipulating a zoomed-in view, a grid of colored
squares. You can use it to open image files, scribble on them with your mouse
or other pointer device, and save them. This is what it will look like:

Painting on a computer is great. You don’t need to worry about materials,
skill, or talent. You just start smearing.

Components

The interface for the application shows a big <canvas> element on top, with a
number of form fields below it. The user draws on the picture by selecting a
tool from a <select> field and then clicking, touching, or dragging across the
canvas. There are tools for drawing single pixels or rectangles, for filling an
area, and for picking a color from the picture.

We will structure the editor interface as a number of components, objects
that are responsible for a piece of the DOM, and may contain other components
inside them.

The state of the application consists of the current picture, the selected tool,
and the selected color. We’ll set things up so that the state lives in a single
value, and the interface components always base the way they look on the

330

current state.
To see why this is important, let’s consider the alternative—distributing

pieces of state throughout the interface. Up to a certain point, this is easier to
program. We can just put in a color field, and read its value when we need to
know the current color.

But then we add the color picker—a tool that lets you click on the picture
to select the color of a given pixel. In order to keep the color field showing
the correct color, that tool would have to know that it exists, and update it
whenever it picks a new color. And if you ever add another place that makes
the color visible (maybe the mouse cursor could show it), you have to go and
update your color-changing code to keep that synchronized too.

In effect, this gets you a problem where each part of the interface needs to
know about all other parts, which is not very modular. For small applications
like the one in this chapter, that may not be a problem. For bigger projects it
can turn into a real nightmare.

So to avoid this nightmare on principle, we’re going to be very strict about
data flow. There is a state, and the interface is drawn based on that state.
An interface component may respond to user actions by updating the state, at
which point the components get a chance to synchronize themselves with this
new state.

In practice, each component is set up so that when it is given a new state, it
also notifies its child components, insofar as those need to be updated. Setting
this up is a bit of a hassle. Making this more convenient is the main selling
point of many browser programming libraries. But for a small application like
this we can do it without such infrastructure.

Updates to the state are represented as objects, which we’ll call actions.
Components may create such actions and dispatch them—give them to a central
state management function. That function computes the next state, after which
the interface components update themselves to this new state.

We’re taking the messy task of running a user interface and applying some
structure to it. Though the DOM-related pieces are still full of side effects,
they are held up by a conceptually simple backbone—the state update cycle.
The state determines what the DOM looks like, and the only way DOM events
can change the state is by dispatching actions to the state.

There are many variants of this approach, each with their own benefits and
problems, but the central idea to them is the same: state changes should go
through a single well-defined channel, not happen all over the place.

Our components will be classes conforming to an interface. Their constructor
is given a state, which may be the whole application state or some smaller value
if it doesn’t need access to everything, and uses that to build up a dom property,

331

the DOM that represents the component. Most constructors will also take some
other values, that won’t change over time, such as the function they can use to
dispatch an action.

Each component has a setState method that is used to synchronize it to a
new state value. The method takes one argument, the state, which is of the
same type as the first argument to its constructor.

The state

The application state will be an object with picture, tool, and color proper-
ties. The picture is itself an object, storing the width, height, and pixel content
of the picture. The pixels are stored in an array, in the same way as the matrix
class from Chapter 6—row by row, from top to bottom.

class Picture {
constructor(width, height, pixels) {

this.width = width;
this.height = height;
this.pixels = pixels;

}
static empty(width, height, color) {

let pixels = new Array(width * height).fill(color);
return new Picture(width, height, pixels);

}
pixel(x, y) {

return this.pixels[x + y * this.width];
}
draw(pixels) {

let copy = this.pixels.slice();
for (let {x, y, color} of pixels) {

copy[x + y * this.width] = color;
}
return new Picture(this.width, this.height, copy);

}
}

We want to be able to treat a picture as an immutable value, for reasons
that we’ll get back to later in the chapter. But we also sometimes need to
update a whole bunch of pixels at a time. To be able to do that, the class
has a draw method that expects an array of updated pixels—objects with x, y,
and color properties—and creates a new picture with those pixels overwritten.
This method uses slice without arguments to copy the entire pixel array—the

332

start of the slice defaults to 0 and the end to the array’s length.
The empty method uses two pieces of array functionality that we haven’t seen

before. The Array constructor can be called with a number to create an empty
array of the given length. And the fill method can then be used to fill this
array with a given value. These are used to create an array in which all pixels
have the same color.

Colors are stored as strings containing traditional CSS color codes—a hash
sign (#) followed by six hexadecimal (base-16) digits, two for the red component,
two for the green component, and two for the blue component. This is a
somewhat cryptic and inconvenient way to write colors, but it is the format
the HTML color input field uses, and it can be used in the fillColor property
of a canvas drawing context, so for the ways we’ll use colors in this program,
it is practical enough.

Black, where all components are zero, is written "#000000", and bright pink
looks like "#ff00ff", where the red and blue components have the maximum
value of 255, written ff in hexadecimal digits (which use a to f as digits for 10
to 15).

We’ll allow the interface to dispatch actions as objects whose properties
overwrite the properties of the previous state. The color field, when the user
changes it, could dispatch an object like {color: field.value}, from which
this update function can compute a new state.

function updateState(state, action) {
return Object.assign({}, state, action);

}

This rather cumbersome pattern, in which Object.assign is used to first
add the properties of state to an empty object, and then overwrite some of
those with the properties from action, is common in JavaScript code that uses
immutable objects. A more convenient notation for this, in which the triple-
dot operator is used to include all properties from another object in an object
expression, is in the final stages of being standardized. With that addition,
you could write {...state, ...action} instead. At the time of writing this
doesn’t yet work in all browsers.

DOM building

One of the main things that interface components do is creating DOM structure.
We again don’t want to directly use the verbose DOM methods for that, so

333

here’s a slightly expanded version of the elt function.

function elt(type, props, ...children) {
let dom = document.createElement(type);
if (props) Object.assign(dom, props);
for (let child of children) {

if (typeof child != "string") dom.appendChild(child);
else dom.appendChild(document.createTextNode(child));

}
return dom;

}

The main difference between this version and the one we used in Chapter
16 is that it assigns properties to DOM nodes, not attributes. This means we
can’t use it to set arbitrary attributes, but we can use it to set properties whose
value isn’t a string, such as onclick, which can be set to a function to register
a click event handler.

This allows this style of registering event handlers:

<body>
<script>

document.body.appendChild(elt("button", {
onclick: () => console.log("click")

}, "The button"));
</script>

</body>

The canvas

The first component we’ll define is the part of the interface that displays the
picture as a grid of colored boxes. This component is responsible for two things:
showing a picture and communicating pointer events on that picture to the rest
of the application.

As such, we can define it as a component that only knows about the current
picture, not the whole application state. Because it doesn’t know how the
application as a whole works, it can not directly dispatch actions. Rather,
when responding to pointer events, it calls a callback function provided by the
code that created it, which will handle the application-specific parts.

const scale = 10;

334

class PictureCanvas {
constructor(picture, pointerDown) {

this.dom = elt("canvas", {
onmousedown: event => this.mouse(event, pointerDown),
ontouchstart: event => this.touch(event, pointerDown)

});
drawPicture(picture, this.dom, scale);

}
setState(picture) {

if (this.picture == picture) return;
this.picture = picture;
drawPicture(this.picture, this.dom, scale);

}
}

We draw each pixel as a 10-by-10 square, as determined by the scale con-
stant. To avoid unnecessary work, the component keeps track of its current
picture, and only does a redraw when setState is given a new picture.

The actual drawing function sets the size of the canvas based on the scale
and picture size, and fills it with a series of squares, one for each pixel.

function drawPicture(picture, canvas, scale) {
canvas.width = picture.width * scale;
canvas.height = picture.height * scale;
let cx = canvas.getContext("2d");

for (let y = 0; y < picture.height; y++) {
for (let x = 0; x < picture.width; x++) {

cx.fillStyle = picture.pixel(x, y);
cx.fillRect(x * scale, y * scale, scale, scale);

}
}

}

When the left mouse button is pressed while the mouse is over the picture
canvas, the component calls the pointerDown callback, giving it the position
of the pixel that was clicked—in picture coordinates. This will be used to im-
plement mouse interaction with the picture. The callback may return another
callback function to be notified when the pointer is moved to a different pixel
while the button is held down.

PictureCanvas.prototype.mouse = function(downEvent, onDown) {
if (downEvent.button != 0) return;

335

let pos = pointerPosition(downEvent, this.dom);
let onMove = onDown(pos);
if (!onMove) return;
let move = moveEvent => {

if (moveEvent.buttons == 0) {
this.dom.removeEventListener("mousemove", move);

} else {
let newPos = pointerPosition(moveEvent, this.dom);
if (newPos.x == pos.x && newPos.y == pos.y) return;
pos = newPos;
onMove(newPos);

}
};
this.dom.addEventListener("mousemove", move);

};

function pointerPosition(pos, domNode) {
let rect = domNode.getBoundingClientRect();
return {x: Math.floor((pos.clientX - rect.left) / scale),

y: Math.floor((pos.clientY - rect.top) / scale)};
}

Since we know the size of the pixels and we can use getBoundingClientRect
to find the position of the canvas on the screen, it is possible to go from mouse
event coordinates (clientX and clientY) to picture coordinates. These are
always rounded down, so that they refer to a specific pixel.

With touch events, we have to do something similar, but using different
events, and making sure we call preventDefault on the "touchstart" event to
prevent panning.

PictureCanvas.prototype.touch = function(startEvent,
onDown) {

let pos = pointerPosition(startEvent.touches[0], this.dom);
let onMove = onDown(pos);
startEvent.preventDefault();
if (!onMove) return;
let move = moveEvent => {

let newPos = pointerPosition(moveEvent.touches[0],
this.dom);

if (newPos.x == pos.x && newPos.y == pos.y) return;
pos = newPos;
onMove(newPos);

};
let end = () => {

336

this.dom.removeEventListener("touchmove", move);
this.dom.removeEventListener("touchend", end);

};
this.dom.addEventListener("touchmove", move);
this.dom.addEventListener("touchend", end);

};

For touch events, clientX and clientY aren’t available directly on the event
object, but we can use the coordinates of the first touch object in the touches
property.

The application

To make it possible to build the application piece by piece, we’ll implement the
main component as a shell around a picture canvas and a dynamic set of tools
and controls that we pass to its constructor.

The controls are the interface elements that appear below the picture. They’ll
be provided as an array of component constructors.

Tools are things like drawing pixels or filling in an area. The application
shows the set of available tools as a <select> field. The currently selected
tool determines what happens when the user interacts with the picture with
a pointer device. They are provided as an object that maps the names that
appear in the drop-down field to functions that implement the tools. Such
function get a picture position, a current application state, and a dispatch
function as arguments. They may return a move handler function which gets
called with a new position and a current state when the pointer moves to a
different pixel.

class PixelEditor {
constructor(state, config) {

let {tools, controls, dispatch} = config;
this.state = state;

this.canvas = new PictureCanvas(state.picture, pos => {
let tool = tools[this.state.tool];
let onMove = tool(pos, this.state, dispatch);
if (onMove) return pos => onMove(pos, this.state);

});
this.controls = controls.map(

Control => new Control(state, config));
this.dom = elt("div", {}, this.canvas.dom, elt("br"),

...this.controls.reduce(

337

(a, c) => a.concat(" ", c.dom), []));
}
setState(state) {

this.state = state;
this.canvas.setState(state.picture);
for (let ctrl of this.controls) ctrl.setState(state);

}
}

The pointer handler given to PictureCanvas calls the currently selected tool
with the appropriate arguments and, if that returns a move handler, adapts it
to also receive the state.

All controls are constructed and stored in this.controls so that they can
be updated when the application state changes. The call to reduce introduces
spaces between the controls’ DOM elements. That way they don’t look so
pressed together.

The first control is the tool selection menu. It creates a <select> element
with an option for each tool, and sets up a "change" event handler that updates
the application state when the user selects a different tool.

class ToolSelect {
constructor(state, {tools, dispatch}) {

this.select = elt("select", {
onchange: () => dispatch({tool: this.select.value})

}, ...Object.keys(tools).map(name => elt("option", {
selected: name == state.tool

}, name)));
this.dom = elt("label", null, "🖌 Tool: ", this.select);

}
setState(state) { this.select.value = state.tool; }

}

By wrapping the label text and the field in a <label> element, we tell the
browser that the label belongs to that field, so that you can, for example, click
the label to focus the field.

We also need to be able to change the color—so let’s add a control for that.
An HTML <input> element with a type attribute of color gives us a form
field that is specialized for selecting colors. Such a field’s value is always a
CSS color code in "#RRGGBB" format (red, green, and blue components, two
digits per color). The browser will show a color picker interface when the user
interacts with it.

338

Depending on the browser, the color picker might look like this:

This control creates such a field, and wires it up to stay synchronized with
the application state’s color property.

class ColorSelect {
constructor(state, {dispatch}) {

this.input = elt("input", {
type: "color",
value: state.color,
onchange: () => dispatch({color: this.input.value})

});
this.dom = elt("label", null, "🎨 Color: ", this.input);

}
setState(state) { this.input.value = state.color; }

}

Drawing tools

Before we can draw anything, we need to implement the tools that will control
the functionality of mouse or touch events on the canvas.

The most basic tool is the draw tool, which changes any pixel you click or
tap to the currently selected color. It dispatches an action that updates picture
to a version in which the pointed-at pixel is given the currently selected color.

function draw(pos, state, dispatch) {
function drawPixel({x, y}, state) {

let drawn = {x, y, color: state.color};
dispatch({picture: state.picture.draw([drawn])});

339

}
drawPixel(pos, state);
return drawPixel;

}

The function immediately calls the drawPixel function, but then also returns
it, so that it is called again for newly touched pixels when the user drags or
swipes over the picture.

To draw larger shapes it can be useful to quickly create rectangles. The
rectangle tool draws a rectangle between the point where you start dragging
and the point that you drag to.

function rectangle(start, state, dispatch) {
function drawRectangle(pos) {

let xStart = Math.min(start.x, pos.x);
let yStart = Math.min(start.y, pos.y);
let xEnd = Math.max(start.x, pos.x);
let yEnd = Math.max(start.y, pos.y);
let drawn = [];
for (let y = yStart; y <= yEnd; y++) {

for (let x = xStart; x <= xEnd; x++) {
drawn.push({x, y, color: state.color});

}
}
dispatch({picture: state.picture.draw(drawn)});

}
drawRectangle(start);
return drawRectangle;

}

An important detail in this implementation is that when dragging, the rect-
angle is redrawn on the picture from the original state. That way, you can
make the rectangle larger and smaller again while creating it, without the in-
termediate rectangles sticking around in the final picture. This is one of the
reasons why immutable picture objects are useful—we’ll see another reason
later.

Implementing flood fill is somewhat more involved. This is a tool that fills
the pixel under the pointer and all adjacent pixels that have the same color.
“Adjacent” means directly horizontally or vertically adjacent, not diagonally.
This picture illustrates the set of pixels colored when the flood fill tool is used
at the marked pixel:

340

Interestingly, the way we’ll do this looks a bit like the pathfinding code from
Chapter 7. Whereas that code searched through a graph to find a route, this
code searches through a grid to find all “connected” pixels. The problem of
keeping track of a branching set of possible routes is similar.

const around = [{dx: -1, dy: 0}, {dx: 1, dy: 0},
{dx: 0, dy: -1}, {dx: 0, dy: 1}];

function fill({x, y}, state, dispatch) {
let targetColor = state.picture.pixel(x, y);
let drawn = [{x, y, color: state.color}];
for (let done = 0; done < drawn.length; done++) {

for (let {dx, dy} of around) {
let x = drawn[done].x + dx, y = drawn[done].y + dy;
if (x >= 0 && x < state.picture.width &&

y >= 0 && y < state.picture.height &&
state.picture.pixel(x, y) == targetColor &&
!drawn.some(p => p.x == x && p.y == y)) {

drawn.push({x, y, color: state.color});
}

}
}
dispatch({picture: state.picture.draw(drawn)});

}

The array of drawn pixels doubles as the function’s work list. For each pixel
reached, we have to see if any adjacent pixels have the same color and haven’t
already been painted over. The loop counter lags behind the length of the
drawn array as new pixels are added. Any pixels ahead of it still need to be
explored. When it catches up with the length, no unexplored pixels remain,
and the function is done.

The final tool is a color picker, which allows you to point at a color in the
picture to use it as the current drawing color.

function pick(pos, state, dispatch) {
dispatch({color: state.picture.pixel(pos.x, pos.y)});

}

341

Saving and loading

When we’ve drawn our masterpiece, we’ll want to save it for later. We should
add a button for downloading the current picture as an image file. This control
provides that button:

class SaveButton {
constructor(state) {

this.picture = state.picture;
this.dom = elt("button", {

onclick: () => this.save()
}, "💾 Save");

}
save() {

let canvas = elt("canvas");
drawPicture(this.picture, canvas, 1);
let link = elt("a", {

href: canvas.toDataURL(),
download: "pixelart.png"

});
document.body.appendChild(link);
link.click();
link.remove();

}
setState(state) { this.picture = state.picture; }

}

The component keeps track of the current picture so that it can access it
when saving. To create the image file, it uses a <canvas> element that it draws
the picture on (at a scale of one pixel per pixel).

The toDataURL method on a canvas element creates a URL that starts with
data:. Unlike http: and https: URLs, data URLs contain the whole resource
in the URL itself. They are usually very long, but they allow us to create
working links to arbitrary pictures, right here in the browser.

To actually get the browser to download the picture, we then create a link
element that points at this URL and has a download attribute. Such links,
when clicked, make the browser show a file save dialog. We add that link to
the document, simulate a click on it, and remove it again.

You can do a lot with browser technology, but sometimes the way to do it is
rather odd.

342

And it gets worse. We’ll also want to be able to load existing image files into
our application. To do that, we again define a button component.

class LoadButton {
constructor(_, {dispatch}) {

this.dom = elt("button", {
onclick: () => startLoad(dispatch)

}, "📁 Load");
}
setState() {}

}

function startLoad(dispatch) {
let input = elt("input", {

type: "file",
onchange: () => finishLoad(input.files[0], dispatch)

});
document.body.appendChild(input);
input.click();
input.remove();

}

To get access to a file on the user’s computer, we need the user to select the
file through a file input field. But I don’t want the load button to look like a
file input field, so we create the file input when the button is clicked, and then
pretend that it itself was clicked.

When the user has selected a file, we can use FileReader to get access to
its contents, again as a data URL. That URL can be used to create an
element, but because we can’t get direct access to the pixels in such an image,
we can’t create a Picture object from that.

function finishLoad(file, dispatch) {
if (file == null) return;
let reader = new FileReader();
reader.addEventListener("load", () => {

let image = elt("img", {
onload: () => dispatch({

picture: pictureFromImage(image)
}),
src: reader.result

});
});
reader.readAsDataURL(file);

}

343

To get access to the pixels, we must first draw the picture to a <canvas>
element. The canvas context has a getImageData method that allows a script
to read its pixels. So once the picture is on the canvas, we can access it and
construct a Picture object.

function pictureFromImage(image) {
let width = Math.min(100, image.width);
let height = Math.min(100, image.height);
let canvas = elt("canvas", {width, height});
let cx = canvas.getContext("2d");
cx.drawImage(image, 0, 0);
let pixels = [];
let {data} = cx.getImageData(0, 0, width, height);

function hex(n) {
return n.toString(16).padStart(2, "0");

}
for (let i = 0; i < data.length; i += 4) {

let [r, g, b] = data.slice(i, i + 3);
pixels.push("#" + hex(r) + hex(g) + hex(b));

}
return new Picture(width, height, pixels);

}

We’ll limit the size of images to 100 by 100 pixels, since anything bigger will
look huge on our display, and might slow down the interface.

The data property of the object returned by getImageData is an array of color
components. For each pixel in the rectangle specified by the arguments, it con-
tains four values, which represent the red, green, blue, and alpha components
of the pixel’s color, as numbers between 0 and 255. The alpha part represents
opacity—when it is zero, the pixel is fully transparent, and when it is 255, it
is fully opaque. For our purpose, we can ignore it.

The two hexadecimal digits per component, as used in our color notation,
correspond precisely to the 0 to 255 range—two base-16 digits can express 162

= 256 different numbers. The toString method of numbers can be given a
base as argument, so n.toString(16) will produce a string representation in
base 16. We have to make sure that each number takes up two digits, so the
hex helper function calls padStart to add a leading zero when necessary.

We can load and save now! That leaves one more feature before we’re done.

344

Undo history

Half of the process of editing is making little mistakes and correcting them
again. So a very important feature in a drawing program is an undo history.

To be able to undo changes, we need to store previous versions of the picture.
Since it’s an immutable value, that is easy. But it does require an additional
field in the application state.

We’ll add a done array to keep previous versions of the picture. Maintaining
this property requires a more complicated state update function that adds
pictures to the array.

But we don’t want to store every change, only changes a certain amount
of time apart. To be able to do that, we’ll need a second property, doneAt,
tracking the time at which we last stored a picture in the history.

function historyUpdateState(state, action) {
if (action.undo == true) {

if (state.done.length == 0) return state;
return Object.assign({}, state, {

picture: state.done[0],
done: state.done.slice(1),
doneAt: 0

});
} else if (action.picture &&

state.doneAt < Date.now() - 1000) {
return Object.assign({}, state, action, {

done: [state.picture, ...state.done],
doneAt: Date.now()

});
} else {

return Object.assign({}, state, action);
}

}

When the action is an undo action, the function takes the most recent picture
from the history and makes that the current picture.

