
11/2/2019 Building Raspberry Pi Systems with Yocto

https://jumpnowtek.com/rpi/Raspberry-Pi-Systems-with-Yocto.html 1/11

Jumpnow Technologies home code consulting contact

Building Raspberry Pi Systems with Yocto

28 Jun 2019

This post is about building Linux systems for Raspberry Pi boards using software from the Yocto
Project.

Yocto is a set of tools for building a custom embedded Linux distribution. The systems are usually
targeted for a particular application like a commercial product.

If you are looking to build a general purpose development system with access to pre-built
packages, I suggest you stick with a more user-friendly distribution like Raspbian.

And while the Yocto system is very powerful, it does have a substantial learning curve. You may
want to look at another popular, but simpler tool for building embedded systems Buildroot.

Yocto uses what it calls meta-layers to define the configuration. Within each meta-layer are
recipes, classes and configuration files that support the primary build tool, a python app called
bitbake.

I have created a custom meta-layer for the RPi boards called meta-rpi.

The systems built from this layer use the same GPU firmware, linux kernel and include the same
dtb overlays as the official Raspbian systems. This means that no hardware functionality is lost with
these Yocto built systems as compared to the “official” Raspbian distro. It is only the userland
software that differs and that is completely configurable by you.

There are a some example images in meta-rpi that support the programming languages and tools
that I commonly use in my own projects.

When using this repository for customer projects, I first fork and move it to another repository,
usually with a different name. I recommend you do the same if you require stability. I use the meta-
rpi layer for my experiments.

My systems use sysvinit, but Yocto supports systemd.

If you are Qt5 developer then you will appreciate that the RPi comes with working OpenGL drivers
for the RPi GPU. This means Qt OpenGL and QML applications will work when using the eglfs
platform plugin.

I am using the official Yocto meta-raspberrypi layer, but have updated recipes for the Linux kernel
and gpu firmware to keep them more current. I also have occasional ‘fixes’ to other components,
sometimes for bugs, but often just because I don’t like the meta-raspberrypi defaults.

I have access to all of the RPi boards and have at one time or another tested these builds with all
of them including the RPi CM and CM3 modules.

Most of the time I test only with RPi3 and RPi0-W boards.

Downloads

If you want a quick look at the resulting systems, you can download some pre-built images here.

Instructions for installing onto an SD card are in the README.

The login user is root with password jumpnowtek.

You will be prompted to change the password on first login.

All systems are setup to use a serial console. For the RPi’s that have it, a dhcp client will run on the
ethernet interface and there is an ssh server running.

https://jumpnowtek.com/
https://jumpnowtek.com/code
https://jumpnowtek.com/consulting
https://jumpnowtek.com/contact
https://jumpnowtek.com/
https://www.raspberrypi.org/
https://www.yoctoproject.org/
https://www.raspbian.org/
https://buildroot.org/
https://github.com/jumpnow/meta-rpi
https://github.com/jumpnow/meta-rpi
http://www.qt.io/
http://doc.qt.io/qt-5/qtopengl-index.html
http://doc.qt.io/qt-5/qtqml-index.html
http://doc.qt.io/qt-5/embedded-linux.html
http://git.yoctoproject.org/cgit/cgit.cgi/meta-raspberrypi
https://github.com/raspberrypi/firmware
https://www.raspberrypi.org/products/compute-module/
https://jumpnowtek.com/downloads/rpi/
https://jumpnowtek.com/downloads/rpi/README.txt

11/2/2019 Building Raspberry Pi Systems with Yocto

https://jumpnowtek.com/rpi/Raspberry-Pi-Systems-with-Yocto.html 2/11

Note: There is a custom firewall rule that will lock your IP out for 1 minute if you fail to login with
ssh after 3 attempts.

System Info

The Yocto version is 2.7.0, the [warrior] branch.

The 4.19 Linux kernel comes from the github.com/raspberrypi/linux repository.

These are sysvinit systems using eudev.

The Qt version is 5.12.1 There is no X11 and no desktop installed. Qt GUI applications can be run
fullscreen using one of the Qt embedded linux plugins like eglfs or linuxfb, both are provided. The
default is eglfs.

Python 3.7.2 with a number of modules is included.

gcc/g++ 8.3.0 and associated build tools are installed.

git 2.20.1 is installed.

wireguard 20190702 is installed.

omxplayer is installed for playing video and audio from the command line, hardware accelerated.

Raspicam the command line tool for using the Raspberry Pi camera module is installed.

There is an example image that I use for a couple of Raspberry Pi music systems. They use either
an IQaudIO Pi-DigiAMP+ or HiFiBerry Amp+ add-on board and pianobar, a console-based client for
Pandora internet radio.

The Adafruit PiTFT 3.5” and PiTFT 2.8” resistive touchscreens work. Support for some other TFT
displays is included, but I haven’t tested them.

Raspi2fb is included for mirroring the GPU framebuffer to the small TFT displays. This allows for
running Qt GUI applications on the TFTs.

Ubuntu Setup

I primarily use 16.04 64-bit servers for builds. Other versions should work.

You will need at least the following packages installed

build-essential

chrpath

diffstat

gawk

libncurses5-dev

texinfo

For 16.04 you also need to install the python 2.7 package

python2.7

And then create some links for it in /usr/bin

sudo ln -sf /usr/bin/python2.7 /usr/bin/python

sudo ln -sf /usr/bin/python2.7 /usr/bin/python2

For all versions of Ubuntu, you should change the default Ubuntu shell from dash to bash by
running this command from a shell

sudo dpkg-reconfigure dash

Choose No to dash when prompted.

https://github.com/raspberrypi/linux
https://wiki.gentoo.org/wiki/Project:Eudev
http://www.qt.io/
http://doc.qt.io/qt-5/embedded-linux.html
http://elinux.org/Omxplayer
https://www.raspberrypi.org/documentation/usage/camera/raspicam/README.md
https://jumpnowtek.com/rpi/Raspberry-Pi-Pandora-music-player.html
http://www.iqaudio.co.uk/home/9-pi-digiamp-0712411999650.html
https://www.hifiberry.com/ampplus/
https://6xq.net/pianobar/
http://www.pandora.com/
https://www.adafruit.com/products/2441
https://www.adafruit.com/products/1601
https://github.com/AndrewFromMelbourne/raspi2fb

11/2/2019 Building Raspberry Pi Systems with Yocto

https://jumpnowtek.com/rpi/Raspberry-Pi-Systems-with-Yocto.html 3/11

Fedora Setup

I have used a Fedora 27 64-bit workstation.

The extra packages I needed to install for Yocto were

chrpath

perl-bignum

perl-Thread-Queue

texinfo

and the package group

Development Tools

Fedora already uses bash as the shell.

Clone the dependency repositories

For all upstream repositories, use the [warrior] branch.

The directory layout I am describing here is my preference. All of the paths to the meta-layers are
configurable. If you choose something different, adjust the following instructions accordingly.

First the main Yocto project poky layer

~# git clone -b warrior git://git.yoctoproject.org/poky.git poky-warrior

Then the dependency layers under that

~$ cd poky-warrior

~/poky-warrior$ git clone -b warrior git://git.openembedded.org/meta-openembedded

~/poky-warrior$ git clone -b warrior https://github.com/meta-qt5/meta-qt5

~/poky-warrior$ git clone -b warrior git://git.yoctoproject.org/meta-raspberrypi

These repositories shouldn’t need modifications other then periodic updates and can be reused for
different projects or different boards.

Clone the meta-rpi repository

Create a separate sub-directory for the meta-rpi repository before cloning. This is where you will
be doing your customization.

~$ mkdir ~/rpi

~$ cd ~/rpi

~/rpi$ git clone -b warrior git://github.com/jumpnow/meta-rpi

The meta-rpi/README.md file has the last commits from the dependency repositories that I tested.
You can always checkout those commits explicitly if you run into problems.

Initialize the build directory

Again much of the following are only my conventions.

Choose a build directory. I tend to do this on a per board and/or per project basis so I can quickly
switch between projects. For this example I’ll put the build directory under ~/rpi/ with the meta-
rpi layer.

You could manually create the directory structure like this

$ mkdir -p ~/rpi/build/conf

Or you could use the Yocto environment script oe-init-build-env like this passing in the path to the
build directory

~$ source poky-warrior/oe-init-build-env ~/rpi/build

11/2/2019 Building Raspberry Pi Systems with Yocto

https://jumpnowtek.com/rpi/Raspberry-Pi-Systems-with-Yocto.html 4/11

The Yocto environment script will create the build directory if it does not already exist.