Otherwise, if the action contains a new picture and the last time we stored
something is more than a second (1000 milliseconds) ago, the done and doneAt
properties are updated to store the previous picture.

The undo button component doesn’t do very much. It dispatches undo
actions when clicked, and disables itself when there is nothing to undo.

class UndoButton {
constructor(state, {dispatch}) {

345

this.dom = elt("button", {
onclick: () => dispatch({undo: true}),
disabled: state.done.length == 0

}, "⮪ Undo");
}
setState(state) {

this.dom.disabled = state.done.length == 0;
}

}

Let's draw

To set up the application, we need to create a state, a set of tools, a set
of controls, and a dispatch function. We can pass those to the PixelEditor
constructor to create the main component. Since we’ll need to create several
editors in the exercises, we first define some bindings.

const startState = {
tool: "draw",
color: "#000000",
picture: Picture.empty(60, 30, "#f0f0f0"),
done: [],
doneAt: 0

};

const baseTools = {draw, fill, rectangle, pick};

const baseControls = [
ToolSelect, ColorSelect, SaveButton, LoadButton, UndoButton

];

function startPixelEditor({state = startState,
tools = baseTools,
controls = baseControls}) {

let app = new PixelEditor(state, {
tools,
controls,
dispatch(action) {

state = historyUpdateState(state, action);
app.setState(state);

}
});
return app.dom;

346

}

When destructuring an object or array, you can use = after a binding name to
give the binding a default value, which is used when the property is missing or
holds undefined. The startPixelEditor function makes use of this to accept an
object with a number of optional properties as argument. If you don’t provide
a tools property, for example, tools will be bound to baseTools.

And this is how we get an actual editor on the screen:

<div></div>
<script>

document.querySelector("div")
.appendChild(startPixelEditor({}));

</script>

Why is this so hard

Browser technology is amazing. It provides a powerful set of interface building
blocks, ways to style and manipulate them, and tools to inspect and debug your
applications. The software you write for the browser can be run on almost every
computer and phone on the planet.

At the same time, browser technology is ridiculous. You have to learn a
large amount of silly tricks and obscure facts to master it, and the default
programming model it provides is so problematic that most programmers prefer
to cover it in several layers of abstraction rather than dealing with it directly.

And though the situation is definitely improving, it mostly does so in the
form of more elements being added to address shortcomings—creating even
more complexity. A feature used by a million websites can’t really be replaced.
And even if it could, it can be hard to decide what it should be replaced with.

Technology never exists in a vacuum—we’re constrained by our tools and the
social, economic, and historic factors that produced them. This can be annoy-
ing, but it is generally more productive to try and build a good understanding
of how the existing technical reality works—and why it is the way it is—than
to rage against it or hold out for another reality.

New abstractions can be helpful. The component model and data flow con-
vention I used in this chapter is a crude form of that. As mentioned, there are
libraries that try to make user interface programming more pleasant. At the
time of writing, React and Angular are popular choices, but there’s a whole

347

https://reactjs.org/
https://angular.io/

cottage industry of such frameworks. If you’re interested in programming web
applications, I recommend investigating a few of them to understand how they
work and what benefits they provide.

Exercises

There is still room for improvement in our program. Let’s add a few more
features as exercises.

Keyboard bindings

Add keyboard shortcuts to the application. The first letter of a tool’s name
selects the tool, and Ctrl-Z or Command-Z activates undo.

Do this by modifying the PixelEditor component. Add a tabIndex property
of 0 to the wrapping <div> element, so that it can receive keyboard focus. Note
that the property corresponding to the tabindex attribute is called tabIndex,
with a capital I, and our elt function expects property names. Register the
key event handlers directly on that element. This means that you have to
click, touch, or tab to the application before you can interact with it with the
keyboard.

Remember that keyboard events have ctrlKey and metaKey (for the Com-
mand key on Mac) properties that you can use to see whether those keys are
held down.

Efficient drawing

During drawing, the majority of work that our application does happens in
drawPicture. Creating a new state and updating the rest of the DOM isn’t
very expensive, but repainting all the pixels on the canvas is quite a bit of
work.

Find a way to make the setState method of PictureCanvas faster by redraw-
ing only the pixels that actually changed.

Remember that drawPicture is also used by the save button, so if you change
it, either make sure the changes don’t break the old use, or create a new version
with a different name.

Also note that changing the size of a <canvas> element, by setting its width
or height properties, clears it, making it entirely transparent again.

348

Circles

Define a tool called circle that draws a filled circle when you drag. The center
of the circle lies at the point where the drag or touch gesture starts, and its
radius is determined by the distance dragged.

Proper lines

This is a more advanced exercise than the preceding two, and it will require
you to design a solution to a nontrivial problem. Make sure you have plenty
of time and patience before starting to work on this exercise, and do not get
discouraged by initial failures.

On most browsers, when you select the draw tool and quickly drag across
the picture, you don’t get a closed line. Rather, you get dots with gaps be-
tween them, because the "mousemove" or "touchmove" events did not fire quickly
enough to hit every pixel.

Improve the draw tool to make it draw a full line. This means you have to
make the motion handler function remember the previous position, and connect
that to the current one.

To do this, since the pixels can be an arbitrary distance apart, you’ll have
to write a general line drawing function.

A line between two pixels is a connected chain of pixels, as straight as pos-
sible, going from the start to the end. Diagonally adjacent pixels count as a
connected. So a slanted line should look like the picture on the left, not the
picture on the right.

If we have code that draws a line between two arbitrary points, we might as
well go ahead and use that to also define a line tool, which draws a straight
line between the start and end of a drag.

349

“A student asked ‘The programmers of old used only simple
machines and no programming languages, yet they made beautiful
programs. Why do we use complicated machines and programming
languages?’. Fu-Tzu replied ‘The builders of old used only sticks and
clay, yet they made beautiful huts.”’

—Master Yuan-Ma, The Book of Programming

Chapter 20

Node.js

So far, we have used the JavaScript language in a single environment: the
browser. This chapter and the next one will briefly introduce Node.js, a pro-
gram that allows you to apply your JavaScript skills outside of the browser.
With it, you can build anything from small command-line tools to HTTP
servers that power dynamic websites.

These chapters aim to teach you the main concepts that Node.js uses and to
give you enough information to write useful programs for it. They do not try
to be a complete, or even a thorough, treatment of the platform.

If you want to follow along and run the code in this chapter, you’ll need to
install Node.js version 10 or higher. To do so, go to nodejs.org and follow the
installation instructions for your operating system. You can also find further
documentation for Node.js there.

Background

One of the more difficult problems with writing systems that communicate over
the network is managing input and output—that is, the reading and writing of
data to and from the network and hard drive. Moving data around takes time,
and scheduling it cleverly can make a big difference in how quickly a system
responds to the user or to network requests.

In such programs, asynchronous programming is often helpful. It allows the
program to send and receive data from and to multiple devices at the same
time without complicated thread management and synchronization.

Node was initially conceived for the purpose of making asynchronous pro-
gramming easy and convenient. JavaScript lends itself well to a system like
Node. It is one of the few programming languages that does not have a built-in
way to do in- and output. Thus, JavaScript could be fit onto Node’s rather
eccentric approach to in- and output without ending up with two inconsistent
interfaces. In 2009, when Node was being designed, people were already do-
ing callback-based programming in the browser, so the community around the

350

https://nodejs.org

language was used to an asynchronous programming style.

The node command

When Node.js is installed on a system, it provides a program called node, which
is used to run JavaScript files. Say you have a file hello.js, containing this
code:

let message = "Hello world";
console.log(message);

You can then run node from the command line like this to execute the pro-
gram:

$ node hello.js
Hello world

The console.log method in Node does something similar to what it does
in the browser. It prints out a piece of text. But in Node, the text will go
to the process’ standard output stream, rather than to a browser’s JavaScript
console. When running node from the command line, that means you see the
logged values in your terminal.

If you run node without giving it a file, it provides you with a prompt at
which you can type JavaScript code and immediately see the result.

$ node
> 1 + 1
2
> [-1, -2, -3].map(Math.abs)
[1, 2, 3]
> process.exit(0)
$

The process binding, just like the console binding, is available globally in
Node. It provides various ways to inspect and manipulate the current pro-
gram. The exit method ends the process and can be given an exit status code,
which tells the program that started node (in this case, the command-line shell)
whether the program completed successfully (code zero) or encountered an er-
ror (any other code).

To find the command-line arguments given to your script, you can read

351

process.argv, which is an array of strings. Note that it also includes the name
of the node command and your script name, so the actual arguments start at
index 2. If showargv.js contains the statement console.log(process.argv),
you could run it like this:

$ node showargv.js one --and two
["node", "/tmp/showargv.js", "one", "--and", "two"]

All the standard JavaScript global bindings, such as Array, Math, and JSON,
are also present in Node’s environment. Browser-related functionality, such as
document or prompt, is not.

Modules

Beyond the few bindings I mentioned, such as console and process, Node puts
few bindings in the global scope. If you want to access built-in functionality,
you have to ask the module system for it.

The CommonJS module system, based on the require function, was de-
scribed in Chapter 10. This system is built into Node and is used to load
anything from built-in modules to downloaded packages to files that are part
of your own program.

When require is called, Node has to resolve the given string to an actual file
that it can load. Pathnames that start with "/", "./", or "../" are resolved
relative to the current module’s path, where "./" stands for the current direc-
tory, "../" for one directory up, and "/" for the root of the file system. So
if you ask for "./graph" from the file /tmp/robot/robot.js, Node will try to
load the file /tmp/robot/graph.js.

The .js extension may be omitted, and Node will add it if such a file exists.
If the required path refers to a directory, Node will try to load the file named
index.js in that directory.

When a string that does not look like a relative or absolute path is given
to require, it is assumed to refer to either a built-in module or a module
installed in a node_modules directory. For example, require("fs") will give
you Node’s built-in file system module. And require("robot") might try to
load the library found in node_modules/robot/. A common way to install such
libraries is by using NPM, which we’ll come back to in a moment.

Let’s set up a small project consisting of two files. The first one is called
main.js, and defines a script that can be called from the command line to
reverse a string.

352

const {reverse} = require("./reverse");

// Index 2 holds the first actual command-line argument
let argument = process.argv[2];

console.log(reverse(argument));

The file reverse.js defines a library for reversing strings, which can be used
both by this command-line tool and by other scripts that need direct access to
a string-reversing function.

exports.reverse = function(string) {
return Array.from(string).reverse().join("");

};

Remember that adding properties to exports adds them to the interface of
the module. Since Node.js treats files as CommonJS modules, main.js can take
the exported reverse function from reverse.js.

We can now call our tool like this:

$ node main.js JavaScript
tpircSavaJ

Installing with NPM

NPM, which was introduced in Chapter 10, is an online repository of JavaScript
modules, many of which are specifically written for Node. When you install
Node on your computer, you also get the npm, which you can use to interact
with this repository.

Its main use is downloading packages. We saw the ini package in Chapter
10. We can use NPM to fetch and install that package on our computer.

$ npm install ini
npm WARN enoent ENOENT: no such file or directory,

open '/tmp/package.json'
+ ini@1.3.5
added 1 package in 0.552s

$ node
> const {parse} = require("ini");

353

> parse("x = 1\ny = 2");
{ x: '1', y: '2' }

After running npm install, NPMwill have created a directory called node_modules
. Inside that directory will be an ini directory which contains the library. You
can open it and look at the code. When we call require("ini"), this library
is loaded, and we can call its parse property to parse a configuration file.

By default NPM installs packages under the current directory, rather than
in a central place. If you are used to other package managers, this may seem
unusual, but it has advantages—it puts each application in full control of the
packages it installs, and makes it easier to manage versions and clean up when
removing an application.

Package files

In the npm install example, you could see a warning about the fact that the
package.json file did not exist. It is recommended to create such a file for each
project, either manually or by running npm init. It contains some information
about the project, such as its name and version, and lists its dependencies.

The robot simulation from Chapter 7, as modularized in Exercise 10.1, might
have a package.json file like this:

{
"author": "Marijn Haverbeke",
"name": "eloquent-javascript-robot",
"description": "Simulation of a package-delivery robot",
"version": "1.0.0",
"main": "run.js",
"dependencies": {

"dijkstrajs": "^1.0.1",
"random-item": "^1.0.0"

},
"license": "ISC"

}

When you run npm install without naming a package to install, NPM will
install the dependencies listed in package.json. When you install a specific
package that is not already listed as a dependency, NPM will add it to package
.json.

354

Versions

A package.json file lists both the program’s own version and versions for its
dependencies. Versions are a way to deal with the fact that packages evolve
separately, and code written to work with a package as it existed at one point
may not work with a later, modified version of the package.

NPM demands that its packages follow a schema called semantic versioning,
which encodes some information about which versions are compatible (don’t
break the old interface) in the version number. A semantic version consists
of three numbers, separated by periods, such as 2.3.0. Every time new func-
tionality is added, the middle number has to be incremented. Every time
compatibility is broken, so that existing code that uses the package might not
work with the new version, the first number has to be incremented.

A caret character (^) in front of the version number for a dependency in
package.json indicates that any version compatible with the given number
may be installed. So for example "^2.3.0" would mean that any version greater
than or equal to 2.3.0 and less than 3.0.0 is allowed.

The npm command is also used to publish new packages or new versions of
packages. If you npm publish in a directory that has a package.json file, it
will publish a package with the name and version listed in the JSON file to
the registry. Anyone can publish packages to NPM—though only under a new
name, since it would be somewhat scary if random people could update existing
packages.

Since the npm program is a piece of software that talks to an open system—
the package registry—there is nothing unique about what it does. Another
program, yarn, which can be installed from the NPM registry, fills the same
role as npm using a somewhat different interface and installation strategy.

This book won’t delve further into the details of NPM usage. Refer to
npmjs.org for further documentation and a way to search for packages.

The file system module

One of the most commonly used built-in modules in Node is the fs module,
which stands for file system. It exports functions for working with files and
directories.

For example, there is a function called readFile which reads a file and then
calls a callback with the file’s contents.

let {readFile} = require("fs");
readFile("file.txt", "utf8", (error, text) => {

355

https://npmjs.org

if (error) throw error;
console.log("The file contains:", text);

});

The second argument to readFile indicates the character encoding used to
decode the file into a string. There are several ways in which text can be
encoded to binary data, but most modern systems use UTF-8. So unless you
have reasons to believe another encoding is used, pass "utf8" when reading a
text file. If you do not pass an encoding, Node will assume you are interested
in the binary data and will give you a Buffer object instead of a string. This is
an array-like object that contains numbers representing the bytes (8-bit chunks
of data) in the files.

const {readFile} = require("fs");
readFile("file.txt", (error, buffer) => {

if (error) throw error;
console.log("The file contained", buffer.length, "bytes.",

"The first byte is:", buffer[0]);
});

A similar function, writeFile, is used to write a file to disk.

const {writeFile} = require("fs");
writeFile("graffiti.txt", "Node was here", err => {

if (err) console.log(`Failed to write file: ${err}`);
else console.log("File written.");

});

Here it was not necessary to specify the encoding—writeFile will assume
that when it is given a string to write, rather than a Buffer object, it should
write it out as text using its default character encoding, which is UTF-8.

The fs module contains many other useful functions: readdir will return the
files in a directory as an array of strings, stat will retrieve information about
a file, rename will rename a file, unlink will remove one, and so on. See the
documentation at nodejs.org for specifics.

And most of these take a callback function as last parameter, which they call
either with an error (the first argument), or a successful result (the second). As
we saw in Chapter 11, there are downsides to this style of programming—the
biggest one being that error handling becomes verbose and error-prone.

Though promises have been part of JavaScript for a while, at the time of

356

https://nodejs.org

writing their integration into Node.js is still a work in progress. There is a
package called fs/promises in the standard library since version 10, which ex-
ports most of the same functions as fs, but using promises rather than callback
functions.

const {readFile} = require("fs/promises");
readFile("file.txt", "utf8")

.then(text => console.log("The file contains:", text));

Sometimes you don’t need asynchronicity, and it just gets in the way. Many
of the functions in fs also have a synchronous variant, which has the same
name with Sync added to the end. For example, the synchronous version of
readFile is called readFileSync.

const {readFileSync} = require("fs");
console.log("The file contains:",

readFileSync("file.txt", "utf8"));

Do note that while such a synchronous operation is being performed, your
program is stopped entirely. If it should be responding to the user or to other
machines on the network, being stuck on a synchronous action might produce
annoying delays.

The HTTP module

Another central module is called http. It provides functionality for running
HTTP servers and making HTTP requests.

This is all it takes to start an HTTP server:

const {createServer} = require("http");
let server = createServer((request, response) => {

response.writeHead(200, {"Content-Type": "text/html"});
response.write(`

<h1>Hello!</h1>
<p>You asked for <code>${request.url}</code></p>`);

response.end();
});
server.listen(8000);

If you run this script on your own machine, you can point your web browser
at http://localhost:8000/hello to make a request to your server. It will respond

357

http://localhost:8000/hello

with a small HTML page.
The function passed as argument to createServer is called every time a

client connects to the server. The request and response bindings are objects
representing the incoming and outgoing data. The first contains information
about the request, such as its url property which tells us to what URL the
request was made.

So when you open that page in your browser, it sends a request to your own
computer. This causes the server function to run and send back a response,
which you can then see in the browser.

To send something back, you call methods on the response object. The first,
writeHead, will write out the response headers (see Chapter 18). You give it
the status code (200 for “OK” in this case) and an object that contains header
values. The example sets the Content-Type header to inform the client that
we’ll be sending back an HTML document.

Next, the actual response body (the document itself) is sent with response
.write. You are allowed to call this method multiple times if you want to
send the response piece by piece, for example to stream data to the client as it
becomes available. Finally, response.end signals the end of the response.

The call to server.listen causes the server to start waiting for connections
on port 8000. This is the reason you have to connect to localhost:8000 to speak
to this server, rather than just localhost, which would use the default port 80.

When you run this script, the process just sits there and waits. When a
script is listening for events—in this case, network connections—node will not
automatically exit when it reaches the end of the script. To close it, press
Ctrl-C.

A real web server usually does more than the one in the example—it looks
at the request’s method (the method property) to see what action the client
is trying to perform and at the request’s URL to find out which resource this
action is being performed on. We’ll see a more advanced server later in this
chapter.

To act as an HTTP client, we can use the request function in the http
module.

const {request} = require("http");
let requestStream = request({

hostname: "eloquentjavascript.net",
path: "/20_node.html",
method: "GET",
headers: {Accept: "text/html"}

}, response => {
console.log("Server responded with status code",

358

response.statusCode);
});
requestStream.end();

The first argument to request configures the request, telling Node what
server to talk to, what path to request from that server, which method to use,
and so on. The second argument is the function that should be called when a
response comes in. It is given an object that allows us to inspect the response,
for example to find out its status code.

Just like the response object we saw in the server, the object returned by
request allows us to stream data into the request with the write method and
finish the request with the end method. The example does not use write
because GET requests should not contain data in their request body.

There’s a similar request function in the https module, which can be used
to make requests to https: URLs.

But making request with Node’s raw functionality is rather verbose. There
are much more convenient wrapper packages available on NPM. For example
node-fetch provides the promise-based fetch interface that we know from the
browser.

Streams

We have seen two instances of writable streams in the HTTP examples—
namely, the response object that the server could write to and the request
object that was returned from request.

Writable streams are a widely used concept in Node. Such objects have a
write method, which can be passed a string or a Buffer object to write some-
thing to the stream. Their end method closes the stream, and also optionally
takes a value to write to the stream before closing. Both of these methods can
also be given a callback as an additional argument, which they will call when
the writing or closing has finished.

It is possible to create a writable stream that points at a file with the
createWriteStream function from the fs module. Then you can use the write
method on the resulting object to write the file one piece at a time, rather than
in one shot as with writeFile.

Readable streams are a little more involved. Both the request binding that
was passed to the HTTP server’s callback and the response binding passed to
the HTTP client callback are readable streams—a server reads requests and
then writes responses, whereas a client first writes a request and then reads

359

a response. Reading from a stream is done using event handlers, rather than
methods.

Objects that emit events in Node have a method called on that is similar to
the addEventListener method in the browser. You give it an event name and
then a function, and it will register that function to be called whenever the
given event occurs.

Readable streams have "data" and "end" events. The first is fired every time
data comes in, and the second is called whenever the stream is at its end. This
model is most suited for streaming data, which can be immediately processed,
even when the whole document isn’t available yet. A file can be read as a
readable stream by using the createReadStream function from fs.

This code creates a server that reads request bodies and streams them back
to the client as all-uppercase text:

const {createServer} = require("http");
createServer((request, response) => {

response.writeHead(200, {"Content-Type": "text/plain"});
request.on("data", chunk =>

response.write(chunk.toString().toUpperCase()));
request.on("end", () => response.end());

}).listen(8000);

The chunk value passed to the data handler will be a binary Buffer. We
can convert this to string by decoding it as UTF-8 encoded characters with its
toString method..

The following piece of code, when run with the uppercasing server active,
will send a request to that server and write out the response it gets:

const {request} = require("http");
request({

hostname: "localhost",
port: 8000,
method: "POST"

}, response => {
response.on("data", chunk =>

process.stdout.write(chunk.toString()));
}).end("Hello server");
// → HELLO SERVER

The example writes to process.stdout (the process’ standard output, which
is a writable stream) instead of using console.log. We can’t use console.log

360

because it adds an extra newline character after each piece of text that it
writes, which isn’t appropriate here since the response may come in as multiple
chunks.