Customize the configuration files

There are some sample configuration files in the meta-rpi/conf directory.

Copy them to the build/conf directory (removing the ‘-sample’)

~/rpi$ cp meta-rpi/conf/local.conf.sample build/conf/local.conf

~/rpi$ cp meta-rpi/conf/bblayers.conf.sample build/conf/bblayers.conf

If you used the oe-init-build-env script to create the build directory, it generated some generic
configuration files in the build/conf directory. If you want to look at them, save them with a different
name before overwriting.

It is not necessary, but you may want to customize the configuration files before your first build.

Warning: Do not use the ‘~’ character when defining directory paths in the Yocto configuration files.

Edit bblayers.conf

In bblayers.conf file replace ${HOME} with the appropriate path to the meta-layer repositories on
your system if you modified any of the paths in the previous instructions.

WARNING: Do not include meta-yocto-bsp in your bblayers.conf. The Yocto BSP requirements
for the Raspberry Pi are in meta-raspberrypi.

For example, if your directory structure does not look exactly like this, you will need to modify
bblayers.conf

~/poky-warrior/

 meta-openembedded/

 meta-qt5/

 meta-raspberrypi

 ...

~/rpi/

 meta-rpi/

 build/

 conf/

Edit local.conf

The variables you may want to customize are the following:

MACHINE
TMPDIR
DL_DIR
SSTATE_DIR

The defaults for all of these work fine with the exception of MACHINE.

MACHINE

The MACHINE variable is used to determine the target architecture and various compiler tuning
flags.

See the conf files under meta-raspberrypi/conf/machine for details.

The choices for MACHINE are

raspberrypi (BCM2835)
raspberrypi0 (BCM2835)
raspberrypi0-wifi (BCM2835)
raspberrypi2 (BCM2836 or BCM2837 v1.2+)
raspberrypi3 (BCM2837)

11/2/2019 Building Raspberry Pi Systems with Yocto

https://jumpnowtek.com/rpi/Raspberry-Pi-Systems-with-Yocto.html 5/11

raspberrypi-cm (BCM2835)
raspberrypi-cm3 (BCM2837)

You can only build for one type of MACHINE at a time.

There are really just two tuning families using the default Yocto configuration files

arm1176jzfshf - for the the BCM2835 boards
cortexa7thf-neon-vfpv4 - for the BCM2836 and BCM2837 boards

Boards in the same family can generally run the same software.

One exception is u-boot, which is NOT the default for the systems being built here.

One of the reasons you would want to use u-boot with the RPis is to work with the Mender
upgrade system.

TMPDIR

This is where temporary build files and the final build binaries will end up. Expect to use at least
50GB.

The default location is under the build directory, in this example ~/rpi/build/tmp.

If you specify an alternate location as I do in the example conf file make sure the directory is
writable by the user running the build.

DL_DIR

This is where the downloaded source files will be stored. You can share this among configurations
and builds so I always create a general location for this outside the project directory. Make sure the
build user has write permission to the directory you decide on.

The default location is in the build directory, ~/rpi/build/sources.

SSTATE_DIR

This is another Yocto build directory that can get pretty big, greater then 8GB. I often put this
somewhere else other then my home directory as well.

The default location is in the build directory, ~/rpi/build/sstate-cache.

ROOT PASSWORD

There is only one login user by default, root.

The default password is set to jumpnowtek by these two lines in the local.conf file

INHERIT += "extrausers"

EXTRA_USERS_PARAMS = "usermod -P jumpnowtek root; "

These two lines force a password change on first login

INHERIT += "chageusers"

CHAGE_USERS_PARAMS = "chage -d0 root; "

You can comment them out if you do not want that behavior.

If you want no password at all (development only hopefully), comment those four lines and
uncomment this line

EXTRA_IMAGE_FEATURES = "debug-tweaks"

#INHERIT += "extrausers"

#EXTRA_USERS_PARAMS = "usermod -P jumpnowtek root; "

https://mender.io/

11/2/2019 Building Raspberry Pi Systems with Yocto

https://jumpnowtek.com/rpi/Raspberry-Pi-Systems-with-Yocto.html 6/11

#INHERIT += "chageusers"

#CHAGE_USERS_PARAMS = "chage -d0 root; "

You can always add or change the password once logged in.

Run the build

You need to source the Yocto environment into your shell before you can use bitbake. The oe-init-
build-env will not overwrite your customized conf files.

~$ source poky-warrior/oe-init-build-env ~/rpi/build

Shell environment set up for builds. ###

You can now run 'bitbake '

Common targets are:

 core-image-minimal

 core-image-sato

 meta-toolchain

 meta-toolchain-sdk

 adt-installer

 meta-ide-support

You can also run generated qemu images with a command like 'runqemu qemux86'

~/rpi/build$

I don’t use any of those Common targets, but instead always write my own custom image recipes.

The meta-rpi layer has some examples under meta-rpi/images/.

Build

To build the console-image run the following command

~/rpi/build$ bitbake console-image

You may occasionally run into build errors related to packages that either failed to download or
sometimes out of order builds. The easy solution is to clean the failed package and rerun the build
again.

For instance if the build for zip failed for some reason, I would run this

~/rpi/build$ bitbake -c cleansstate zip

~/rpi/build$ bitbake zip

And then continue with the full build.

~/rpi/build$ bitbake console-image

To build the qt5-image it would be

~/rpi/build$ bitbake qt5-image

The cleansstate command (with two s’s) works for image recipes as well.

The image files won’t get deleted from the TMPDIR until the next time you build.

Copying the binaries to an SD card (or eMMC)

After the build completes, the bootloader, kernel and rootfs image files can be found in
/deploy/images/$MACHINE with **MACHINE** coming from your **local.conf**.

The meta-rpi/scripts directory has some helper scripts to format and copy the files to a microSD
card.

http://stackoverflow.com/questions/4779756/what-is-the-difference-between-source-script-sh-and-script-sh
http://www.yoctoproject.org/docs/2.1/bitbake-user-manual/bitbake-user-manual.html

11/2/2019 Building Raspberry Pi Systems with Yocto

https://jumpnowtek.com/rpi/Raspberry-Pi-Systems-with-Yocto.html 7/11

See this post for an additional first step required for the RPi Compute eMMC.

mk2parts.sh

This script will partition an SD card with the minimal 2 partitions required for the RPI.

Insert the microSD into your workstation and note where it shows up.

lsblk is convenient for finding the microSD card.

For example

~/rpi/meta-rpi$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 931.5G 0 disk

|-sda1 8:1 0 93.1G 0 part /

|-sda2 8:2 0 93.1G 0 part /home

|-sda3 8:3 0 29.8G 0 part [SWAP]

|-sda4 8:4 0 1K 0 part

|-sda5 8:5 0 100G 0 part /oe5

|-sda6 8:6 0 100G 0 part /oe6

|-sda7 8:7 0 100G 0 part /oe7

|-sda8 8:8 0 100G 0 part /oe8

|-sda9 8:9 0 100G 0 part /oe9

`-sda10 8:10 0 215.5G 0 part /oe10

sdb 8:16 1 7.4G 0 disk

|-sdb1 8:17 1 64M 0 part

`-sdb2 8:18 1 7.3G 0 part

So I will use sdb for the card on this machine.

It doesn’t matter if some partitions from the SD card are mounted. The mk2parts.sh script will
unmount them.

WARNING: This script will format any disk on your workstation so make sure you choose the SD
card.

~$ cd ~/rpi/meta-rpi/scripts

~/rpi/meta-rpi/scripts$ sudo ./mk2parts.sh sdb

You only have to format the SD card once.

Temporary mount point

You will need to create a mount point on your workstation for the copy scripts to use.

This is the default

~$ sudo mkdir /media/card

You only have to create this directory once.

If you don’t want that location, you will have to edit the following scripts to use the mount point you
choose.

copy_boot.sh

This script copies the GPU firmware, the Linux kernel, dtbs and overlays, config.txt and cmdline.txt
to the boot partition of the SD card.

This copy_boot.sh script needs to know the TMPDIR to find the binaries. It looks for an
environment variable called OETMP.