A file server

Let’s combine our newfound knowledge about HTTP servers and working with
the file system to create a bridge between the two: an HTTP server that allows
remote access to a file system. Such a server has all kinds of uses—it allows
web applications to store and share data or can give a group of people shared
access to a bunch of files.

When we treat files as HTTP resources, the HTTP methods GET, PUT, and
DELETE can be used to read, write, and delete the files, respectively. We will
interpret the path in the request as the path of the file that the request refers
to.

We probably don’t want to share our whole file system, so we’ll interpret
these paths as starting in the server’s working directory, which is the directory
in which it was started. If I ran the server from /tmp/public/ (or C:\tmp\public
\ on Windows), then a request for /file.txt should refer to /tmp/public/file
.txt (or C:\tmp\public\file.txt).

We’ll build the program piece by piece, using an object called methods to store
the functions that handle the various HTTP methods. Method handlers are
async functions that get the request object as argument and return a promise
that resolves to an object that describes the response.

const {createServer} = require("http");

const methods = Object.create(null);

createServer((request, response) => {
let handler = methods[request.method] || notAllowed;
handler(request)

.catch(error => {
if (error.status != null) return error;
return {body: String(error), status: 500};

})
.then(({body, status = 200, type = "text/plain"}) => {

response.writeHead(status, {"Content-Type": type});
if (body && body.pipe) body.pipe(response);
else response.end(body);

});
}).listen(8000);

361

async function notAllowed(request) {
return {

status: 405,
body: `Method ${request.method} not allowed.`

};
}

This starts a server that just returns 405 error responses, which is the code
used to indicate that the server refuses to handle a given method.

When a request handler’s promise is rejected, the catch call translates the
error into a response object, if it isn’t already, so that the server can send back
an error response to inform the client that it failed to handle the request.

The status field of the response description may be omitted, in which case
it defaults to 200 (OK). The content type, in the type property, can also be
left off, in which case the response is assumed to be plain text.

When the value of body is a readable stream, it will have a pipe method,
which is used to forward all content from a readable stream to a writable
stream. If not, it is assumed to be either null (no body), a string, or a buffer,
and is passed directly to the response’s end method.

To figure out which file path corresponds to a request URL, the urlPath
function uses Node’s built-in url module to parse the URL. It takes its path-
name, which will be something like "/file.txt", decodes that to get rid of
the %20-style escape codes, and resolves it relative to the program’s working
directory.

const {parse} = require("url");
const {resolve} = require("path");

const baseDirectory = process.cwd();

function urlPath(url) {
let {pathname} = parse(url);
let path = resolve(decodeURIComponent(pathname).slice(1));
if (path != baseDirectory &&

!path.startsWith(baseDirectory + "/")) {
throw {status: 403, body: "Forbidden"};

}
return path;

}

As soon as you set up a program to accept network requests, you have to

362

start worrying about security. In this case, if we aren’t careful, it is likely that
we’ll accidentally expose our whole file system to the network.

File paths are strings in Node. To map such a string to an actual file, there
is a nontrivial amount of interpretation going on. Paths may, for example,
include "../" to refer to a parent directory. So one obvious source of problems
would be requests for paths like /../secret_file.

To avoid such problems, urlPath uses the resolve function from the path
module, which resolves relative paths. It then verifies that the result is below the
working directory. The process.cwd function (where “cwd” stands for “current
working directory”) can be used to find this working directory. When the path
doesn’t start with the base directory, the function throws an error response
object, using the HTTP status code that indicates that access to the resource
is forbidden.

We’ll set up the GET method to return a list of files when reading a directory
and to return the file’s content when reading a regular file.

One tricky question is what kind of Content-Type header we should set when
returning a file’s content. Since these files could be anything, our server can’t
simply return the same content type for all of them. NPM can help us again
here. The mime package (content type indicators like text/plain are also called
MIME types) knows the correct type for a large number of file extensions.

The following npm command, in the directory where the server script lives,
installs a specific version of mime.

$ npm install mime@2.2.0

When a requested file does not exist, the correct HTTP status code to return
is 404. We’ll use the stat function, which looks up information about a file, to
find out both whether the file exists and whether it is a directory.

const {createReadStream} = require("fs");
const {stat, readdir} = require("fs/promises");
const mime = require("mime");

methods.GET = async function(request) {
let path = urlPath(request.url);
let stats;
try {

stats = await stat(path);
} catch (error) {

if (error.code != "ENOENT") throw error;
else return {status: 404, body: "File not found"};

}

363

if (stats.isDirectory()) {
return {body: (await readdir(path)).join("\n")};

} else {
return {body: createReadStream(path),

type: mime.getType(path)};
}

};

Because it has to touch the disk and thus might take a while, stat is asyn-
chronous. Since we’re using promises rather than callback style, it has to be
imported from fs/promises instead of fs.

When the file does not exist stat will throw an error object with a code
property of "ENOENT". These somewhat obscure, Unix-inspired codes are how
you recognize error types in Node.

The stats object returned by stat tells us a number of things about a file,
such as its size (size property) and its modification date (mtime property).
Here we are interested in the question of whether it is a directory or a regular
file, which the isDirectory method tells us.

We use readdir to read the array of files in a directory and return it to the
client. For normal files, we create a readable stream with createReadStream
and return that as the body, along with the content type that the mime package
gives us for the file’s name.

The code to handle DELETE requests is slightly simpler.

const {rmdir, unlink} = require("fs/promises");

methods.DELETE = async function(request) {
let path = urlPath(request.url);
let stats;
try {

stats = await stat(path);
} catch (error) {

if (error.code != "ENOENT") throw error;
else return {status: 204};

}
if (stats.isDirectory()) await rmdir(path);
else await unlink(path);
return {status: 204};

};

When an HTTP response does not contain any data, the status code 204 (“no
content”) can be used to indicate this. Since the response to deletion doesn’t

364

need to transmit any information beyond whether the operation succeeded,
that is a sensible thing to return here.

You may be wondering why trying to delete a nonexistent file returns a
success status code, rather than an error. When the file that is being deleted
is not there, you could say that the request’s objective is already fulfilled. The
HTTP standard encourages us to make requests idempotent, which means that
making the same request multiple times produces the same result as making it
once. In a way, if you try to delete something that’s already gone, the effect
you were trying to do has been achieved—the thing is no longer there.

This is the handler for PUT requests:

const {createWriteStream} = require("fs");

function pipeStream(from, to) {
return new Promise((resolve, reject) => {

from.on("error", reject);
to.on("error", reject);
to.on("finish", resolve);
from.pipe(to);

});
}

methods.PUT = async function(request) {
let path = urlPath(request.url);
await pipeStream(request, createWriteStream(path));
return {status: 204};

};

We don’t need to check whether the file exists this time—if it does, we’ll
just overwrite it. We again use pipe to move data from a readable stream
to a writable one, in this case from the request to the file. But since pipe
isn’t written to return a promise, we have to write a wrapper, pipeStream that
creates a promise around the outcome of calling pipe.

When something goes wrong when opening the file createWriteStream will
still return a stream, but that stream will fire an "error" event. The output
stream to the request may also fail, for example if the network goes down. So we
wire up both streams’ "error" events to reject the promise. When pipe is done,
it will close the output stream, which causes it to fire a "finish" event. That’s
the point where we can successfully resolve the promise (returning nothing).

The full script for the server is available at eloquentjavascript.net/code/
file_server.js. You can download that and, after installing its dependencies,

365

https://eloquentjavascript.net/code/file_server.js
https://eloquentjavascript.net/code/file_server.js

run it with Node to start your own file server. And of course, you can modify
and extend it to solve this chapter’s exercises or to experiment.

The command-line tool curl, widely available on Unix-like systems (such as
OS X and Linux), can be used to make HTTP requests. The following session
briefly tests our server. The -X option is used to set the request’s method and
-d is used to include a request body.

$ curl http://localhost:8000/file.txt
File not found
$ curl -X PUT -d hello http://localhost:8000/file.txt
$ curl http://localhost:8000/file.txt
hello
$ curl -X DELETE http://localhost:8000/file.txt
$ curl http://localhost:8000/file.txt
File not found

The first request for file.txt fails since the file does not exist yet. The PUT
request creates the file, and behold, the next request successfully retrieves it.
After deleting it with a DELETE request, the file is again missing.

Summary

Node is a nice, small system that lets us run JavaScript in a nonbrowser con-
text. It was originally designed for network tasks to play the role of a node
in a network. But it lends itself to all kinds of scripting tasks, and if writing
JavaScript is something you enjoy, automating tasks with Node works very
well.

NPM provides packages for everything you can think of (and quite a few
things you’d probably never think of), and it allows you to fetch and install
those packages with the npm program. Node comes with a number of built-in
modules, including the fs module for working with the file system and the http
module for running HTTP servers and making HTTP requests.

All input and output in Node is done asynchronously, unless you explicitly
use a synchronous variant of a function, such as readFileSync. When calling
such asynchronous functions you provide callback functions, and Node will call
them with an error value and (if available) a result when it is ready.

366

Exercises

Search tool

On Unix systems, there is a command-line tool called grep that can be used to
quickly search files for a regular expression.

Write a Node script that can be run from the command line and acts some-
what like grep. It treats its first command-line argument as a regular expres-
sion, and any further arguments as files to search. It should output the names
of any file whose content matches the regular expression.

When that works, extend it so that when one of the arguments is a directory,
it searches through all files in that directory and its subdirectories.

Use asynchronous or synchronous file system functions as you see fit. Setting
things up so that multiple asynchronous actions are requested at the same time
might speed things up a little, but not a huge amount, since most file systems
can only read one thing at a time.

Directory creation

Though the DELETE method in our file server is able to delete directories (using
rmdir), the server currently does not provide any way to create a directory.

Add support for a MKCOL method (“make column”), which should create a
directory by calling mkdir from the fsmodule. MKCOL is not a widely used HTTP
method, but it does exist for this same purpose in the WebDAV standard, which
specifies a set of conventions on top of HTTP that make it suitable for creating
documents.

A public space on the web

Since the file server serves up any kind of file and even includes the right Content
-Type header, you can use it to serve a website. Since it allows everybody to
delete and replace files, it would be an interesting kind of website: one that
can be modified, improved, and vandalized by everybody who takes the time
to create the right HTTP request.

Write a basic HTML page that includes a simple JavaScript file. Put the
files in a directory served by the file server and open them in your browser.

Next, as an advanced exercise or even a weekend project, combine all the
knowledge you gained from this book to build a more user-friendly interface
for modifying the website—from inside the website.

Use an HTML form to edit the content of the files that make up the website,
allowing the user to update them on the server by using HTTP requests as

367

described in Chapter 18.
Start by making only a single file editable. Then make it so that the user

can select which file to edit. Use the fact that our file server returns lists of
files when reading a directory.

Don’t work directly in the code exposed by the file server, since if you make
a mistake you are likely to damage the files there. Instead, keep your work
outside of the publicly accessible directory and copy it there when testing.

368

“If you have knowledge, let others light their candles at it.”
—Margaret Fuller

Chapter 21

Project: Skill-Sharing Website

A skill-sharing meeting is an event where people with a shared interest come
together and give small, informal presentations about things they know. At a
gardening skill-sharing meeting, someone might explain how to cultivate celery.
Or in a programming skill-sharing group, you could drop by and tell people
about Node.js.

Such meetups—also often called users’ groups when they are about computers—
are a great way to broaden your horizon, learn about new developments, or
simply meet people with similar interests. Many larger cities have a JavaScript
meetup. They are typically free to attend, and I’ve found the ones I’ve visited
to be friendly and welcoming.

In this final project chapter, our goal is to set up a website for managing
talks given at a skill-sharing meeting. Imagine a small group of people meeting
up regularly in the office of one of the members to talk about unicycling. The
previous organizer of the meetings moved to another town, and nobody stepped
forward to take over this task. We want a system that will let the participants
propose and discuss talks among themselves, without a central organizer.

The full code for the project can be downloaded from eloquentjavascript.net/
code/skillsharing.zip.

Design

There is a server part to this project, written for Node.js, and a client part,
written for the browser. The server stores the system’s data and provides it to
the client. It also serves the files that implement the client-side system.

The server keeps the list of talks proposed for the next meeting, and the
client shows this list. Each talk has a presenter name, a title, a summary, and
an array of comments associated with it. The client allows users to propose new
talks (adding them to the list), delete talks, and comment on existing talks.
Whenever the user makes such a change, the client makes an HTTP request to
tell the server about it.

369

https://eloquentjavascript.net/code/skillsharing.zip
https://eloquentjavascript.net/code/skillsharing.zip

The application will be set up to show a live view of the current proposed
talks and their comments. Whenever someone, somewhere, submits a new talk
or adds a comment, all people who have the page open in their browsers should
immediately see the change. This poses a bit of a challenge—there is no way
for a web server to open a connection to a client, nor is there a good way to
know which clients are currently looking at a given website.

A common solution to this problem is called long polling, which happens to
be one of the motivations for Node’s design.

Long polling

To be able to immediately notify a client that something changed, we need a
connection to that client. Since web browsers do not traditionally accept con-
nections and clients are often behind routers that would block such connections
anyway, having the server initiate this connection is not practical.

We can arrange for the client to open the connection and keep it around so
that the server can use it to send information when it needs to do so.

But an HTTP request allows only a simple flow of information: the client
sends a request, the server comes back with a single response, and that is it.
There is a technology called web sockets, supported by modern browsers, which
makes it possible to open connections for arbitrary data exchange. But using

370

them properly is somewhat tricky.
In this chapter, we use a simpler technique—long polling—where clients con-

tinuously ask the server for new information using regular HTTP requests, and
the server stalls its answer when it has nothing new to report.

As long as the client makes sure it constantly has a polling request open, it
will receive information from the server quickly after it becomes available. For
example, if Fatma has our skill-sharing application open in her browser, that
browser will have made a request for updates and be waiting for a response
to that request. When Iman submits a talk on Extreme Downhill Unicycling,
the server will notice that Fatma is waiting for updates and send a response
containing the new talk to her pending request. Fatma’s browser will receive
the data and update the screen to show the talk.

To prevent connections from timing out (being aborted because of a lack of
activity), long polling techniques usually set a maximum time for each request,
after which the server will respond anyway, even though it has nothing to
report, after which the client will start a new request. Periodically restarting
the request also makes the technique more robust, allowing clients to recover
from temporary connection failures or server problems.

A busy server that is using long polling may have thousands of waiting
requests, and thus TCP connections, open. Node, which makes it easy to
manage many connections without creating a separate thread of control for
each one, is a good fit for such a system.

HTTP interface

Before we start designing either the server or the client, let’s think about the
point where they touch: the HTTP interface over which they communicate.

We will use JSON as the format of our request and response body. Like in
the file server from Chapter 20, we’ll try to make good use of HTTP methods
and headers. The interface is centered around the /talks path. Paths that
do not start with /talks will be used for serving static files—the HTML and
JavaScript code for the client-side system.

A GET request to /talks returns a JSON document like this:

[{"title": "Unituning",
"presenter": "Jamal",
"summary": "Modifying your cycle for extra style",
"comment": []}]}

371

Creating a new talk is done by making a PUT request to a URL like /talks/
Unituning, where the part after the second slash is the title of the talk. The PUT
request’s body should contain a JSON object that has presenter and summary
properties.

Since talk titles may contain spaces and other characters that may not appear
normally in a URL, title strings must be encoded with the encodeURIComponent
function when building up such a URL.

console.log("/talks/" + encodeURIComponent("How to Idle"));
// → /talks/How%20to%20Idle

A request to create a talk about idling might look something like this:

PUT /talks/How%20to%20Idle HTTP/1.1
Content-Type: application/json
Content-Length: 92

{"presenter": "Maureen",
"summary": "Standing still on a unicycle"}

Such URLs also support GET requests to retrieve the JSON representation of
a talk and DELETE requests to delete a talk.

Adding a comment to a talk is done with a POST request to a URL like /
talks/Unituning/comments, with a JSON body that has author and message
properties.

POST /talks/Unituning/comments HTTP/1.1
Content-Type: application/json
Content-Length: 72

{"author": "Iman",
"message": "Will you talk about raising a cycle?"}

To support long polling, GET requests to /talks may include extra headers
that inform the server to delay the response if no new information is available.
We’ll use a pair of headers normally intended to manage caching: ETag and
If-None-Match.

Servers may include an ETag (“entity tag”) header in a response. Its value is
a string that identifies the current version of the resource. Clients, when they
later request that resource again, may make a conditional request by including
an If-None-Match header whose value holds that same string. If the resource

372

hasn’t changed, the server will respond with status code 304, which means “not
modified”, telling the client that its cached version is still current. When the
tag does not match the server responds as normal.

We need something like this, where the client can tell the server which version
of the list of talks it has, and the server only responds when that list has
changed. But instead of immediately returning a 304 response, the server
should stall the response, and only return when something new is available or
a given amount of time has elapsed. To distinguish long polling requests from
normal conditional requests, we give them another header Prefer: wait=90,
which tells the server that the client is willing wait up to 90 seconds for the
response.

The server will keep a version number that it updates every time the talks
change, and uses that as the ETag value. Clients can make requests like this to
be notified when the talks change:

GET /talks HTTP/1.1
If-None-Match: "4"
Prefer: wait=90

(time passes)

HTTP/1.1 200 OK
Content-Type: application/json
ETag: "5"
Content-Length: 295

[....]

The protocol described here does not do any access control. Everybody can
comment, modify talks, and even delete them. (Since the Internet is full of
hooligans, putting such a system online without further protection probably
wouldn’t end well.)

The server

Let’s start by building the server-side part of the program. The code in this
section runs on Node.js.

373

Routing

Our server will use createServer to start an HTTP server. In the function
that handles a new request, we must distinguish between the various kinds of
requests (as determined by the method and the path) that we support. This
can be done with a long chain of if statements, but there is a nicer way.

A router is a component that helps dispatch a request to the function that
can handle it. You can tell the router, for example, that PUT requests with
a path that matches the regular expression /^\/talks\/([^\/]+)$/ (/talks/
followed by a talk title) can be handled by a given function. In addition, it
can help extract the meaningful parts of the path, in this case the talk title,
wrapped in parentheses in the regular expression, and pass those to the handler
function.

There are a number of good router packages on NPM, but here we’ll write
one ourselves to illustrate the principle.

This is router.js, which we will later require from our server module:

const {parse} = require("url");

module.exports = class Router {
constructor() {

this.routes = [];
}
add(method, url, handler) {

this.routes.push({method, url, handler});
}
resolve(context, request) {

let path = parse(request.url).pathname;

for (let {method, url, handler} of this.routes) {
let match = url.exec(path);
if (!match || request.method != method) continue;
let urlParts = match.slice(1).map(decodeURIComponent);
return handler(context, ...urlParts, request);

}
return null;

}
};

The module exports the Router class. A router object allows new handlers
to be registered with the add method and can resolve requests with its resolve
method.

The latter will return a response when a handler was found, and null other-

374

wise. It tries the routes one at a time (in the order in which they were defined)
until a matching one is found.

The handler functions are called with the context value (which will be the
server instance in our case), match string for any groups they defined in their
regular expression, and the request object. The strings have to be URL-decoded
since the raw URL may contain %20-style codes.

Serving files

When a request matches none of the request types defined in our router, the
server must interpret it as a request for a file in the public directory. It would
be possible to use the file server defined in Chapter 20 to serve such files, but
we neither need nor want to support PUT and DELETE requests on files, and we
would like to have advanced features such as support for caching. So let’s use
a solid, well-tested static file server from NPM instead.

I opted for ecstatic. This isn’t the only such server on NPM, but it works
well and fits our purposes. The ecstatic package exports a function that can
be called with a configuration object to produce a request handler function.
We use the root option to tell the server where it should look for files. The
handler function accepts request and response parameters and can be passed
directly to createServer to create a server that serves only files. We want
to first check for requests that we handle specially, though, so we wrap it in
another function.

const {createServer} = require("http");
const Router = require("./router");
const ecstatic = require("ecstatic");

const router = new Router();
const defaultHeaders = {"Content-Type": "text/plain"};

class SkillShareServer {
constructor(talks) {

this.talks = talks;
this.version = 0;
this.waiting = [];

let fileServer = ecstatic({root: "./public"});
this.server = createServer((request, response) => {

let resolved = router.resolve(this, request);
if (resolved) {

resolved.catch(error => {
if (error.status != null) return error;

375

return {body: String(error), status: 500};
}).then(({body,

status = 200,
headers = defaultHeaders}) => {

response.writeHead(status, headers);
response.end(body);

});
} else {

fileServer(request, response);
}

});
}
start(port) {

this.server.listen(port);
}
stop() {

this.server.close();
}

}

This uses a similar convention as the file server from the previous chapter
for responses—handlers return promises that resolve to objects describing the
response. It wraps the server in an object that also holds its state.

Talks as resources

The talks that have been proposed are stored in the talks property of the
server, an object whose property names are the talk titles. These will be
exposed as HTTP resources under /talks/[title], so we need to add handlers
to our router that implement the various methods that clients can use to work
with them.