For instance, if I had this in build/conf/local.conf

https://jumpnowtek.com/rpi/Working-with-the-raspberry-pi-compute.html
https://www.raspberrypi.org/products/compute-module/
http://linux.die.net/man/8/lsblk

11/2/2019 Building Raspberry Pi Systems with Yocto

https://jumpnowtek.com/rpi/Raspberry-Pi-Systems-with-Yocto.html 8/11

TMPDIR = "/oe4/rpi/tmp-warrior"

Then I would export this environment variable before running copy_boot.sh

~/rpi/meta-rpi/scripts$ export OETMP=/oe4/rpi/tmp-warrior

If you didn’t override the default TMPDIR in local.conf , then set it to the default TMPDIR

~/rpi/meta-rpi/scripts$ export OETMP=~/rpi/build/tmp

The copy_boot.sh script also needs a MACHINE environment variable specifying the type of RPi
board.

~/rpi/meta-rpi/scripts$ export MACHINE=raspberrypi3

or

~/rpi/meta-rpi/scripts$ export MACHINE=raspberrypi0-wifi

Then run the copy_boot.sh script passing the location of SD card

~/rpi/meta-rpi/scripts$./copy_boot.sh sdb

This script should run very fast.

If you want to customize the config.txt or cmdline.txt files for the system, you can place either of
those files in the meta-rpi/scripts directory and the copy_boot.sh script will copy them as well.

Take a look at the script if this is unclear.

copy_rootfs.sh

This script copies the root file system to the second partition of the SD card.

The copy_rootfs.sh script needs the same OETMP and MACHINE environment variables.

The script accepts an optional command line argument for the image type, for example console or
qt5. The default is console if no argument is provided.

The script also accepts a hostname argument if you want the host name to be something other
then the default MACHINE.

Here’s an example of how you would run copy_rootfs.sh

~/rpi/meta-rpi/scripts$./copy_rootfs.sh sdb console

or

~/rpi/meta-rpi/scripts$./copy_rootfs.sh sdb qt5 rpi3

The copy_rootfs.sh script will take longer to run and depends a lot on the quality of your SD card.
With a good Class 10 card it should take less then 30 seconds.

The copy scripts will NOT unmount partitions automatically. If an SD card partition is already
mounted, the script will complain and abort. This is for safety, mine mostly, since I run these scripts
many times a day on different machines and the SD cards show up in different places.

Here’s a realistic example session where I want to copy already built images to a second SD card
that I just inserted.

~$ sudo umount /dev/sdb1

~$ sudo umount /dev/sdb2

~$ export OETMP=/oe4/rpi/tmp-warrior

~$ export MACHINE=raspberrypi2

~$ cd rpi/meta-rpi/scripts

11/2/2019 Building Raspberry Pi Systems with Yocto

https://jumpnowtek.com/rpi/Raspberry-Pi-Systems-with-Yocto.html 9/11

~/rpi/meta-rpi/scripts$./copy_boot.sh sdb

~/rpi/meta-rpi/scripts$./copy_rootfs.sh sdb console rpi3

Once past the development stage I usually wrap all of the above in another script for convenience.

Both copy_boot.sh and copy_rootfs.sh are simple scripts, easily customized.

Some custom package examples

spiloop is a spidev test application.

The bitbake recipe that builds and packages spiloop is here

meta-rpi/recipes-misc/spiloop/spiloop_git.bb

Use it to test the spidev driver before and after placing a jumper between pins 19 and 21.

tspress is a Qt5 GUI application installed with the qt5-image . I use it for testing touchscreens.

The recipe is here and can be used a guide for your own applications.

meta-rpi/recipes-qt/tspress/tspress_git.bb

Check the README in the tspress repository for usage.

Adding additional packages

To display the list of available recipes from the meta-layers included in bblayers.conf

~$ source poky-warrior/oe-init-build-env ~/rpi/build

~/rpi/build$ bitbake -s

Once you have the recipe name, you need to find what packages the recipe produces. Use the oe-
pkgdata-util utility for this.

For instance, to see the packages produced by the openssh recipe

~/rpi/build$ oe-pkgdata-util list-pkgs -p openssh

openssh-keygen

openssh-scp

openssh-ssh

openssh-sshd

openssh-sftp

openssh-misc

openssh-sftp-server

openssh-dbg

openssh-dev

openssh-doc

openssh

These are the individual packages you could add to your image recipe.

You can also use oe-pkgdata-util to check the individual files a package will install.

For instance, to see the files for the openssh-sshd package

~/rpi/build$ oe-pkgdata-util list-pkg-files openssh-sshd

openssh-sshd:

 /etc/default/volatiles/99_sshd

 /etc/init.d/sshd

 /etc/ssh/moduli

 /etc/ssh/sshd_config

 /etc/ssh/sshd_config_readonly

https://github.com/scottellis/spiloop
https://github.com/scottellis/tspress
https://github.com/scottellis/tspress

11/2/2019 Building Raspberry Pi Systems with Yocto

https://jumpnowtek.com/rpi/Raspberry-Pi-Systems-with-Yocto.html 10/11

 /usr/libexec/openssh/sshd_check_keys

 /usr/sbin/sshd

For a package to be installed in your image it has to get into the IMAGE_INSTALL variable some
way or another. See the example image recipes for some common conventions.

Playing videos

The RPi project has a hardware-accelerated, command-line video player called omxplayer.

Here’s a reasonably sized example from the Blender project to test

root@rpi3:~# wget https://download.blender.org/demo/movies/Cycles_Demoreel_2015.mov

You can play it like this (-o hdmi for hdmi audio)

root@rpi3:~# omxplayer -o hdmi Cycles_Demoreel_2015.mov

Video codec omx-h264 width 1920 height 1080 profile 77 fps 25.000000

Audio codec aac channels 2 samplerate 48000 bitspersample 16

Subtitle count: 0, state: off, index: 1, delay: 0

V:PortSettingsChanged: 1920x1080@25.00 interlace:0 deinterlace:0 anaglyph:0 par:1.25 display:0 layer:0 alpha:255

If you get errors like this

COMXAudio::Decode timeout

Increase memory allocated to the GPU in config.txt

gpu_mem=128

The RPi GPU can support more then one display, (the DSI display is the default), though apps have
to be built specifically to support the second display. Omxplayer is an app with this ability.

So for example, with the RPi DSI touchscreen and an HDMI display attached at the same time, you
could run a video on the HDMI display from the touchscreen this way

root@rpi3:~# omxplayer --display=5 -o hdmi Cycles_Demoreel_2015.mov

Video codec omx-h264 width 1920 height 1080 profile 77 fps 25.000000

Audio codec aac channels 2 samplerate 48000 bitspersample 16

Subtitle count: 0, state: off, index: 1, delay: 0

V:PortSettingsChanged: 1920x1080@25.00 interlace:0 deinterlace:0 anaglyph:0 par:1.25 display:5 layer:0 alpha:255

I was not able to run a eglfs Qt app on the RPi DSI display while simultaneously playing a movie
with omxplayer on the HDMI display. Perhaps a linuxfb Qt app that doesn’t use the GPU could run
simultaneously. Some more testing is needed.

Using the Raspberry Pi Camera

The raspicam command line tools are installed with the console-image or any image that includes
the console-image

raspistill
raspivid
raspiyuv

To enable the RPi camera, add or edit the following in the RPi configuration file config.txt

start_x=1

gpu_mem=128

disable_camera_led=1 # optional for disabling the red LED on the camera

To get access to config.txt, mount the boot partition first

root@rpi# mkdir /mnt/fat

root@rpi# mount /dev/mmcblk0p1 /mnt/fat

http://elinux.org/Omxplayer
https://www.blender.org/
https://www.raspberrypi.org/documentation/raspbian/applications/camera.md

11/2/2019 Building Raspberry Pi Systems with Yocto

https://jumpnowtek.com/rpi/Raspberry-Pi-Systems-with-Yocto.html 11/11

Jumpnow Technologies, LLC - Privacy Policy

Then edit, save and reboot.

root@rpi# vi /mnt/fat/config.txt

or

root@rpi# nano /mnt/fat/config.txt

A quick test of the camera, flipping the image because of the way I have my camera mounted and
a timeout of zero so it runs until stopped.

root@rpi2# raspistill -t 0 -hf -vf

https://jumpnowtek.com/privacy-policy.html