The handler for requests that GET a single talk must look up the talk and
respond either with the talk’s JSON data or with a 404 error response.

const talkPath = /^\/talks\/([^\/]+)$/;

router.add("GET", talkPath, async (server, title) => {
if (title in server.talks) {

return {body: JSON.stringify(server.talks[title]),
headers: {"Content-Type": "application/json"}};

} else {
return {status: 404, body: `No talk '${title}' found`};

}

376

});

Deleting a talk is done by removing it from the talks object.

router.add("DELETE", talkPath, async (server, title) => {
if (title in server.talks) {

delete server.talks[title];
server.updated();

}
return {status: 204};

});

The updated method, which we will define later, notifies waiting long polling
requests about the change.

To retrieve the content of a request body, we define a function called readStream
, which reads all content from a readable stream and returns a promise that
resolves to a string.

function readStream(stream) {
return new Promise((resolve, reject) => {

let data = "";
stream.on("error", reject);
stream.on("data", chunk => data += chunk.toString());
stream.on("end", () => resolve(data));

});
}

One handler that needs to read request bodies is the PUT handler, which
is used to create new talks. It has to check whether the data it was given
has presenter and summary properties which are strings. Any data coming
from outside the system might be nonsense, and we don’t want to corrupt our
internal data model or crash when bad requests come in.

If the data looks valid, the handler stores an object that represents the new
talk in the talks object, possibly overwriting an existing talk with this title,
and again calls updated.

router.add("PUT", talkPath,
async (server, title, request) => {

let requestBody = await readStream(request);
let talk;
try { talk = JSON.parse(requestBody); }
catch (_) { return {status: 400, body: "Invalid JSON"}; }

377

if (!talk ||
typeof talk.presenter != "string" ||
typeof talk.summary != "string") {

return {status: 400, body: "Bad talk data"};
}
server.talks[title] = {title,

presenter: talk.presenter,
summary: talk.summary,
comments: []};

server.updated();
return {status: 204};

});

Adding a comment to a talk works similarly. We use readStream to get the
content of the request, validate the resulting data, and store it as a comment
when it looks valid.

router.add("POST", /^\/talks\/([^\/]+)\/comments$/,
async (server, title, request) => {

let requestBody = await readStream(request);
let comment;
try { comment = JSON.parse(requestBody); }
catch (_) { return {status: 400, body: "Invalid JSON"}; }

if (!comment ||
typeof comment.author != "string" ||
typeof comment.message != "string") {

return {status: 400, body: "Bad comment data"};
} else if (title in server.talks) {

server.talks[title].comments.push(comment);
server.updated();
return {status: 204};

} else {
return {status: 404, body: `No talk '${title}' found`};

}
});

Trying to add a comment to a nonexistent talk returns a 404 error.

378

Long polling support

The most interesting aspect of the server is the part that handles long polling.
When a GET request comes in for /talks, it may either be a regular request or
a long polling request.

There will be multiple places in which we have to send an array of talks to
the client, so we first define a helper method that builds up such an array and
includes an ETag header in the response.

SkillShareServer.prototype.talkResponse = function() {
let talks = [];
for (let title of Object.keys(this.talks)) {

talks.push(this.talks[title]);
}
return {

body: JSON.stringify(talks),
headers: {"Content-Type": "application/json",

"ETag": `"${this.version}"`}
};

};

The handler itself needs to look at the request headers to see whether If-
None-Match and Prefer headers are present. Node stores headers, whose names
are specified to be case-insensitive, under their lowercase names.

router.add("GET", /^\/talks$/, async (server, request) => {
let tag = /"(.*)"/.exec(request.headers["if-none-match"]);
let wait = /\bwait=(\d+)/.exec(request.headers["prefer"]);
if (!tag || tag[1] != server.version) {

return server.talkResponse();
} else if (!wait) {

return {status: 304};
} else {

return server.waitForChanges(Number(wait[1]));
}

});

If no tag was given, or a tag was given that doesn’t match the server’s current
version, the handler responds with the list of talks. If the request is conditional
and the talks did not change, we consult the Prefer header to see if we should
delay the response or respond right away.

Callback functions for delayed requests are stored in the server’s waiting ar-
ray, so that they can be notified when something happens. The waitForChanges

379

method also immediately sets a timer to respond with a 304 status when the
request has waited long enough.

SkillShareServer.prototype.waitForChanges = function(time) {
return new Promise(resolve => {

this.waiting.push(resolve);
setTimeout(() => {

if (!this.waiting.includes(resolve)) return;
this.waiting = this.waiting.filter(r => r != resolve);
resolve({status: 304});

}, time * 1000);
});

};

Registering a change with updated increases the version property and wakes
up all waiting requests.

SkillShareServer.prototype.updated = function() {
this.version++;
let response = this.talkResponse();
this.waiting.forEach(resolve => resolve(response));
this.waiting = [];

};

That concludes the server code. If we create an instance of SkillShareServer
and start it on port 8000, the resulting HTTP server serves files from the public
subdirectory alongside a talk-managing interface under the /talks URL.

new SkillShareServer(Object.create(null)).start(8000);

The client

The client-side part of the skill-sharing website consists of three files: a tiny
HTML page, a style sheet, and a JavaScript file.

HTML

It is a widely used convention for web servers to try to serve a file named
index.html when a request is made directly to a path that corresponds to a
directory. The file server module we use, ecstatic, supports this convention.

380

When a request is made to the path /, the server looks for the file ./public/
index.html (./public being the root we gave it) and returns that file if found.

Thus, if we want a page to show up when a browser is pointed at our server,
we should put it in public/index.html. This is our index file:

<!doctype html>
<meta charset="utf-8">
<title>Skill Sharing</title>
<link rel="stylesheet" href="skillsharing.css">

<h1>Skill Sharing</h1>

<script src="skillsharing_client.js"></script>

It defines the document title and includes a style sheet, which defines a few
styles to, among other things, make sure there is some space between talks.

At the bottom, it adds a heading at the top of the page and loads the script
that contains the client-side application.

Actions

The application state consists of the list of talks and the name of the user, and
we’ll store it in a {talks, user} object. We don’t allow the user interface to
directly manipulate the state or send off HTTP requests. Rather, it may emit
actions, which describe what the user is trying to do.

The handleAction function takes such an action and makes it happen. Be-
cause our state updates are so simple, state changes are handled in the same
function.

function handleAction(state, action) {
if (action.type == "setUser") {

localStorage.setItem("userName", action.user);
return Object.assign({}, state, {user: action.user});

} else if (action.type == "setTalks") {
return Object.assign({}, state, {talks: action.talks});

} else if (action.type == "newTalk") {
fetchOK(talkURL(action.title), {

method: "PUT",
headers: {"Content-Type": "application/json"},
body: JSON.stringify({

presenter: state.user,
summary: action.summary

})

381

}).catch(reportError);
} else if (action.type == "deleteTalk") {

fetchOK(talkURL(action.talk), {method: "DELETE"})
.catch(reportError);

} else if (action.type == "newComment") {
fetchOK(talkURL(action.talk) + "/comments", {

method: "POST",
headers: {"Content-Type": "application/json"},
body: JSON.stringify({

author: state.user,
message: action.message

})
}).catch(reportError);

}
return state;

}

We’ll store the user’s name in localStorage, so that it can be restored when
the page is loaded.

The actions that need to involve the server make network requests, using
fetch, to the HTTP interface we described earlier. We use a wrapper function,
fetchOK, which makes sure the returned promise is rejected when the server
returns an error code.

function fetchOK(url, options) {
return fetch(url, options).then(response => {

if (response.status < 400) return response;
else throw new Error(response.statusText);

});
}

And this helper function is used to build up a URL for a talks with a given
title.

function talkURL(title) {
return "talks/" + encodeURIComponent(title);

}

When the request fails, we don’t want to have our page just sit there, doing
nothing without explanation. So we define a function called reportError, which
at least shows the user a dialog that tells them something went wrong.

382

function reportError(error) {
alert(String(error));

}

Rendering components

We’ll use an approach similar to the one we saw in Chapter 19, splitting the
application into components. But since some of the components either never
need to update or are always fully redrawn when updated, we’ll define those
not as classes, but as functions that directly return a DOM node. For example,
here is a component that shows the field where the user can enter their name:

function renderUserField(name, dispatch) {
return elt("label", {}, "Your name: ", elt("input", {

type: "text",
value: name,
onchange(event) {

dispatch({type: "setUser", user: event.target.value});
}

}));
}

The elt function used to construct DOM elements is the one we used in
Chapter 19.

A similar function is used to render talks, which include a list of comments
and a form for adding a new comment.

function renderTalk(talk, dispatch) {
return elt(
"section", {className: "talk"},
elt("h2", null, talk.title, " ", elt("button", {

type: "button",
onclick() {

dispatch({type: "deleteTalk", talk: talk.title});
}

}, "Delete")),
elt("div", null, "by ",

elt("strong", null, talk.presenter)),
elt("p", null, talk.summary),
...talk.comments.map(renderComment),
elt("form", {

onsubmit(event) {

383

event.preventDefault();
let form = event.target;
dispatch({type: "newComment",

talk: talk.title,
message: form.elements.comment.value});

form.reset();
}

}, elt("input", {type: "text", name: "comment"}), " ",
elt("button", {type: "submit"}, "Add comment")));

}

The "submit" event handler calls form.reset to clear the form’s content after
creating a "newComment" action.

When creating moderately complex pieces of DOM, this style of program-
ming starts to look rather messy. There’s a widely used (non-standard) JavaScript
extension called JSX that lets you write HTML directly in your scripts, which
can make such code prettier (depending on what you consider pretty). Before
you can actually run such code, you have to run a program on your script to
converts the pseudo-HTML into JavaScript function calls much like the ones
we use here.

Comments are simpler to render.

function renderComment(comment) {
return elt("p", {className: "comment"},

elt("strong", null, comment.author),
": ", comment.message);

}

And finally, the form that the user can use to create a new talk is rendered
like this.

function renderTalkForm(dispatch) {
let title = elt("input", {type: "text"});
let summary = elt("input", {type: "text"});
return elt("form", {

onsubmit(event) {
event.preventDefault();
dispatch({type: "newTalk",

title: title.value,
summary: summary.value});

event.target.reset();
}

}, elt("h3", null, "Submit a Talk"),

384

elt("label", null, "Title: ", title),
elt("label", null, "Summary: ", summary),
elt("button", {type: "submit"}, "Submit"));

}

Polling

To start the app we need the current list of talks. Since the initial load is closely
related to the long polling process—the ETag from the load must be used when
polling—we’ll write a function that keeps polling the server for /talks, and
calls a callback function when a new set of talks is available.

async function pollTalks(update) {
let tag = undefined;
for (;;) {

let response;
try {

response = await fetchOK("/talks", {
headers: tag && {"If-None-Match": tag,

"Prefer": "wait=90"}
});

} catch (e) {
console.log("Request failed: " + e);
await new Promise(resolve => setTimeout(resolve, 500));
continue;

}
if (response.status == 304) continue;
tag = response.headers.get("ETag");
update(await response.json());

}
}

This is an async function, so that looping and waiting for the request is easier.
It runs an infinite loop that, on each iteration, retrieves the list of talks—either
normally or, if this isn’t the first request, with the headers included that make
it a long polling request.

When a request fails, the function waits a moment, and then tries again.
This way, if your network connection goes away for a while and then comes
back, the application can recover and continue updating. The promise resolved
via setTimeout is a way to force the async function to wait.

When the server gives back a 304 response, that means a long polling request

385

timed out, so the function should just immediately start the next request. If
the response is a normal 200 response, its body is read as JSON and passed to
the callback, and its ETag header value stored for the next iteration.

The application

The following component ties the whole user interface together.

class SkillShareApp {
constructor(state, dispatch) {

this.dispatch = dispatch;
this.talkDOM = elt("div", {className: "talks"});
this.dom = elt("div", null,

renderUserField(state.user, dispatch),
this.talkDOM,
renderTalkForm(dispatch));

this.setState(state);
}

setState(state) {
if (state.talks != this.talks) {

this.talkDOM.textContent = "";
for (let talk of state.talks) {

this.talkDOM.appendChild(
renderTalk(talk, this.dispatch));

}
this.talks = state.talks;

}
}

}

When the talks change, this component redraws all of them. This is simple,
but also wasteful. We’ll get back to that in the exercises.

We can start the application like this:

function runApp() {
let user = localStorage.getItem("userName") || "Anon";
let state, app;
function dispatch(action) {

state = handleAction(state, action);
app.setState(state);

}

pollTalks(talks => {

386

if (!app) {
state = {user, talks};
app = new SkillShareApp(state, dispatch);
document.body.appendChild(app.dom);

} else {
dispatch({type: "setTalks", talks});

}
}).catch(reportError);

}

runApp();

If you run the server and open two browser windows for localhost:8000 next
to each other, you can see that the actions you perform in one window are
immediately visible in the other.

Exercises

The following exercises will involve modifying the system defined in this chap-
ter. To work on them, make sure you download the code first (eloquent-
javascript.net/code/skillsharing.zip), have Node installed nodejs.org, and have
installed the project’s dependency with npm install.

Disk persistence

The skill-sharing server keeps its data purely in memory. This means that when
it crashes or is restarted for any reason, all talks and comments are lost.

Extend the server so that it stores the talk data to disk and automatically
reloads the data when it is restarted. Do not worry about efficiency—do the
simplest thing that works.

Comment field resets

The wholesale redrawing of talks works pretty well because you usually can’t
tell the difference between a DOM node and its identical replacement. But
there are exceptions. If you start typing something in the comment field for a
talk in one browser window and then, in another, add a comment to that talk,
the field in the first window will be redrawn, removing both its content and its
focus.

387

http://localhost:8000/
https://eloquentjavascript.net/code/skillsharing.zip
https://eloquentjavascript.net/code/skillsharing.zip
https://nodejs.org

In a heated discussion, where multiple people are adding comments at the
same time, this would be very annoying. Can you come up with a way to solve
it?

388

Exercise Hints

The hints below might help when you are stuck with one of the exercises in
this book. They don’t give away the entire solution, but rather try to help you
find it yourself.

Program Structure

Looping a triangle

You can start with a program that prints out the numbers 1 to 7, which you
can derive by making a few modifications to the even number printing example
given earlier in the chapter, where the for loop was introduced.

Now consider the equivalence between numbers and strings of hash charac-
ters. You can go from 1 to 2 by adding 1 (+= 1). You can go from "#" to
"##" by adding a character (+= "#"). Thus, your solution can closely follow
the number-printing program.

FizzBuzz

Going over the numbers is clearly a looping job, and selecting what to print is
a matter of conditional execution. Remember the trick of using the remainder
(%) operator for checking whether a number is divisible by another number (has
a remainder of zero).

In the first version, there are three possible outcomes for every number, so
you’ll have to create an if/else if/else chain.

The second version of the program has a straightforward solution and a clever
one. The simple way is to add another conditional “branch” to precisely test
the given condition. For the clever method, build up a string containing the
word or words to output and print either this word or the number if there is
no word, potentially by making good use of the || operator.

389

Chess board

The string can be built by starting with an empty one ("") and repeatedly
adding characters. A newline character is written "\n".

To work with two dimensions, you will need a loop inside of a loop. Put
curly braces around the bodies of both loops to make it easy to see where they
start and end. Try to properly indent these bodies. The order of the loops
must follow the order in which we build up the string (line by line, left to right,
top to bottom). So the outer loop handles the lines and the inner loop handles
the characters on a line.

You’ll need two bindings to track your progress. To know whether to put a
space or a hash sign at a given position, you could test whether the sum of the
two counters is even (% 2).

Terminating a line by adding a newline character must happen after the line
has been built up, so do this after the inner loop but inside of the outer loop.

Functions

Minimum

If you have trouble putting braces and parentheses in the right place to get a
valid function definition, start by copying one of the examples in this chapter
and modifying it.

A function may contain multiple return statements.

Recursion

Your function will likely look somewhat similar to the inner find function in the
recursive findSolution example in this chapter, with an if/else if/else chain
that tests which of the three cases applies. The final else, corresponding to
the third case, makes the recursive call. Each of the branches should contain
a return statement or in some other way arrange for a specific value to be
returned.

When given a negative number, the function will recurse again and again,
passing itself an ever more negative number, thus getting further and further
away from returning a result. It will eventually run out of stack space and
abort.

390

Bean counting

Your function will need a loop that looks at every character in the string. It
can run an index from zero to one below its length (< string.length). If the
character at the current position is the same as the one the function is looking
for, it adds 1 to a counter variable. Once the loop has finished, the counter can
be returned.

Take care to make all the bindings used in the function local to the function
by properly declaring them with the let or const keyword.

Data Structures: Objects and Arrays

The sum of a range

Building up an array is most easily done by first initializing a binding to []
(a fresh, empty array) and repeatedly calling its push method to add a value.
Don’t forget to return the array at the end of the function.

Since the end boundary is inclusive, you’ll need to use the <= operator rather
than < to check for the end of your loop.

The step parameter can be an optional parameter that defaults (using the =
operator) to 1.

Having range understand negative step values is probably best done by writ-
ing two separate loops—one for counting up and one for counting down—
because the comparison that checks whether the loop is finished needs to be >=
rather than <= when counting downward.

It might also be worthwhile to use a different default step, namely -1, when
the end of the range is smaller than the start. That way, range(5, 2) re-
turns something meaningful, rather than getting stuck in an infinite loop. It is
possible to refer to previous parameters in the default value of a parameter.

Reversing an array

There are two obvious ways to implement reverseArray. The first is to simply
go over the input array from front to back and use the unshift method on
the new array to insert each element at its start. The second is to loop over
the input array backwards and use the push method. Iterating over an array
backwards requires a (somewhat awkward) for specification, like (let i =
array.length - 1; i >= 0; i--).

Reversing the array in place is harder. You have to be careful not to overwrite
elements that you will later need. Using reverseArray or otherwise copying

391

the whole array (array.slice(0) is a good way to copy an array) works but is
cheating.

The trick is to swap the first and last elements, then the second and second-
to-last, and so on. You can do this by looping over half the length of the array
(use Math.floor to round down—you don’t need to touch the middle element
in an array with an odd number of elements) and swapping the element at
position i with the one at position array.length - 1 - i. You can use a local
binding to briefly hold on to one of the elements, overwrite that one with its
mirror image, and then put the value from the local binding in the place where
the mirror image used to be.

A list

Building up a list is easier when done back to front. So arrayToList could
iterate over the array backwards (see previous exercise) and, for each element,
add an object to the list. You can use a local binding to hold the part of the
list that was built so far and use an assignment like list = {value: X, rest:
list} to add an element.
To run over a list (in listToArray and nth), a for loop specification like this

can be used:

for (let node = list; node; node = node.rest) {}

Can you see how that works? Every iteration of the loop, node points to the
current sublist, and the body can read its value property to get the current
element. At the end of an iteration, node moves to the next sublist. When that
is null, we have reached the end of the list and the loop is finished.

The recursive version of nth will, similarly, look at an ever smaller part of
the “tail” of the list and at the same time count down the index until it reaches
zero, at which point it can return the value property of the node it is looking
at. To get the zeroeth element of a list, you simply take the value property of
its head node. To get element N + 1, you take the _N_th element of the list
that’s in this list’s rest property.

Deep comparison

Your test for whether you are dealing with a real object will look something like
typeof x == "object" && x != null. Be careful to compare properties only
when both arguments are objects. In all other cases you can just immediately
return the result of applying ===.

392

Use Object.keys to go over the properties. You need to test whether both
objects have the same set of property names and whether those properties have
identical values. One way to do that is to ensure that both objects have the
same number of properties (the lengths of the property lists are the same).
And then, when looping over one of the object’s properties in order to compare
them, always first make sure the other actually has a property by that name.
If they have the same number of properties, and all properties in one also exist
in the other, they have the same set of property names.

Returning the correct value from the function is best done by immediately
returning false when a mismatch is found and returning true at the end of the
function.

Higher-Order Functions

Everything

Like the && operator, the every method can stop evaluating further elements
as soon as it has found one that doesn’t match. So the loop-based version
can jump out of the loop—with break or return—as soon as it runs into an
element for which the predicate function returns false. If the loop runs to its
end without finding such an element, we know that all elements matched and
we should return true.

To build every on top of some, we can apply De Morgan’s laws, which state
that a && b equals !(!a || !b). This can be generalized to arrays, where all
elements in the array match if there is no element in the array that does not
match.

Dominant writing direction

Your solution might look a lot like the first half of the textScripts example.
You again have to count characters by a criterion based on characterScript,
and then filter out the part of the result that refers to uninteresting (script-less
characters).

Finding the direction with the highest character count can be done with
reduce. If it’s not clear how, refer back to the example earlier in the chapter,
where reduce was used to find the script with the most characters.

393

The Secret Life of Objects

A vector type

Look back to the Rabbit class example if you’re unsure how class declarations
look.

Adding a getter property to the constructor can be done by putting the word
get before the method name. To compute the distance from (0, 0) to (x, y), you
can use the Pythagorean theorem, which says that the square of the distance
we are looking for is equal to the square of the x-coordinate plus the square of
the y-coordinate. Thus,

√
x2 + y2 is the number you want, and Math.sqrt is

the way you compute a square root in JavaScript.

Groups

The easiest way to do this is to store an array of group members in an instance
property. The includes or indexOf methods can be used to check whether a
given value is in the array.

Your class’ constructor can set the member collection to an empty array.
When add is called, it must check whether the given value is in the array, and
add it, for example with push, otherwise.

Deleting an element from an array, in delete, is less straightforward, but
you can use filter to create a new array without the value. Don’t forget to
overwrite the property holding the members with the newly filtered version of
the array.

The from method can use a for/of loop to get the values out of the iterable
object and call add to put them into a newly created group.

Iterable groups

It is probably worthwhile to define a new class GroupIterator. Iterator in-
stances should have a property that tracks the current position in the group.
Every time next is called, it checks whether it is done, and if not, moves past
the current value and returns it.

The Group class itself gets a method named by Symbol.iterator that, when
called, returns a new instance of the iterator class for that group.

Borrowing a method

Remember that methods that exist on plain objects come from Object.prototype
.

394

And that you can call a function with a specific this binding by using its
call method.

Project: A Robot

Measuring a robot

You’ll have to write a variant of the runRobot function that, instead of log-
ging the events to the console, returns the number of steps the robot took to
complete the task.

Your measurement function can then, in a loop, generate new states and
count the steps each of the robots takes. When it has generated enough mea-
surements, it can use console.log to output the average for each robot, which
is the total amount of steps taken divided by the number of measurements.

Robot efficiency

The main limitation of goalOrientedRobot is that it only considers one parcel
at a time. It will often walk back and forth across the village because the parcel
it happens to be looking at happens to be at the other side of the map, even if
there are others much closer.

One possible solution would be to compute routes for all packages, and then
take the shortest one. Even better results can be obtained, if there are multiple
shortest routes, by preferring the ones that go to pick up a package instead of
delivering a package.

Persistent group

The most convenient way to represent the set of member values is still an array,
since those are easy to copy.

When a value is added to the group, you can create a new group with a copy
of the original array that has the value added (for example, using concat).
When a value is deleted, you filter it from the array.

The class’ constructor can take such an array as argument, and store it as
the instance’s (only) property. This array is never updated.

To add a property (empty) to a constructor that is not a method, you have
to add it to the constructor after the class definition, as a regular property.

You only need one empty instance because all empty groups are the same
and instances of the class don’t change. You can create many different groups
from that single empty group without affecting it.

395

Bugs and Errors

Retry

The call to primitiveMultiply should definitely happen in a try block. The
corresponding catch block should rethrow the exception when it is not an
instance of MultiplicatorUnitFailure and ensure the call is retried when it is.

To do the retrying, you can either use a loop that breaks only when a call
succeeds—as in the look example earlier in this chapter—or use recursion and
hope you don’t get a string of failures so long that it overflows the stack (which
is a pretty safe bet).

The locked box

This exercise calls for a finally block. Your function should first unlock the
box and then call the argument function from inside a try body. The finally
block after it should lock the box again.

To make sure we don’t lock the box when it wasn’t already locked, check its
lock at the start of the function and unlock and lock it only when it started
out locked.

Regular Expressions

Quoting style

The most obvious solution is to only replace quotes with a nonword character
on at least one side. Something like /\W'|'\W/. But you also have to take the
start and end of the line into account.

In addition, you must ensure that the replacement also includes the charac-
ters that were matched by the \W pattern so that those are not dropped. This
can be done by wrapping them in parentheses and including their groups in
the replacement string ($1, $2). Groups that are not matched will be replaced
by nothing.

Numbers again

First, do not forget the backslash in front of the period.
Matching the optional sign in front of the number, as well as in front of the

exponent, can be done with [+\-]? or (\+|-|) (plus, minus, or nothing).
The more complicated part of the exercise is the problem of matching both

"5." and ".5" without also matching ".". For this, a good solution is to use

396

the | operator to separate the two cases—either one or more digits optionally
followed by a dot and zero or more digits or a dot followed by one or more
digits.

Finally, to make the e case-insensitive, either add an i option to the regular
expression or use [eE].

Modules

A modular robot

Here’s what I would have done (but again, there is no single right way to design
a given module):

The code used to build the road graph lives in the graph module. Because
I’d rather use dijkstrajs from NPM than our own pathfinding code, we’ll
make this build the kind of graph data that dijkstajs expects. This module
exports a single function, buildGraph. I’d have buildGraph accept an array of
two-element arrays, rather than strings containing dashes, to make the module
less dependent on the input format.

The roads module contains the raw road data (the roads array) and the
roadGraph binding. This module depends on ./graph and exports the road
graph.

The VillageState class lives in the state module. It depends on the ./
roads module, because it needs to be able to verify that a given road exists.
It also needs randomPick. Since that is a three-line function, we could just
put it into the state module as an internal helper function. But randomRobot
needs it too. So we’d have to either duplicate it or put it into its own module.
Since this function happens to exist on NPM in the random-item package, a
good solution is to just make both modules depend on that. We can add the
runRobot function to this module as well, since it’s small and closely related to
state management. The module exports both the VillageState class and the
runRobot function.

Finally, the robots, along with the values they depend on such as mailRoute
, could go into an example-robots module, which depends on ./roads and
exports the robot functions. To make it possible for the goalOrientedRobot to
do route-finding, this module also depends on dijkstrajs.

By offloading some work to NPM modules, the code became a little smaller.
Each individual module does something rather simple, and can be read on its
own. Dividing code into modules also often suggests further improvements to
the program’s design. In this case, it seems a little odd that the VillageState
and the robots depend on a specific road graph. It might be a better idea to

397

make the graph an argument to the state’s constructor and make the robots
read it from the state object—this reduces dependencies (which is always good)
and makes it possible to run simulations on different maps (which is even
better).

Is it a good idea to use NPM modules for things that we could have written
ourselves? In principle, yes—for nontrivial things like the pathfinding function
you are likely to make mistakes and waste time writing them yourself. For tiny
functions like random-item, writing them yourself is easy enough. But adding
them wherever you need them does tend to clutter your modules.

However, you should also not underestimate the work involved in finding an
appropriate NPM package. And even if you find one, it might not work well
or may be missing some feature you need. On top of that, depending on NPM
packages means you have to make sure they are installed, you have to distribute
them with your program, and you might have to periodically upgrade them.

So again, this is a trade-off, and you can decide either way depending on how
much the packages help you.

Roads module

Since this is a CommonJS module, you have to use require to import the graph
module. That was described as exporting a buildGraph function, which you
can pick out of its interface object with a destructuring const declaration.

To export roadGraph, you add a property to the exports object. Because
buildGraph takes a data structure that doesn’t precisely match roads, the split-
ting of the road strings must happen in your module.

Circular dependencies

The trick is that require adds modules to its cache before it starts loading the
module. That way, if any require call made while it is running tries to load
it, it is already known and the current interface will be returned, rather than
starting to load the module once more (which would eventually overflow the
stack).

If a module overwrites its module.exports value, any other module that has
received its interface value before it finished loading will have gotten hold of
the default interface object (which is likely empty), rather than the intended
interface value.

398

Asynchronous Programming

Tracking the scalpel

This can be done with a single loop that searches through the nests, moving
forward to the next when it finds a value that doesn’t match the current nest’s
name, and returning the name when it finds a matching value. In the async
function, a regular for or while loop can be used.

To do the same in a plain function, you will have to build your loop using
a recursive function. The easiest way to do this is to have that function re-
turn a promise by calling then on the promise that retrieves the storage value.
Depending on whether that value matches the name of the current nest, the
handler returns that value or a further promise created by calling the loop
function again.

Don’t forget to start the loop by calling the recursive function once from the
main function.

In the async function, rejected promises are converted to exceptions by await
. When an async function throws an exception, its promise is rejected. So that
works.

If you implemented the non-async function as outlined above, the way then
works also automatically causes a failure to end up in the returned promise.
If a request fails, the handler passed to then isn’t called, and the promise it
returns is rejected with the same reason.

Building Promise.all

The function passed to the Promise constructor will have to call then on each
of the promises in the given array. When one of them succeeds, two things
need to happen. The resulting value needs to be stored in the correct position
of a result array, and we must check whether this was the last pending promise
and finish our own promise if it was.

The latter can be done with a counter that is initialized to the length of
the input array and from which we subtract 1 every time a promise succeeds.
When it reaches 0, we are done. Make sure you take into account the situation
where the input array is empty (and thus no promise will ever resolve).

Handling failure requires some thought but turns out to be extremely simple.
Just pass the reject function of the wrapping promise to each of the promises
in the array as a catch handler or as second argument to then so that a failure
in one of them triggers the rejection of the whole wrapper promise.

399

Project: A Programming Language

Arrays

The easiest way to do this is to represent Egg arrays with JavaScript arrays.
The values added to the top scope must be functions. By using a rest argu-

ment (with triple-dot notation), the definition of array can be very simple.

Closure

Again, we are riding along on a JavaScript mechanism to get the equivalent
feature in Egg. Special forms are passed the local scope in which they are
evaluated so that they can evaluate their subforms in that scope. The function
returned by fun has access to the scope argument given to its enclosing function
and uses that to create the function’s local scope when it is called.

This means that the prototype of the local scope will be the scope in which
the function was created, which makes it possible to access bindings in that
scope from the function. This is all there is to implementing closure (though
to compile it in a way that is actually efficient, you’d need to do some more
work).

Comments

Make sure your solution handles multiple comments in a row, with potentially
whitespace between or after them.

A regular expression is probably the easiest way to solve this. Write some-
thing that matches “whitespace or a comment, zero or more times”. Use the
exec or match method and look at the length of the first element in the returned
array (the whole match) to find out how many characters to slice off.

Fixing scope

You will have to loop through one scope at a time, using Object.getPrototypeOf
to go the next outer scope. For each scope, use hasOwnProperty to find out
whether the binding, indicated by the name property of the first argument to
set, exists in that scope. If it does, set it to the result of evaluating the second
argument to set and then return that value.

If the outermost scope is reached (Object.getPrototypeOf returns null) and
we haven’t found the binding yet, it doesn’t exist, and an error should be
thrown.

400

The Document Object Model

Build a table

You can use document.createElement to create new element nodes, document.
createTextNode to create text nodes, and the appendChildmethod to put nodes
into other nodes.

You’ll want to loop over the key names once to fill in the top row and then
again for each object in the array to construct the data rows. To get an array
of key names from the first object, Object.keys will be useful.

To add the table to the correct parent node, you can use document.getElementById
or document.querySelector to find the node with the proper id attribute.

Elements by tag name

The solution is most easily expressed with a recursive function, similar to the
talksAbout function defined earlier in this chapter.

You could call byTagname itself recursively, concatenating the resulting arrays
to produce the output. Or you can create an inner function that calls itself
recursively and that has access to an array binding defined in the outer function,
to which it can add the matching elements it finds. Don’t forget to call the
inner function once from the outer function to start the process.

The recursive function must check the node type. Here we are interested
only in node type 1 (document.ELEMENT_NODE). For such nodes, we must loop
over their children and, for each child, see whether the child matches the query
while also doing a recursive call on it to inspect its own children.

The cat's hat

Math.cos and Math.sin measure angles in radians, where a full circle is 2π. For
a given angle, you can get the opposite angle by adding half of this, one time
Math.PI. This can be useful for putting the hat on the opposite side of the
orbit.

Handling Events

Balloon

You’ll want to register a handler for the "keydown" event, and look at event.key
to figure out whether the up or down arrow key was pressed.

401

The current size can be kept in a binding, so that you can base the new
size on it. It’ll be helpful to define a function that updates the size—both the
binding and the style of the balloon in the DOM, so that you can call it from
your event handler, and possibly also once when starting, to set the initial size.

You can change the balloon to an explosion by replacing the text node with
another one (using replaceChild), or by setting the textContent property of
its parent node to a new string.

Mouse trail

Creating the elements is best done with a loop. Append them to the document
to make them show up. To be able to access them later in order to change
their position, you’ll want to store the elements in an array.

Cycling through them can be done by keeping a counter variable and adding
1 to it every time the "mousemove" event fires. The remainder operator (%
elements.length) can then be used to get a valid array index to pick the
element you want to position during a given event.

Another interesting effect can be achieved by modeling a simple physics
system. Use the "mousemove" event only to update a pair of bindings that
track the mouse position. Then use requestAnimationFrame to simulate the
trailing elements being attracted to the position of the mouse pointer. At
every animation step, update their position based on their position relative to
the pointer (and, optionally, a speed that is stored for each element). Figuring
out a good way to do this is up to you.

Tabs

One pitfall you might run into is that you can’t directly use the node’s childNodes
property as a collection of tab nodes. For one thing, when you add the buttons,
they will also become child nodes and end up in this object because it is a live
data structure. For another, the text nodes created for the whitespace between
the nodes are also in childNodes, but should not get their own tabs. You can
use children instead of childNodes to ignore text nodes.

You could start by building up an array of tabs, so that you have easy access
to them. To implement the styling of the buttons, you could store objects that
contain both tab panel and its button.

I recommend writing a separate function for changing tabs. You can either
store the previously selected tab, and only change the styles needed to hide
that and show the new one, or you can just update the style of all tabs every
time a new tab is selected.

402

You might want to call this function immediately, to make the interface start
with the first tab visible.

Project: A Platform Game

Pausing the game

An animation can be interrupted by returning false from the function given
to runAnimation. It can be continued by calling runAnimation again.

So we need to communicate the fact that we are pausing the game to the
function given to runAnimation. For that, you can use a binding that both the
event handler and that function have access to.

When finding a way to unregister the handlers registered by trackKeys, re-
member that the exact same function value that was passed to addEventListener
must be passed to removeEventListener to successfully remove a handler.
Thus, the handler function value created in trackKeys must be available to the
code that unregisters the handlers.

You can add a property to the object returned by trackKeys, containing
either that function value or a method that handles the unregistering directly.

A monster

If you want to implement a type of motion that is stateful, such as bounc-
ing, make sure you store the necessary state in the actor object—include it as
constructor argument and add it as a property.

Remember that update returns a new object, rather than changing the old
one.

When handling collision, find the player in state.actors and compare its
position to the monster’s position. To get the bottom of the player, you have
to add its vertical size to its vertical position. The creation of an updated
state will resemble either Coin’s collide method (removing the actor) or Lava
’s (changing the status to "lost"), depending on the player position.

Drawing on Canvas

Shapes

The trapezoid (1) is easiest to draw using a path. Pick suitable center coordi-
nates and add each of the four corners around that.

403

The diamond (2) can be drawn the straightforward way, with a path, or the
interesting way, with a rotate transformation. To use rotation, you will have to
apply a trick similar to what we did in the flipHorizontally function. Because
you want to rotate around the center of your rectangle and not around the point
(0,0), you must first translate to there, then rotate, and then translate back.

Make sure you reset the transformation after drawing any shape that creates
one.

For the zigzag (3) it becomes impractical to write a new call to lineTo for
each line segment. Instead, you should use a loop. You can have each iteration
draw either two line segments (right and then left again) or one, in which case
you must use the evenness (% 2) of the loop index to determine whether to go
left or right.

You’ll also need a loop for the spiral (4). If you draw a series of points, with
each point moving further along a circle around the spiral’s center, you get a
circle. If, during the loop, you vary the radius of the circle on which you are
putting the current point and go around more than once, the result is a spiral.

The star (5) depicted is built out of quadraticCurveTo lines. You could
also draw one with straight lines. Divide a circle into eight pieces for a
star with eight points, or however many pieces you want. Draw lines be-
tween these points, making them curve toward the center of the star. With
quadraticCurveTo, you can use the center as the control point.

The pie chart

You will need to call fillText and set the context’s textAlign and textBaseline
properties in such a way that the text ends up where you want it.
A sensible way to position the labels would be to put the text on the line

going from the center of the pie through the middle of the slice. You don’t
want to put the text directly against the side of the pie but rather move the
text out to the side of the pie by a given number of pixels.

The angle of this line is currentAngle + 0.5 * sliceAngle. The following
code finds a position on this line, 120 pixels from the center:

let middleAngle = currentAngle + 0.5 * sliceAngle;
let textX = Math.cos(middleAngle) * 120 + centerX;
let textY = Math.sin(middleAngle) * 120 + centerY;

For textBaseline, the value "middle" is probably appropriate when using
this approach. What to use for textAlign depends on the side of the circle we
are on. On the left, it should be "right", and on the right, it should be "left"

404

so that the text is positioned away from the pie.
If you are not sure how to find out which side of the circle a given angle is on,

look to the explanation of Math.cos in Chapter 14. The cosine of an angle tells
us which x-coordinate it corresponds to, which in turn tells us exactly which
side of the circle we are on.

A bouncing ball

A box is easy to draw with strokeRect. Define a binding that holds its size or
define two bindings if your box’s width and height differ. To create a round
ball, start a path and call arc(x, y, radius, 0, 7), which creates an arc going
from zero to more than a whole circle. Then fill the path.

To model the ball’s position and speed, you can use the Vec class from
Chapter 16. Give it a starting speed, preferably one that is not purely vertical or
horizontal, and every frame, multiply that speed with the amount of time that
elapsed. When the ball gets too close to a vertical wall, invert the x component
in its speed. Likewise, invert the y component when it hits a horizontal wall.

After finding the ball’s new position and speed, use clearRect to delete the
scene and redraw it using the new position.

Precomputed mirroring

The key to the solution is the fact that we can use a canvas element as a source
image when using drawImage. It is possible to create an extra <canvas> element,
without adding it to the document, and draw our inverted sprites to it, once.
When drawing an actual frame, we just copy the already inverted sprites to
the main canvas.

Some care would be required because images do not load instantly. We do
the inverted drawing only once, and if we do it before the image loads, it
won’t draw anything. A "load" handler on the image can be used to draw the
inverted images to the extra canvas. This canvas can be used as a drawing
source immediately (it’ll simply be blank until we draw the character onto it).

HTTP and Forms

Content negotiation

Base your code on the fetch examples earlier in the chapter.
Asking for a bogus media type will return a response with code 406, “Not

acceptable”, which is the code a server should return when it can’t fulfill the

405

Accept header.

A JavaScript workbench

Use document.querySelector or document.getElementById to get access to the
elements defined in your HTML. An event handler for "click" or "mousedown
" events on the button can get the value property of the text field and call
Function on it.

Make sure you wrap both the call to Function and the call to its result in a
try block so that you can catch exceptions that it produces. In this case, we
really don’t know what type of exception we are looking for, so catch everything.

The textContent property of the output element can be used to fill it with
a string message. Or, if you want to keep the old content around, create a
new text node using document.createTextNode and append it to the element.
Remember to add a newline character to the end so that not all output appears
on a single line.

Conway's Game of Life

To solve the problem of having the changes conceptually happen at the same
time, try to see the computation of a generation as a pure function, which takes
one grid and produces a new grid that represents the next turn.

Representing the matrix can be done in the way shown in Chapter 6. You can
count live neighbors with two nested loops, looping over adjacent coordinates
in both dimensions. Take care not to count cells outside of the field and to
ignore the cell in the center, whose neighbors we are counting.

Making changes to checkboxes take effect on the next generation can be
done in two ways. An event handler could notice these changes and update the
current grid to reflect them, or you could generate a fresh grid from the values
in the checkboxes before computing the next turn.

If you choose to go with event handlers, you might want to attach attributes
that identify the position that each checkbox corresponds to so that it is easy
to find out which cell to change.

To draw the grid of checkboxes, you can either use a <table> element (see
Chapter 14) or simply put them all in the same element and put
 (line
break) elements between the rows.

406

Project: A Pixel Art Editor

Keyboard bindings

The key property of events for letter keys will be the lower case letter itself, if
Shift isn’t being held. And we’re not interested in key events with Shift here.

A "keydown" handler can inspect its event object to see if it matches any of
the shortcuts. You can automatically get the list of first letters from the tools
object, so that you don’t have to write them out.

When the key event matches a shortcut, call preventDefault on it and dis-
patch the appropriate action.

Efficient drawing

This exercise is a good example of how immutable data structures can make
code faster. Because we have both the old and the new picture, we can compare
them and only redraw the pixels that changed color, saving over 99% of the
drawing work in most cases.

You can either write a new function updatePicture or have drawPicture take
an extra argument, which may be undefined or the previous picture. For each
pixel, the function checks whether a previous picture was passed with the same
color at this position, and skips the pixel when that is the case.

Because the canvas gets cleared when we change its size, you should also
avoid touching its width and height properties when the old and the new
picture have the same size. If they do not, you can set the binding holding the
old picture to null, because you shouldn’t skip any pixels after you’ve changed
the canvas size.

Circles

You can take some inspiration from the rectangle tool. Like that tool, you’ll
want to keep drawing on the starting picture, rather than the current picture,
when the pointer moves.

To figure out which pixels to color, you can use the Pythagorean theorem.
First figure out the distance between the current pointer position and the start
position by taking the square root (Math.sqrt) of the square (Math.pow(x,
2)) of the difference in x-coordinates plus the square of the difference in y-
coordinates. Then loop over a square of pixels around the start position, whose
sides are at least twice the radius, and color those that are within the circle’s
radius, again using the Pythagorean formula to figure out their distance from
the center.

407

Make sure you don’t try to color pixels that are outside of the picture’s
boundaries.

Proper lines

The thing about the problem of drawing a pixelated line is that it is really four
similar but slightly different problems. Drawing a horizontal line from the left
to the right is easy—you loop over the x-coordinates and color a pixel at every
step. If the line has a slight slope (less than 45 degrees or ¼π radians), you
can interpolate the y-coordinate along the slope. You still need one pixel per
x position, with the y position of those pixels determined by the slope.

But as soon as your slope goes across 45 degrees, you need to switch the way
you treat the coordinates. You now need one pixel per y position, since the
line goes up more than it goes left. And then, when you cross 135 degrees, you
have to go back to looping over the x-coordinates, but from right to left.

You don’t actually have to write four loops. Since drawing a line from A to
B is the same as drawing a line from B to A, you can swap the start and end
positions for lines going from right to left, and treat them as going left to right.

So you need two different loops. The first thing your line drawing function
should do is check whether the difference between the x-coordinates is larger
than the difference between the y-coordinates. If it is, this is a horizontal-ish
line, and if not, a vertical-ish one.

Make sure you compare the absolute values of the x and y difference, which
you can get with Math.abs.

Once you know along which axis you will be looping, you can check whether
the start point has a higher coordinate along that axis than the end point, and
swap them if necessary. A succinct way to swap the values of two bindings in
JavaScript uses destructuring assignment like this:

[start, end] = [end, start];

Then you can compute the slope of the line, which determines the amount
that the coordinate on the other axis changes for each step you take along
your main axis. With that, you can run a loop along the main axis while also
tracking the corresponding position on the other axis, and draw pixels on every
iteration. Make sure you round the non-main axis coordinates, since they are
likely to be fractional, and the draw method doesn’t respond well to fractional
coordinates.

408

Node.js

Search tool

Your first command-line argument, the regular expression, can be found in
process.argv[2]. The input files come after that. You can use the RegExp
constructor to go from a string to a regular expression object.

Doing this synchronously, with readFileSync, is more straightforward, but
if you use fs/promises again to get promise-returning functions and write an
async function, the code looks similar.

To figure out whether something is a directory, you can again use stat (or
statSync) and the stats object’s isDirectory method.

Exploring a directory is a branching process. You can do it either with a
recursive function or by keeping an array of work (files that still need to be
explored). To find the files in a directory, you can call readdir or readdirSync
(note the strange capitalization—Node’s file system function naming is loosely
based on standard Unix functions, such as readdir, which are all lowercase,
but then it adds Sync with a capital letter).

To go from a filename read with readdir to a full path name, you have to
combine it with the name of the directory, putting a slash character (/) between
them.

Directory creation

You can use the function that implements the DELETE method as a blueprint
for the MKCOL method. When no file is found, try to create a directory with
mkdir. When a directory exists at that path, you can return a 204 response
so that directory creation requests are idempotent. If a nondirectory file exists
here, return an error code. Code 400 (“bad request”) would be appropriate.

A public space on the web

You can create a <textarea> element to hold the content of the file that is being
edited. A GET request, using fetch, can retrieve the current content of the file.
You can use relative URLs like index.html, instead of http://localhost:8000/
index.html, to refer to files on the same server as the running script.

Then, when the user clicks a button (you can use a <form> element and "
submit" event), make a PUT request to the same URL, with the content of the
<textarea> as request body, to save the file.

You can then add a <select> element that contains all the files in the server’s
top directory by adding <option> elements containing the lines returned by a

409

http://localhost:8000/index.html
http://localhost:8000/index.html

GET request to the URL /. When the user selects another file (a "change" event
on the field), the script must fetch and display that file. When saving a file,
use the currently selected filename.

Project: Skill-Sharing Website

Disk persistence

The simplest solution I can come up with is to encode the whole talks object as
JSON and dump it to a file with writeFile. There is already a method (updated
) that is called every time the server’s data changes. It can be extended to write
the new data to disk.

Pick a filename, for example ./talks.json. When the server starts, it can
try to read that file with readFile, and if that succeeds, the server can use the
file’s contents as its starting data.

Beware, though. The talks object started as a prototype-less object so that
the in operator could reliably be used. JSON.parse will return regular objects
with Object.prototype as their prototype. If you use JSON as your file format,
you’ll have to copy the properties of the object returned by JSON.parse into a
new, prototype-less object.

Comment field resets

The best way to do this is probably to make talks component objects, with a
setState method, so that they can be updated to show a modified version of
the talk. During normal operation, the only way a talk can be changed is by
adding more comments, so the setState method can be relatively simple.

The difficult part is that, when a changed list of talks comes in, we have
to reconcile the existing list of DOM components with the talks on the new
list—deleting components whose talk was deleted, and updating components
whose talk changed.

To do this, it might be helpful to keep a data structure that stores the talk
components under the talk titles, so that you can easily figure out whether a
component exists for a given talk. You can then loop over the new array of
talks, and for each of them, either synchronize an existing component or create
a new one. To delete components for deleted talks, you’ll have to also loop over
the components, and check whether the corresponding talks still exist.

410

Index

! operator, 17, 31
!= operator, 16
!== operator, 19
* operator, 12, 19, 146
*= operator, 34
+ operator, 12, 14, 19, 146
++ operator, 34
+= operator, 34, 199
− operator, 12, 15, 19
−− operator, 34
−= operator, 34
/ operator, 12
/= operator, 34
< operator, 16
<= operator, 16
= operator, 23, 46, 61, 160, 162, 209,

347
== operator, 16, 19, 64, 80, 193
=== operator, 19, 81, 115, 392
> operator, 16
>= operator, 16
?: operator, 17, 20, 208
[] (array), 58
[] (subscript), 58, 59
[network, stack], 194
% operator, 13, 33, 294, 389, 390,

402, 404
&& operator, 17, 20, 95
| | operator, 17, 20, 50, 95, 327, 389

{} (block), 28
{} (object), 61, 65
200 (HTTP status code), 309, 358,

362
204 (HTTP status code), 364, 365
2d (canvas context), 285
304 (HTTP status code), 372, 379,

385
400 (HTTP status code), 409
403 (HTTP status code), 363
404 (HTTP status code), 309, 363,

376, 378
405 (HTTP status code), 313, 362
406 (HTTP status code), 405
500 (HTTP status code), 362

a (HTML tag), 219, 233, 235, 318,
342

Abelson, Hal, 202
absolute positioning, 238, 242, 249,

253, 260
absolute value, 76, 408
abstract data type, 97
abstract syntax tree, see syntax tree
abstraction, 5, 39, 82, 83, 85, 202,

217, 227, 314, 347
acceleration, 279
Accept header, 328, 405
access control, 97, 142, 373
Access-Control-Allow-Origin header,

411

314
action, 331, 333, 334
activeElement property, 317
actor, 265, 271, 277
add method, 115
addEntry function, 64
addEventListener method, 243, 244,

280, 360
addition, 12, 115
address, 77, 308
address bar, 218, 308, 310
adoption, 143
ages example, 104
alert function, 221
alpha, 344
alphanumeric character, 145
alt attribute, 230
alt key, 248
altKey property, 248
ambiguity, 215
American English, 146
ampersand character, 220, 311
analysis, 128, 133
ancestor element, 272
Android, 249
angle, 240, 290, 291, 404
angle brackets, 219, 220
animation, 239, 242, 253, 260, 262,

267, 274, 275, 279–281, 294,
302, 304, 306, 403, 405

anyStorage function, 199, 201
appendChild method, 229, 401
Apple, 223
application, 1, 330, 370
application (of functions), see func-

tion application
arc, 290, 291
arc method, 290, 291, 405
argument, 26, 46, 50, 74, 154, 202
arguments object, 391

argv property, 351
arithmetic, 12, 19, 210
array, 59–61, 63, 74, 77, 80, 83, 91,

93, 95, 108, 123, 141, 147,
176, 214, 264, 333, 341, 394,
395

as table, 66
creation, 58, 391
filtering, 87
indexing, 58, 68, 71, 391, 402
iteration, 68, 86
length of, 59
methods, 70, 79, 86–88, 91, 94,

95
representation, 77
searching, 67, 71
traversal, 84

Array constructor, 333
Array prototype, 100, 104
array-like object, 226–229, 237, 252,

318, 324, 356
Array.from function, 195, 353
arrays in egg (exercise), 214, 400
arrow function, 44, 99, 199
arrow key, 259
artificial intelligence, 117, 213
artificial life, 262, 329
assert function, 140
assertion, 140
assignment, 23, 34, 160, 162, 215,

400
assumption, 139, 141
asterisk, 12, 146
async function, 195, 196, 199, 201,

385
asynchronous programming, 180, 181,

183–185, 195, 197, 199, 282,
318, 324, 350, 351, 356, 359,
364, 367

at sign, 263

412

attribute, 219, 227, 232, 318, 334,
406

autofocus attribute, 317
automatic semicolon insertion, 23
automation, 126, 131
automaton, 117
avatar, 262
average function, 90
await keyword, 195–197, 199
axis, 278, 286, 295, 296, 408

Babbage, Charles, 57
background, 262, 270, 276
background (CSS), 260, 262, 271
backslash character, 14, 143, 145, 157,

220, 396
backtick, 13, 15
backtracking, 152, 156
ball, 306, 405
balloon, 259
balloon (exercise), 259, 401
banking example, 136
Banks, Ian, 261
baseControls constant, 346
baseTools constant, 346
bean counting (exercise), 56, 391
beforeunload event, 255
behavior, 165, 213
benchmark, 234
Berners-Lee, Tim, 216
best practices, 3
bezierCurveTo method, 289
big ball of mud, 167
binary data, 3, 10, 356
binary number, 10, 11, 66, 132, 152,

323
binary operator, 12, 15, 22
binding, 30, 32, 38–40, 42, 62, 64,

77, 90, 139, 160, 174, 209,
210, 212, 215, 325

assignment, 23, 42
definition, 23, 215, 400
from parameter, 40, 48
global, 40, 129, 283, 351, 352
local, 40
model of, 24, 64
naming, 25, 35, 52, 75, 130
scope of, 40
visibility, 41

bit, 3, 10, 11, 16, 66
bitfield, 251
bitmap graphics, 293, 307
black, 333
block, 28, 32, 39, 41, 44, 61, 136,

137, 203
block comment, 36, 156
block element, 233, 235
blocking, 181, 239, 257, 357
blue, 333
blur event, 254, 255
blur method, 317
body (HTML tag), 219, 220, 225
body (HTTP), 310–313, 358, 364,

366, 377
body property, 225, 226, 228, 313
bold, 235
Book of Programming, 10, 167, 350
Boolean, 16, 28, 30, 63, 144, 208, 210

conversion to, 19, 20, 27, 31
Boolean function, 27
border (CSS), 233, 235
border-radius (CSS), 249
bouncing, 263, 266, 275, 278, 306
bound, 87
boundary, 150–152, 157, 161, 165,

300, 396
box, 142, 224, 261, 262, 306, 405
box shadow (CSS), 272
br (HTML tag), 337, 406
braces, see curly braces

413

branching, 150, 152
branching recursion, 49, 297
break keyword, 33, 35
breakpoint, 133
British English, 146
broadcastConnections function, 192
browser, 1, 6, 25, 26, 181, 216, 218,

220, 222, 223, 244, 262, 307,
308, 310, 313–315, 319, 325,
327, 342, 347, 357, 369, 370

browser wars, 223
browsers, 8, 175
bubbling, see event propagation
Buffer class, 356, 359, 360
bug, 82, 128, 132, 156, 159, 165, 168,

223
building Promise.all (exercise), 201,

399
bundler, 175
button, 243, 310, 318, 329
button (HTML tag), 221, 244, 248,

260, 319, 326, 329, 334
button property, 245, 251, 335
buttons property, 251, 335

cache, 172, 183
call method, 98, 104
call stack, 45, 47, 51, 60, 135, 136,

138, 197
callback function, 181, 183, 185, 186,

188, 189, 243, 280, 281, 334,
355, 356, 359, 379, 385

calling (of functions), see function
application

camel case, 35, 236
cancelAnimationFrame function, 257
canvas, 262, 284, 286–289, 292–299,

303–306, 405
context, 285, 286
path, 287

size, 285, 287
canvas (HTML tag), 285, 330, 334,

342, 344, 348, 407
CanvasDisplay class, 299, 300, 302
capitalization, 35, 102, 147, 236, 242,

360
capture group, 148, 149, 154, 375
career, 261
caret character, 145, 150, 161, 355
carriage return, 161
cascading, 236
Cascading Style Sheets, see CSS
case conversion, 60
case keyword, 35
case sensitivity, 147, 397
casual computing, 1
cat’s hat (exercise), 242
catch keyword, 135, 136, 139, 142,

197, 396
catch method, 187
CD, 10
celery, 369
cell, 329
Celsius, 112
center, 273
centering, 239
certificate, 315
change event, 317, 321, 338, 406, 409
character, 13, 14, 92, 93, 320
character category, 163
character encoding, 356
characterCount function, 89
characterScript function, 94, 96, 393
charCodeAt method, 92
checkbox, 315, 321, 329, 406
checked attribute, 316, 321
chess board (exercise), 38, 390
chicks function, 199, 200
child node, 226, 227, 229
childNodes property, 227, 228, 231,

414

402
children property, 228
Chinese characters, 92, 94
choice, 150
Chrome, 223
circle, 240, 290, 291
circle (SVG tag), 285
circles (exercise), 349, 407
circular dependency, 179, 398
circus, 70
class, 101, 102, 115, 119, 263, 331
class attribute, 229, 232, 237, 269,

271, 272
class declaration, 102

properties, 103
class hierarchy, 113
className property, 232
cleaning up, 136
clearing, 284, 294, 300, 405
clearInterval function, 257
clearRect method, 294, 405
clearTimeout function, 257, 258
click event, 243, 244, 246, 249, 251,

334, 406
client, 217, 314, 358, 369, 380, 381
clientHeight property, 233
clientWidth property, 233
clientX property, 249, 252, 336, 337
clientY property, 249, 252, 336, 337
clipboard, 222
clipping, 300
closePath method, 288
closing tag, 219, 221
closure, 48, 214, 400, 401, 403
closure in egg (exercise), 214, 400
code, 7, 155, 261

structure of, 22
code golf, 165
code structure, 31, 39, 167, 175
code unit, 92

codePointAt method, 92
coin, 261, 263, 278, 303
Coin class, 267, 278
collaboration, 216
collection, 5, 58, 60, 63, 80
collision, 403
collision detection, 274, 275, 278, 279,

405
colon character, 17, 34, 61, 235
color, 285, 286, 300, 330, 344
color (CSS), 235
color code, 333
color component, 333
color field, 331, 333, 338
color picker, 331, 338, 341
color property, 332
ColorSelect class, 339
comma character, 202
command key, 248, 348
command line, 169, 350–352, 367
comment, 36, 77, 155, 160, 215, 226,

369, 372, 378, 383, 400
comment field reset (exercise), 387,

410
COMMENT_NODE code, 226
comments in egg (exercise), 215, 400
CommonJS, 352, 353
CommonJS module, 178, 398
CommonJS modules, 171–173, 179
communication, 216, 314
community, 350
compareRobots function, 126
comparison, 16, 19, 30, 35, 80, 210,

391
of NaN, 16
of numbers, 16, 27
of objects, 64
of strings, 16
of undefined values, 19

compatibility, 6, 216, 223, 348, 355

415

compilation, 175, 212, 213, 400
complexity, 2, 3, 82, 113, 153, 237,

268, 347
component, 330, 331, 337, 345
composability, 5, 90, 176
computed property, 59, 327
computer, 1, 2
concat method, 71, 95, 395, 401
concatenation, 14, 71, 401
conditional execution, 17, 28, 34, 38,

208
conditional operator, 17, 20, 208
conditional request, 372
configuration, 160
connected graph, 126
connection, 217, 308, 315, 370, 371
connections binding, 192
consistency, 35, 216, 226
console.log, 5, 9, 15, 26, 45, 47, 54,

133, 351, 360
const keyword, 25, 41, 64, 75, 77
constant, 25, 75, 279
constructor, 35, 101, 102, 113, 127,

129, 136, 148, 157, 394, 395
content negotiation (exercise), 328,

405
Content-Length header, 310
Content-Type header, 310, 358, 362,

363, 367
context, 285, 286
context menu, 247
continuation, 183
continue keyword, 33
control, 337, 339, 342, 345, 346
control flow, 27, 28, 30–32, 45, 85,

135, 136, 181, 196, 243
control key, 248, 348
control point, 289, 290
convention, 35
convergent evolution, 182

Conway’s Game of Life, 329
coordinates, 115, 240, 249, 270, 273,

276, 286, 290, 295, 296
copy-paste programming, 52, 168
copyright, 169
correlation, 65, 66, 68–70
corvid, 182
cosine, 75, 240
countBy function, 93, 96
counter variable, 30, 32, 240, 390,

391, 399, 402
CPU, 181
crash, 138, 141, 377, 387
createElement method, 231, 333, 401
createReadStream function, 360, 364
createServer function, 357–359, 374,

375
createTextNode method, 230, 406
createWriteStream function, 359, 365
crisp, 304
cross-domain request, 314
crow, 182, 183, 187, 194
crow-tech module, 184
crying, 147
cryptography, 315
CSS, 235, 236, 271, 272, 274, 284,

286, 333
ctrlKey property, 248, 348
curl program, 366
curly braces, 5, 28, 39, 44, 61, 65,

77, 84, 102, 146, 147, 390
cursor, 320, 321
curve, 289, 290
cutting point, 269
cwd function, 363
cycle, 225

Dark Blue (game), 261
dash character, 12, 144, 236
data, 2, 10, 57

416

data attribute, 232, 260
data event, 360
data flow, 331, 347
data format, 77, 226
data loss, 387
data set, 67, 86
data structure, 57, 58, 60, 80, 104,

121, 176, 177, 203, 224, 225,
304, 329

data URL, 342, 343
date, 145, 146, 148
Date class, 148, 149, 169, 171
date-names package, 171
Date.now function, 149, 345
dblclick event, 249
De Morgan’s laws, 393
debouncing, 258
debugger statement, 133
debugging, 6, 128, 130, 132, 133, 136,

139, 140, 165
decentralization, 216
decimal number, 10, 132, 152
declaration, 235
decodeURIComponent function, 311,

362, 375
deep comparison, 64, 80
deep comparison (exercise), 80, 392
default, 347
default behavior, 235, 247
default export, 174
default keyword, 35
default value, 20, 46, 287, 327
defineProperty function, 394
defineRequestType function, 184, 189
degree, 290, 296
DELETEmethod, 309, 310, 313, 361,

364, 377
delete method, 115
delete operator, 62
dependence, 65

dependency, 167, 168, 170, 173, 179,
221, 354, 355

deserialization, 78
design, 168
destructuring, 149
destructuring assignment, 408
destructuring binding, 76, 172, 347,

398
developer tools, 7, 26, 133, 138
dialect, 175
dialog box, 26
diamond, 306, 404
digit, 10, 11, 132, 144–147, 333
Dijkstra’s algorithm, 177
Dijkstra, Edsger, 117, 177
dijkstrajs package, 177, 397
dimensions, 115, 233, 261, 262, 275,

285, 390
dinosaur, 213
direct child node, 237
direction (writing), 96
directory, 352, 355, 356, 361, 363,

364, 367, 409
directory creation (exercise), 367, 409
disabled attribute, 318
discretization, 262, 275, 281
dispatch, 331–333, 337, 346, 407
dispatching, 34, 374
display, 269, 281, 282, 299, 303, 305
display (CSS), 235, 260
distance, 407
division, 12, 13
division by zero, 13
do loop, 31, 123
doctype, 219, 220
document, 218, 224, 255, 284
document format, 314, 328
Document Object Model, see DOM
documentation, 350
documentElement property, 225

417

dollar sign, 25, 150, 154, 161
DOM, 225, 226, 228, 229, 232, 237,

244, 248, 262, 269, 271, 272,
284, 285, 304, 315, 320, 330,
331, 333

construction, 227, 229, 231
dom property, 331
domain, 218, 310, 314, 326
domain-specific language, 82, 132, 143,

214, 237
DOMDisplay class, 269, 270, 299
dominant direction (exercise), 96, 393
done property, 345
doneAt property, 345
dot character, see period character
double click, 249
double-quote character, 13, 165, 202,

220
download, 7, 168, 342, 353, 365, 369,

387
download attribute, 342
draggable bar example, 250
dragging, 250, 330, 340, 349
draw function, 339, 349
drawImage method, 293, 295, 299,

301, 302, 405
drawing, 224, 233, 239, 269, 284–

286, 289, 297, 302, 303, 330,
406

drawing program example, 249, 330
drawPicture function, 335, 342, 348,

407
drop-down menu, 316, 322
duplication, 168

ECMAScript, 6, 173
ECMAScript 6, 6
economic factors, 347
ecstatic package, 375
editor, 32

efficiency, 49, 79, 91, 192, 212, 233,
262, 272, 285, 335, 348

efficient drawing (exercise), 348, 407
Egg language, 202, 203, 206–208, 210,

211, 213–215, 226
electronic life, 262
elegance, 49, 204
element, 219, 226, 228, 231
ELEMENT_NODE code, 226, 401
elements property, 318, 319
ellipse, 239, 240
else keyword, 29
elt function, 231, 333, 348, 383
email, 315
emoji, 14, 92, 163, 259
empty set, 156
encapsulation, 97, 98, 106, 113, 244,

268, 269
encodeURIComponent function, 311,

372, 382
encoding, 216
encryption, 315
end event, 360
end method, 358, 359, 362
enemies example, 160
engineering, 223
ENOENT (status code), 364
Enter key, 319
entity, 220
enum (reserved word), 25
environment, 25, 208
equality, 16
error, 92, 128, 129, 132, 134, 138,

139, 186, 187, 194
error event, 325, 365
error handling, 128, 134, 135, 138,

356, 362, 364, 382, 385
error message, 206, 329
error recovery, 134
error response, 309, 362, 365

418

error tolerance, 220
Error type, 136, 138, 140, 364
ES modules, 173, 221
escape key, 283
escaping

in HTML, 220, 221
in regexps, 143, 145, 157
in strings, 14, 202
in URLs, 311, 362, 372, 375

Escher, M.C., 284
ETag header, 372, 379, 385
eval, 170
evaluate function, 207, 208, 210
evaluation, 170, 207, 213
even number, 30, 55
event handling, 243–245, 247, 253–

255, 262, 280, 282, 283, 293,
304, 319, 320, 334, 359, 403,
406

event loop, 197
event object, 245, 249, 252
event propagation, 245, 246, 254, 255
event type, 245
every method, 95
everything (exercise), 95, 393
everywhere function, 191
evolution, 143, 347, 355
exception handling, 135, 136, 138–

140, 142, 186, 187, 196, 197,
201, 399, 406

exception safety, 138
exec method, 147, 148, 158, 159
execution order, 27, 43, 45
exercises, 2, 7, 37, 132
exit method, 351
expectation, 247
experiment, 3, 7, 165
exploit, 222
exponent, 12, 166, 396, 397
exponentiation, 31, 33

export keyword, 174
exports object, 171–173, 353, 398
expression, 22, 23, 27, 30, 33, 42,

202, 203, 207
expressivity, 214
extension, 352
extraction, 148

factorial function, 8
Fahrenheit, 112
fallthrough, 35
false, 16
farm example, 52, 54, 150
fetch function, 312, 328, 359, 382,

385, 409
field, 249, 310, 315, 318, 321, 325,

329, 330, 387
file, 168, 172, 175, 309, 310, 323,

330, 342, 343, 352, 355, 356,
359, 361, 363, 364, 410

file extension, 363
file field, 315, 323, 324
file file, 343
file format, 160
file reading, 324
file server, 380
file server example, 361, 363–365, 367,

409
file size, 175
file system, 323, 355, 356, 361, 363,

410
File type, 324
FileReader class, 324, 325, 343
files property, 324
fill function, 341
fill method, 288, 333
fillColor property, 333
filling, 286, 288, 292, 305
fillRect method, 286, 294
fillStyle property, 286, 292

419

fillText method, 292, 293, 404
filter method, 87, 90, 94, 120, 190,

393–395
finally keyword, 137, 142, 396
findIndex method, 94
findInStorage function, 194, 195
findRoute function, 125, 193
finish event, 365
Firefox, 223
firewall, 370
firstChild property, 227
fixed positioning, 253
fixing scope (exercise), 215, 400
FizzBuzz (exercise), 38, 389
flattening (exercise), 95
flexibility, 6
flipHorizontally function, 302, 403
flipHorizontally method, 296
flipping, see mirroring
floating-point number, 11, 12
flood fill, 337, 340
flooding, 191, 192
flow diagram, 151, 152
focus, 249, 254, 317, 318, 321, 348,

387
focus event, 254, 255
focus method, 317
fold, see reduce method
font, 293
font-family (CSS), 236
font-size (CSS), 259
font-weight (CSS), 236
for attribute, 321
for loop, 32, 33, 68, 83, 95, 139, 391,

392
for/of loop, 68, 93, 106, 108, 110,

394
forEach method, 86
form, 310, 311, 318, 319, 367
form (HTML tag), 315, 316, 318,

384, 409
form property, 318
formatDate module, 171, 174
fractal example, 297
fractional number, 11, 166, 262
frame, 294, 302, 405
framework, 54, 331
frequency table, 65
fs package, 355–357
fs/promises package, 356
function, 5, 26, 39, 44, 129, 202, 203,

211
application, 26, 27, 40, 45, 46,

49, 87, 138, 202, 207
as property, 60
as value, 39, 42, 47, 84, 85, 87,

245, 280, 403
body, 39, 44
callback, see callback function
declaration, 43
definition, 39, 43, 51
higher-order, 43, 84, 85, 87, 88,

90, 154, 280
model of, 48
naming, 52, 53
purity, 54
scope, 42, 169, 214

function application, 74
Function constructor, 171, 172, 210,

213, 329, 406
function keyword, 39, 43
Function prototype, 100, 104
future, 6, 25, 43, 307

game, 261–263, 279, 282, 299
screenshot, 274, 303
with canvas, 303

game of life (exercise), 329, 406
GAME_LEVELS data set, 282
garbage collection, 11

420

garble example, 352
gardening, 369
gaudy home pages, 260
generation, 329, 406
generator, 196
GET method, 309, 310, 313, 319,

359, 361, 363, 371, 376
get method, 106
getAttribute method, 232
getBoundingClientRect method, 233,

336
getContext method, 286
getDate function, 149
getDate method, 149
getElementById method, 229, 401
getElementsByClassName method, 229
getElementsByTagName method, 229,

231, 242, 401
getFullYear method, 149
getHours method, 149
getImageData method, 344
getItem method, 325, 327
getMinutes method, 149
getMonth method, 149
getPrototypeOf function, 100, 102,

215, 400
getSeconds method, 149
getter, 111, 115, 266
getTime method, 149
getYear method, 149
GitHub, 309
global object, 129
global scope, 40, 170, 210, 256, 351,

352, 400
goalOrientedRobot function, 126
Google, 223
gossip property, 191
grammar, 22, 128, 160
graph, 118, 124, 177, 193, 305
graphics, 262, 269, 272, 284, 285,

293, 304, 305
grave accent, see backtick
gravity, 279
greater than, 16
greed, 155, 156
green, 333
grep, 367
grid, 262, 270, 276, 329, 406
Group class, 115, 127, 197, 394
groupBy function, 96
grouping, 12, 28, 147, 148, 154, 396
groups (exercise), 115, 394

h1 (HTML tag), 219, 233
hack, 173
handleAction function, 381
hard disk, 176, 180, 183
hard drive, 10, 323, 326, 350, 387
hard-coding, 228, 306
has method, 106, 115
hash character, 215
hash sign, 333
hasOwnProperty method, 106, 215,

400
head (HTML tag), 219, 220, 225
head property, 225
header, 309, 310, 313, 314, 358, 371
headers property, 312, 313, 328
height property, 348, 407
help text example, 254
hexadecimal number, 152, 311, 333,

344
hidden element, 235, 260
higher-order function, see function,

higher-order
historic factors, 347
history, 6
historyUpdateState function, 345
Hières-sur-Amby, 182
hooligan, 373

421

Host header, 310
href attribute, 219, 229, 232
HTML, 218, 221, 224, 226, 241, 284–

286, 304, 305, 308, 325, 367
html (HTML tag), 220, 225
HTTP, 216–218, 308–311, 313–315,

357, 358, 361, 364–367, 369–
371, 380

http package, 357, 358
HTTPS, 218, 315, 359
https package, 359
human language, 22
Hypertext Markup Language, see HTML
Hypertext Transfer Prototol, see HTTP

id attribute, 229, 237, 321
idempotence, 189, 365
idempotency, 409
identifier, 203
identity, 63
if keyword, 28, 162

chaining, 29, 34, 389, 390
If-None-Match header, 372, 379, 385
image, 230, 255, 284, 310
imagination, 261
IME, 249
img (HTML tag), 220, 230, 235, 255,

284, 293, 294, 343
immutable, 63, 121, 266, 332, 333,

340, 345, 407
implements (reserved word), 25
import keyword, 173
in operator, 62, 106
includes method, 67, 68, 394
indentation, 32
index, 58
index property, 147
index.html, 380
index.js, 352
indexOf method, 71, 72, 94, 115, 144,

157, 394
infinite loop, 33, 45, 139, 391
infinity, 13
infrastructure, 168
inheritance, 100, 112–114, 140, 364
INI file, 160
ini package, 169, 173, 176, 353
initialization, 255
inline element, 233, 235
inner function, 42, 401
inner loop, 153
innerHeight property, 254
innerWidth property, 254
input, 134, 243, 262, 317, 350, 377
input (HTML tag), 254, 315, 320–

323, 338, 343
input event, 321
insertBefore method, 229, 230
installation, 168
instance, 101
instanceof operator, 113, 140
instruction, 3
integer, 12
integration, 143, 226
interface, 97, 106, 110, 115, 127, 143,

167, 169–171, 173, 175, 176,
188, 226, 265, 269, 284, 285,
299, 312, 320, 331, 353, 371

design, 54, 143, 149, 154, 158,
226, 227, 287

interface (reserved word), 25
internationalization, 162
Internet, 160, 216–218, 222
Internet Explorer, 222, 223
interpolation, 15
interpretation, 7, 170, 207, 208, 212
interview question, 38
inversion, 145
invoking (of functions), see function

application

422

IP address, 218, 308, 310
isDirectory method, 364, 409
isEven (exercise), 55, 390
isolation, 97, 167, 170, 222
iterable interface, 108, 394
iterator, 196
iterator interface, 106, 108, 115

Jacques, 57
Java, 6
JavaScript, 6

availability of, 1
flexibility of, 6
history of, 6, 216
in HTML, 221
syntax, 22
uses of, 7
versions of, 6
weaknesses of, 6

JavaScript console, 7, 15, 26, 133,
138, 329, 351

JavaScript Object Notation, see JSON
job, 291
join method, 94, 104, 353
journal, 58, 61, 63, 64, 68
JOURNAL data set, 67
journalEvents function, 68
JSON, 77, 176, 183, 193, 313, 327,

371, 372, 386, 410
json method, 313
JSON.parse function, 78, 410
JSON.stringify function, 78
JSX, 384
jump, 4
jump-and-run game, 261
jumping, 262, 279

Kernighan, Brian, 128
key code, 280
key property, 248, 401, 407

keyboard, 25, 243, 247, 262, 279, 283,
317, 318, 320, 348

keyboard bindings (exercise), 348, 407
keyboard focus, see focus
keydown event, 247, 258, 280, 348,

401, 407
keyup event, 247, 280
keyword, 23, 25, 232
Khasekhemwy, 320
kill, 358
Knuth, Donald, 39

label, 293, 306
label (HTML tag), 321, 338
labeling, 321
landscape example, 42
Laozi, 180
Last-Modified header, 310
lastChild property, 227
lastIndex property, 158, 159
lastIndexOf method, 71
latency, 175
lava, 261–263, 272, 275, 277, 278,

303
Lava class, 266, 277
layer, 194
layering, 217
layout, 233–235
laziness, 233
Le Guin, Ursula K., 2
leaf node, 226
leak, 222, 283
learning, 2, 6, 7, 369
left (CSS), 238–240, 242
LEGO, 167
length property

for array, 59, 333
for string, 52, 56, 59, 73, 391

less than, 16

423

let keyword, 23, 24, 41, 64, 75, 77,
129

level, 262, 263, 269, 270, 272, 282
Level class, 263
lexical scoping, 42
library, 227, 331, 353, 354
license, 169
line, 23, 31, 161, 284, 286–289, 291,

306, 404
line break, 13, 161
line comment, 36, 156
line drawing, 349, 408
line width, 286, 295
lines of code, 211
lineTo method, 287
lineWidth property, 286
link, 219, 227, 228, 247, 249, 342
link (HTML tag), 274
linked list, 80, 392
linter, 173
Liskov, Barbara, 97
list (exercise), 80, 392
listen method, 357, 358
listening (TCP), 217, 357
literal expression, 22, 143, 205, 207
live data structure, 224, 231, 238,

402
live view, 370, 371, 386, 410
lives (exercise), 282
load event, 255, 293, 302, 324, 405
LoadButton class, 342
local binding, 47, 215, 391
local scope, 40, 212
localhost, 357
localStorage object, 325, 326, 382
locked box (exercise), 142, 396
logging, 133
logical and, 17
logical operators, 17
logical or, 17

long polling, 370–372, 377, 379, 385
loop, 4, 5, 30, 32, 37, 38, 49, 68, 83,

84, 90, 91, 159, 189, 390, 391,
404

termination of, 33
loop body, 31, 84
lycanthropy, 57, 64

machine code, 3, 213
mafia, 222
magic, 99, 202
mailRoute array, 124
maintenance, 169
malicious script, 222
man-in-the-middle, 315
map, 268, 319
map (data structure), 104
Map class, 105, 110, 195
map method, 88, 90, 94, 99, 104,

120, 190, 264, 338
Marcus Aurelius, 243
match method, 147, 159
matching, 144, 150, 158, 165

algorithm, 151–153
Math object, 55, 59, 75
Math.abs function, 76, 408
Math.acos function, 75
Math.asin function, 75
Math.atan function, 75
Math.ceil function, 76, 275, 301
Math.cos function, 75, 240, 405
Math.floor function, 76, 123, 275, 301
Math.max function, 27, 59, 74, 75,

300
Math.min function, 27, 55, 75, 300
Math.PI constant, 75, 290
Math.random function, 75, 123, 268,

329
Math.round function, 76
Math.sin function, 75, 240, 268, 278

424

Math.sqrt function, 67, 75, 394
Math.tan function, 75
mathematics, 49, 85
Matrix class, 108, 332
matrix example, 108, 112
MatrixIterator class, 109
max-height (CSS), 272
max-width (CSS), 272
maximum, 27, 75, 89, 90
Meadowfield, 117
measuring a robot (exercise), 126,

395
media type, 314, 328, 363
meetup, 369
memory, 3, 10, 23, 45, 58, 63, 77, 80,

180, 213, 325, 387
mesh, 218
message event, 256
meta key, 248
metaKey property, 248, 348
method, 60, 70, 97, 98, 100, 101,

129, 309, 314, 358, 366, 371,
374

method attribute, 310
method call, 98
method property, 313
methods object, 361
Microsoft, 222, 223
mime package, 363
MIME type, 328, 363
mini application, 325
minifier, 175
minimalism, 261
minimum, 27, 55, 75
minimum (exercise), 55, 390
minus, 12, 166
Miro, Joan, 330
mirror, 296, 307, 405
mirroring, 295, 296
MKCOL method, 367, 409

mkdir function, 367, 409
modification date, 364
modifier key, 248
modular robot (exercise), 178, 397
modularity, 97, 331
module, 167, 169, 178, 269, 352, 353,

374
design, 175

module loader, 352
module object, 172
module system, 169
modulo operator, 13
Mongolian vowel separator, 162
monster (exercise), 283, 403
Mosaic, 222
motion, 262
mouse, 25
mouse button, 245, 246, 249
mouse cursor, 249
mouse trail (exercise), 260, 402
mousedown event, 246, 249, 251, 334,

335, 406
mousemove event, 250, 251, 257, 258,

260, 335, 349, 402
mouseup event, 249, 251
moveTo method, 287, 291
Mozilla, 223
multiple attribute, 322–324
multiple choice, 316
multiple-choice, 316, 322
multiplication, 12, 266, 278
multiplier function, 48
music, 261
mutability, 61, 63, 121

name attribute, 319, 322
namespace, 75
namespace pollution, 75
naming, 4, 6, 25
NaN, 13, 16, 18, 128

425

negation, 15, 17
neighbor, 329, 406
neighbors property, 190
nerd, 157
nesting

in regexps, 153
of arrays, 66
of expressions, 22, 204
of functions, 42
of loops, 38, 390
of objects, 225, 228
of scope, 42

Netscape, 6, 222, 223
network, 175, 180, 187, 216, 314, 315,

350, 370
network function, 194
new operator, 101
newline character, 13, 38, 145, 156,

161, 264, 406
next method, 108, 197, 394
nextSibling property, 227
node, 225, 226
node program, 351
node-fetch package, 359
Node.js, 7, 8, 26, 171, 181, 350–353,

355–359, 361, 363–366, 369–
371, 373, 387

node_modules directory, 352, 354
NodeList type, 226
nodeName property, 242
nodeType property, 226, 401, 402
nodeValue property, 228
nonbreaking space, 162
not a number, 13
notation, 173
note-taking example, 326
notification, 370
NPM, 168, 169, 171, 173, 174, 177,

178, 352–355, 363, 374, 375,
387, 397

npm program, 353, 354, 363
null, 18, 19, 50, 59, 77, 81, 134
number, 11, 63, 144, 166, 396

conversion to, 19, 27
notation, 11, 12
precision of, 12
representation, 11
special values, 13

Number function, 27, 28, 35
number puzzle example, 50
Number.isNaN function, 28

object, 26, 57, 61–63, 75, 77, 80, 97,
99, 113, 169, 225, 327, 392

as map, 268
creation, 101
identity, 63
property, 59
representation, 77

Object prototype, 99, 100
object-oriented programming, 97, 101,

106, 112, 119, 176
Object.assign function, 327, 333
Object.create function, 100, 105, 211
Object.keys function, 62, 81, 195, 392,

401
Object.prototype, 105
obstacle, 274, 275
offsetHeight property, 233
offsetWidth property, 233
on method, 360
onclick attribute, 221, 244
onclick propert, 334
OpenGL, 285
opening tag, 219
operator, 12, 15, 16, 20, 203, 210

application, 12
optimization, 49, 54, 234, 257, 262,

272, 304, 307, 357

426

option (HTML tag), 316, 317, 322,
409

optional, 146
optional argument, 46, 79
options property, 323
ordering, 217
ordinal package, 171, 172
organic growth, 167
organization, 167
outline, 286
output, 15, 26, 133, 134, 210, 350,

406
overflow, 11
overflow (CSS), 272
overlap, 275
overlay, 236
overriding, 103, 106, 112, 398
overwriting, 365, 368, 377

p (HTML tag), 219, 233
package, 168, 171, 352, 355
package (reserved word), 25
package manager, 168
package.json, 354, 355
padding (CSS), 271
page reload, 255, 319, 325
pageX property, 249, 252
pageXOffset property, 233
pageY property, 249, 252
pageYOffset property, 233, 254
Palef, Thomas, 261
panning, 336
paragraph, 219
parallelism, 181, 310
parameter, 26, 39, 40, 44, 46, 74, 76,

98, 130, 173
parent node, 245
parentheses, 12, 22, 26, 28, 30, 32,

44, 84, 147, 149, 151, 162,
202, 396

parentNode property, 227
parse function, 206
parseApply function, 205
parseExpression function, 204
parseINI function, 161, 168
parsing, 78, 128, 161, 202–204, 206,

208, 210, 220, 224, 362, 379
password, 315
password field, 315
path

canvas, 291
canvas, 287–289, 403
closing, 288
file system, 352, 361
URL, 309, 312, 361, 362, 371,

374
path package, 363
pathfinding, 124, 177, 193, 341
patience, 349
pattern, 143–145, 157
pausing (exercise), 283, 403
pea soup, 83
peanuts, 70
percent, 253
percent sign, 311
percentage, 94
performance, 153, 175, 212, 233, 262,

304, 357
period character, 26, 59, see max ex-

ample, 145, 156, 166, 333
persistence, 325, 369, 387, 410
persistent data structure, 119, 121,

127, 132, 332, 340, 345, 403
persistent group (exercise), 127
persistent map (exercise), 395
PGroup class, 127, 395
phase, 267, 268, 278
phi coefficient, 65–67
phi function, 67, 76
phone, 249

427

physics, 274, 279, 402
physics engine, 275
pi, 12, 75, 240, 268, 290
PI constant, 75, 240
pick function, 341
picture, 284, 294, 304, 330, 345
Picture class, 332, 343
picture property, 332
PictureCanvas class, 334, 348
pictureFromImage function, 344
pie chart example, 291, 293, 306, 404
ping request, 190
pink, 333
pipe, 217
pipe character, 150, 396
pipe method, 362, 365
pipeline, 175
pixel, 233, 240, 249, 262, 270, 284–

286, 293, 294, 300, 304, 307,
330, 332, 336, 339, 340, 344,
349, 407

pixel art, 294
PixelEditor class, 337, 346, 348
pizza, 65, 66
platform game, 261, 282
Plauger, P.J., 128
player, 261, 263, 272, 275, 278, 282,

303
player character, 294, 302
Player class, 266, 278
plus character, 12, 146, 166
Poignant Guide, 22
pointer, 227
pointer event, 246, 334
pointerPosition function, 335
polling, 243
pollTalks function, 385
polymorphism, 106
pop method, 60, 70
Popper, Karl, 231

port, 217, 308, 357, 358
pose, 294
position, 233
position (CSS), 238, 242, 253, 262,

271, 272
POST method, 310, 311, 319, 372
postMessage method, 256
power example, 39, 47, 49
precedence, 12, 13, 17, 236, 237
predicate function, 87, 91, 95
Prefer header, 373, 379, 385
premature optimization, 49
preventDefault method, 247, 253–255,

279, 319, 336, 407
previousSibling property, 227
primitiveMultiply (exercise), 142, 396
privacy, 222
private (reserved word), 25
private properties, 97
private property, 142
process object, 351, 363
processor, 180
profiling, 49
program, 22, 27

nature of, 2
program size, 82, 165, 268
programming, 1

difficulty of, 2
history of, 3
joy of, 1, 2

programming language, 1, 3, 202, 213,
226, 350

power of, 5
programming style, 3, 23, 31, 35, 268
progress bar, 253
project chapter, 117, 202, 261, 330,

369
promise, 201, 399
Promise class, 185, 187, 188, 195,

197, 198, 201, 312, 325, 356,

428

359, 361, 385, 399
Promise.all function, 190, 199, 201,

399
Promise.reject function, 187
Promise.resolve function, 185, 189
promptDirection function, 139, 140
promptInteger function, 134
propagation, see event propagation
proper lines (exercise), 349, 408
property, 27, 59, 61, 65, 98, 99, 101,

103, 105, 107, 108, 110, 128,
232, 286, 327, 347

assignment, 61
deletion, 62
model of, 62
testing for, 62

protected (reserved word), 25
protocol, 216–218, 308, 309
prototype, 99–103, 105, 112, 211, 215,

400, 410
diagram, 103

prototype property, 101, 102
pseudorandom number, 76
public (reserved word), 25
public properties, 97
public space (exercise), 367, 409
publishing, 355
punch card, 3
pure function, 53, 54, 79, 87, 176,

329, 406
push method, 60, 68, 70, 394
pushing data, 370
PUT method, 309, 310, 361, 365,

371, 377, 409
Pythagoras, 394
Pythagorean theorem, 407

quadratic curve, 289
quadraticCurveTo method, 289, 404
query string, 311, 372, 379

querySelector method, 238, 401
querySelectorAll method, 237, 322
question mark, 17, 146, 156, 311
queue, 198
quotation mark, 13, 165
quoting

in JSON, 77
of object properties, 61

quoting style (exercise), 165, 396

rabbit example, 98, 100–102
radian, 240, 290, 296
radio button, 315, 322
radius, 349, 407
radix, 10
raising (exception), 135
random number, 75, 76, 268
random-item package, 397
randomPick function, 122
randomRobot function, 122
range, 87, 145–147
range function, 5, 79, 391
Range header, 313
ray tracer, 304
read-eval-print loop, 351
readability, 4, 5, 36, 49, 53, 135, 167,

208, 273, 306
readable stream, 359, 360, 362, 377
readAsDataURL method, 343
readAsText method, 324
readdir function, 356, 364, 409
readdirSync function, 409
readFile function, 172, 355, 410
readFileSync function, 357, 409
reading code, 7, 117
readStorage function, 183
readStream function, 377, 378
real-time, 243
reasoning, 17
recipe analogy, 83

429

record, 61
rect (SVG tag), 285
rectangle, 262, 275, 286, 306, 340
rectangle function, 340, 407
recursion, 45, 49, 50, 55, 80, 189,

195, 204, 206, 208, 228, 242,
297, 390, 392, 396, 399, 401

red, 333
reduce method, 88–90, 94, 95, 338,

393
ReferenceError type, 215
RegExp class, 143, 157, 409
regexp golf (exercise), 165
regular expression, 143–145, 154–156,

158, 160, 165, 205, 367, 374,
375, 400, 409

alternatives, 150
backtracking, 152
boundary, 150
creation, 143, 157
escaping, 143, 157, 396
flags, 147, 154, 157, 397
global, 154, 158, 159
grouping, 147, 154
internationalization, 162
matching, 151, 158
methods, 144, 148, 157
repetition, 146

rejecting (a promise), 186, 188, 198
relative path, 173, 221, 352, 361, 409
relative positioning, 238, 239
relative URL, 312
remainder operator, 13, 33, 294, 389,

390, 402, 404
remote access, 361
remote procedure call, 314
removeChild method, 229
removeEventListener method, 244, 403
removeItem method, 325
rename function, 356

rendering, 285
renderTalk function, 383
renderTalkForm function, 384
renderUserField function, 383
repeat method, 73, 253
repeating key, 248
repetition, 51, 146, 153, 156, 257
replace method, 154, 165, 396
replaceChild method, 230, 402
replaceSelection function, 321
reportError function, 382
request, 184, 188, 217, 308–310, 319,

357–359, 366, 369
request function, 188, 358, 359
request type, 184
requestAnimationFrame function, 239,

255, 257, 280, 306, 402
requestType function, 189
require function, 171, 172, 179, 352,

354, 363, 374
reserved word, 25
resolution, 173, 352
resolve function, 363
resolving (a promise), 185, 186, 188,

198
resource, 217, 218, 309, 310, 314,

361, 376
response, 184, 188, 308–310, 314, 358,

362, 364
Response class, 312
responsiveness, 243, 350
rest parameter, 74
restore method, 297, 298
result property, 324
retry, 188
return keyword, 40, 45, 101, 196, 390,

393
return value, 27, 40, 134, 184, 393
reuse, 54, 113, 167, 168, 353
reverse method, 79

430

reversing (exercise), 79, 391
rgb (CSS), 271
right-aligning, 242
rmdir function, 364, 367
roadGraph object, 118
roads array, 117
roads module (exercise), 178, 398
robot, 117, 119, 122, 124, 126, 178
robot efficiency (exercise), 127, 395
robustness, 371
root, 225
rotate method, 295, 296, 298
rotation, 306, 403
rounding, 76, 133, 276, 301, 408
router, 370, 374
Router class, 374
routeRequest function, 193
routeRobot function, 124
routing, 192
row, 241
rule (CSS), 236, 237
run function, 210
run-time error, 131, 132, 134, 141,

400
runAnimation function, 280, 283
runGame function, 282
runLevel function, 281, 283
running code, 7
runRobot function, 122, 395

Safari, 223
sandbox, 7, 57, 222, 224, 313
save method, 297, 298
SaveButton class, 342
scale constant, 334
scale method, 295, 296
scaling, 270, 293, 295, 301, 405
scalpel (exercise), 200, 399
scheduling, 197, 350
scientific notation, 12, 166

scope, 40–42, 47, 168, 170, 171, 173,
207, 210, 214, 215, 400

script (HTML tag), 221, 255
SCRIPTS data set, 86, 89, 91, 93,

96
scroll event, 253, 257
scrolling, 247, 253, 272, 273, 280,

300
search, 367
search method, 157
search problem, 124
search tool (exercise), 367, 409
searching, 151, 152, 157, 229
section, 160
Secure HTTP, see HTTPS
security, 222, 313, 315, 323, 325, 363,

373
select (HTML tag), 316, 317, 322,

323, 326, 330, 337, 338, 409
selected attribute, 323
selection, 320
selectionEnd property, 320
selectionStart property, 320
selector, 237
self-closing tag, 220
semantic versioning, 355
semicolon, 22, 23, 32, 235
send method, 184, 187
sendGossip function, 191
sequence, 146
serialization, 77, 78
server, 217, 218, 308–310, 312, 314,

350, 357, 358, 360, 361, 369,
373

session, 327
sessionStorage object, 327
set, 144, 145, 225
set (data structure), 115, 127
Set class, 115, 127, 395
set method, 106

431

setAttribute method, 232, 334
setInterval function, 257, 294
setItem method, 325
setState method, 332, 335, 338, 339,

348, 410
setter, 111
setTimeout function, 183, 197, 257,

379, 385
shape, 284, 287, 288, 290, 293, 306
shapes (exercise), 306, 403
shared property, 100, 103, 104
shift key, 248, 407
shift method, 70
shiftKey property, 248
short-circuit evaluation, 20, 50, 208,

393
SICP, 202
side effect, 23, 27, 34, 40, 54, 63, 79,

87, 158, 176, 200, 227, 229,
230, 234, 287, 297, 311, 331,
332

sign, 11, 166, 396
sign bit, 11
signal, 10
simplicity, 213
simulation, 119, 122, 261, 266, 329,

402
sine, 75, 240, 268, 278
single-quote character, 13, 165, 221
singleton, 127
skill, 330
skill-sharing, 369
skill-sharing project, 369, 371, 373,

380
SkillShareApp class, 386
skipSpace function, 205, 215
slash character, 12, 36, 143, 156, 312,

409
slice method, 71, 72, 87, 231, 391,

400

slope, 408
sloppy programming, 258
smooth animation, 239
SMTP, 217
social factors, 347
socket, 370
some method, 91, 95, 190, 374
sorting, 225
source property, 158
special form, 202, 207, 208
special return value, 134, 135
specialForms object, 208
specificity, 237
speed, 1, 2, 306, 405
spiral, 306, 404
split method, 119, 264
spread, 74, 333
spread operator, 270
sprite, 294, 301, 302
spy, 253
square, 27
square bracket, 108
square brackets, 58, 59, 74, 77, 145,

322, 327, 391
square example, 39, 43, 44
square root, 67, 75, 394
src attribute, 220, 221
stack, see call stack, 60
stack overflow, 45, 49, 56, 390
stack trace, 136
standard, 6, 25, 35, 87, 136, 162,

216, 347, 350, 352
standard environment, 25
standard output, 351, 360
standards, 223
star, 306, 404
Star Trek, 289
startPixelEditor function, 346
startState constant, 346
startsWith method, 362

432

stat function, 356, 363, 364, 409
state, 23, 30, 32, 34, 119, 191, 197,

199, 264, 272, 286, 297, 299,
330, 331, 333, 334, 340, 345,
346, 387

statement, 22, 23, 27, 30, 32, 39, 61
static (reserved word), 25
static file, 371, 375
static method, 112, 115, 264, 395
Stats type, 364
statSync function, 409
status code, 309, 351
status property, 312, 382
stdout property, 360
stoicism, 243
stopPropagation method, 246
storage function, 186
stream, 217, 358–360, 362, 365, 377
strict mode, 129
string, 13, 58, 60, 63, 92

indexing, 56, 71, 73, 92, 147
length, 37, 92
methods, 72, 147
notation, 13
properties, 72
representation, 14
searching, 72

String function, 27, 106
stroke method, 287–289
strokeRect method, 286, 405
strokeStyle property, 286
strokeText method, 292, 293
stroking, 286, 292, 305
strong (HTML tag), 233, 235
structure, 168, 219, 224, 331
structure sharing, 80
style, 235
style (HTML tag), 236
style attribute, 235, 236, 269
style sheet, 236, 237, 269, 271, 272,

274, 381
subclass, 113
submit, 316, 319
submit event, 319, 384, 409
substitution, 54
subtraction, 12, 115
sum function, 5, 79
summing (exercise), 79, 391
summing example, 4, 82, 88, 211
superclass, 113
survey, 291
Sussman, Gerald, 202
SVG, 284, 286, 304, 305
swapping bindings, 408
swipe, 340
switch keyword, 34
symbiotic relationship, 182
symbol, 107
Symbol function, 107
Symbol.iterator symbol, 108
SymmetricMatrix class, 112
synchronization, 386, 410
synchronous programming, 180, 195,

357, 367
syntax, 11–13, 22, 23, 25, 28, 30, 32,

34, 39, 43, 61, 128, 129, 135,
138, 166, 202, 203

syntax error, 25
syntax tree, 203, 204, 206, 207, 225
SyntaxError type, 205

tab character, 14, 32
tab key, 318
tabbed interface (exercise), 260, 402
tabindex attribute, 248, 318, 348
table, 66, 67, 271
table (HTML tag), 241, 262, 270,

406
table example, 401
tableFor function, 67

433

tag, 218, 220, 224, 237
talk, 369, 376–378
talkResponse method, 379
talksAbout function, 228
talkURL function, 382
Tamil, 86
tampering, 315
tangent, 75
target property, 246
task management example, 71
TCP, 217, 308, 371
td (HTML tag), 241, 270
temperature example, 111
template, 171, 387, 410
template literals, 15
tentacle (analogy), 24, 62, 64
terminal, 351
termite, 182
ternary operator, 17, 20, 208
test method, 144
test runners, 132
test suite, 131
test suites, 132
testing, 126, 131
text, 13, 218, 219, 224, 226, 292,

304–306, 320, 322, 356, 406
text field, 254, 316, 317, 320, 321
text method, 312
text node, 226, 228, 231, 402
text wrapping, 304
text-align (CSS), 242
TEXT_NODE code, 226, 402
textAlign property, 293, 404
textarea (HTML tag), 258, 316, 320,

326, 329, 409
textBaseline property, 293, 404
textContent property, 402, 406
textScripts function, 94, 393
th (HTML tag), 241
then method, 185–187, 190, 399

theory, 133
this, 60, 98, 99, 101, 129
thread, 181, 198, 256
throw keyword, 135, 136, 140, 142,

396
tile, 301
time, 145, 146, 148, 183, 239, 258,

274, 275, 278, 281, 302, 345
time zone, 149
timeline, 181, 197, 221, 239, 243, 255
timeout, 187, 257, 371, 372, 379
Timeout class, 188
times method, 266
title, 381
title (HTML tag), 219, 220
toDataURL method, 342
toLowerCase method, 60, 242
tool, 143, 164, 175, 330, 337–341,

346, 349, 354
tool property, 332
ToolSelect class, 338
top (CSS), 238–240, 242
top-level scope, see global scope
toString method, 99, 100, 104–106,

344, 360
touch, 251, 330
touchend event, 252
touches method, 275
touches property, 252, 337
touchmove event, 252, 336, 349
touchstart event, 252, 334, 336
toUpperCase method, 60, 131, 242,

360
tr (HTML tag), 241, 270
trackKeys function, 280, 283
transform (CSS), 284
transformation, 295–297, 307, 404
translate method, 295, 296
Transmission Control Protocol, see

TCP

434

transparency, 344
transparent, 285, 294
transpilation, 213
trapezoid, 306, 403
traversal, 151
tree, 100, 203, 225, 226
trial and error, 133, 279, 290
triangle (exercise), 37, 389
trigonometry, 75, 240
trim method, 73, 264
true, 16
trust, 222
try keyword, 136, 137, 189, 396, 406
type, 10, 15, 113
type attribute, 315, 319
type checking, 131, 175
type coercion, 18–20, 27
type property, 203, 245
type variable, 131
typeof operator, 15, 81, 392
TypeScript, 131
typing, 258
typo, 128

unary operator, 15, 22
uncaught exception, 138, 187
undefined, 18, 19, 24, 40, 46, 59, 61,

77, 128, 129, 134
underline, 235
underscore character, 25, 35, 97, 149,

157
undo history, 345
UndoButton class, 345
Unicode, 14, 16, 86, 92, 145, 162,

163
property, 163

unicycling, 369
Uniform Resource Locator, see URL
uniformity, 203
uniqueness, 237

unit (CSS), 240, 253
Unix, 364, 366, 367
Unix time, 149
unlink function, 356, 364
unshift method, 70
unwinding the stack, 135
upcasing server example, 360
updated method, 377, 380, 410
updateState function, 333
upgrading, 168
upload, 323
URL, 218, 221, 285, 310, 312, 315,

358, 371, 382
URL encoding, 311
url module, 379
url package, 362
urlToPath function, 362
usability, 247
use strict, see strict mode
user experience, 243, 318, 370, 382
user interface, 138, 331
users’ group, 369
UTF16, 14, 92
UTF8, 356

validation, 134, 141, 202, 274, 319,
377, 378

value, 10, 185
value attribute, 316, 320, 322
var keyword, 25, 40, 41, 77
variable, 4, see binding
Vec class, 115, 264, 265, 405
Vect class, 278
vector (exercise), 115, 394
vector graphics, 293
verbosity, 44, 181
version, 168, 219, 309, 354, 355
viewport, 272, 274, 299, 300, 303
VillageState class, 119
virtual keyboard, 249

435

virtual world, 117, 119, 122
virus, 222
vocabulary, 39, 82, 83
void operator, 25
volatile data storage, 10

waitForChanges method, 379
waiting, 183
walking, 302
warning, 354
wave, 268, 278
Web, see World Wide Web
web application, 6, 325, 330
web browser, see browser
web page, 175
web sockets, 370
web worker, 256
WebDAV, 367
webgl (canvas context), 285
website, 222, 223, 310, 350, 367, 369
weekDay module, 169
weekend project, 367
weresquirrel example, 57, 61, 63, 64,

68, 70
while loop, 5, 30, 32, 52, 160
whitespace, 31, 35, 73, 145, 162, 202,

205, 215, 228, 264, 338, 372,
400, 402

why, 22
width property, 348, 407
window, 246, 251, 255
window object, 243, 244
with statement, 130
wizard (mighty), 3
word boundary, 150
word character, 145, 150, 162
work list, 125, 341
workbench (exercise), 329, 406
world, 261

World Wide Web, 6, 77, 216, 218,
222, 308

writable stream, 358–360, 362
write method, 358, 359
writeFile function, 356, 359, 410
writeHead method, 358
writing code, 7, 117
writing system, 86
WWW, see World Wide Web

XML, 226, 285
XML namespace, 285
XMLHttpRequest, 319
xmlns attribute, 285

yield (reserved word), 25
yield keyword, 197
your own loop (example), 95
Yuan-Ma, 10, 167, 350

Zawinski, Jamie, 143
zero-based counting, 56, 58, 149
zeroPad function, 53
zigzag, 404
zooming, 304

436

	Introduction
	On programming
	Why language matters
	What is JavaScript?
	Code, and what to do with it
	Overview of this book
	Typographic conventions

	Values, Types, and Operators
	Values
	Numbers
	Strings
	Unary operators
	Boolean values
	Empty values
	Automatic type conversion
	Summary

	Program Structure
	Expressions and statements
	Bindings
	Binding names
	The environment
	Functions
	The console.log function
	Return values
	Control flow
	Conditional execution
	while and do loops
	Indenting Code
	for loops
	Breaking Out of a Loop
	Updating bindings succinctly
	Dispatching on a value with switch
	Capitalization
	Comments
	Summary
	Exercises

	Functions
	Defining a function
	Bindings and scopes
	Functions as values
	Declaration notation
	Arrow functions
	The call stack
	Optional Arguments
	Closure
	Recursion
	Growing functions
	Functions and side effects
	Summary
	Exercises

	Data Structures: Objects and Arrays
	The weresquirrel
	Data sets
	Properties
	Methods
	Objects
	Mutability
	The lycanthrope's log
	Computing correlation
	Array loops
	The final analysis
	Further arrayology
	Strings and their properties
	Rest parameters
	The Math object
	Destructuring
	JSON
	Summary
	Exercises

	Higher-Order Functions
	Abstraction
	Abstracting repetition
	Higher-order functions
	Script data set
	Filtering arrays
	Transforming with map
	Summarizing with reduce
	Composability
	Strings and character codes
	Recognizing text
	Summary
	Exercises

	The Secret Life of Objects
	Encapsulation
	Methods
	Prototypes
	Classes
	Class notation
	Overriding derived properties
	Maps
	Polymorphism
	Symbols
	The iterator interface
	Getters, setters, and statics
	Inheritance
	The instanceof operator
	Summary
	Exercises

	Project: A Robot
	Meadowfield
	The task
	Persistent data
	Simulation
	The mail truck's route
	Pathfinding
	Exercises

	Bugs and Errors
	Language
	Strict mode
	Types
	Testing
	Debugging
	Error propagation
	Exceptions
	Cleaning up after exceptions
	Selective catching
	Assertions
	Summary
	Exercises

	Regular Expressions
	Creating a regular expression
	Testing for matches
	Sets of characters
	Repeating parts of a pattern
	Grouping subexpressions
	Matches and groups
	The Date class
	Word and string boundaries
	Choice patterns
	The mechanics of matching
	Backtracking
	The replace method
	Greed
	Dynamically creating RegExp objects
	The search method
	The lastIndex property
	Parsing an INI file
	International characters
	Summary
	Exercises

	Modules
	Modules
	Packages
	Improvised modules
	Evaluating data as code
	CommonJS
	ECMAScript modules
	Building and bundling
	Module design
	Summary
	Exercises

	Asynchronous Programming
	Asynchronicity
	Crow tech
	Callbacks
	Promises
	Failure
	Networks are hard
	Collections of promises
	Network flooding
	Message routing
	Async functions
	Generators
	The event loop
	Asynchronous bugs
	Summary
	Exercises

	Project: A Programming Language
	Parsing
	The evaluator
	Special forms
	The environment
	Functions
	Compilation
	Cheating
	Exercises

	JavaScript and the Browser
	Networks and the Internet
	The Web
	HTML
	HTML and JavaScript
	In the sandbox
	Compatibility and the browser wars

	The Document Object Model
	Document structure
	Trees
	The standard
	Moving through the tree
	Finding elements
	Changing the document
	Creating nodes
	Attributes
	Layout
	Styling
	Cascading styles
	Query selectors
	Positioning and animating
	Summary
	Exercises

	Handling Events
	Event handlers
	Events and DOM nodes
	Event objects
	Propagation
	Default actions
	Key events
	Pointer events
	Scroll events
	Focus events
	Load event
	Events and the event loop
	Timers
	Debouncing
	Summary
	Exercises

	Project: A Platform Game
	The game
	The technology
	Levels
	Reading a level
	Actors
	Encapsulation as a burden
	Drawing
	Motion and collision
	Actor updates
	Tracking keys
	Running the game
	Exercises

	Drawing on Canvas
	SVG
	The canvas element
	Lines and surfaces
	Paths
	Curves
	Drawing a pie chart
	Text
	Images
	Transformation
	Storing and clearing transformations
	Back to the game
	Choosing a graphics interface
	Summary
	Exercises

	HTTP and Forms
	The protocol
	Browsers and HTTP
	Fetch
	HTTP sandboxing
	Appreciating HTTP
	Security and HTTPS
	Form fields
	Focus
	Disabled fields
	The form as a whole
	Text fields
	Checkboxes and radio buttons
	Select fields
	File fields
	Storing data client-side
	Summary
	Exercises

	Project: A Pixel Art Editor
	Components
	The state
	DOM building
	The canvas
	The application
	Drawing tools
	Saving and loading
	Undo history
	Let's draw
	Why is this so hard
	Exercises

	Node.js
	Background
	The node command
	Modules
	Installing with NPM
	The file system module
	The HTTP module
	Streams
	A file server
	Summary
	Exercises

	Project: Skill-Sharing Website
	Design
	Long polling
	HTTP interface
	The server
	The client
	Exercises

	Exercise Hints
	Program Structure
	Functions
	Data Structures: Objects and Arrays
	Higher-Order Functions
	The Secret Life of Objects
	Project: A Robot
	Bugs and Errors
	Regular Expressions
	Modules
	Asynchronous Programming
	Project: A Programming Language
	The Document Object Model
	Handling Events
	Project: A Platform Game
	Drawing on Canvas
	HTTP and Forms
	Project: A Pixel Art Editor
	Node.js
	Project: Skill-Sharing Website

